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FOREWORD

This manual is a practical guide for the use of the general-purpose Monte Carlo code MCNP. The previous version of 
the manual (LA-13709-M, March 2000) has been corrected and updated to include the new features found in MCNP 
Version 5 (MCNP5). The manual has also been split into 3 volumes:

Volume I: MCNP Overview and Theory Chapters 1, 2 and Appendices G, H
Volume II: MCNP User’s Guide Chapters 1, 3, 4, 5 and Appendices A, B, I, J, K
Volume III: MCNP Developer’s Guide Appendices C, D, E, F

Volume I (LA-UR-03-1987) provides an overview of the capabilities of MCNP5 and a detailed discussion of the 
theoretical basis for the code. The first chapter provides introductory information about MCNP5.  The second chapter 
describes the mathematics, data, physics, and Monte Carlo simulation techniques which form the basis for MCNP5. 
This discussion is not meant to be exhaustive — details of some techniques and of the Monte Carlo method itself are 
covered by references to the literature. 

Volume II (LA-CP-03-0245) provides detailed specifications for MCNP5 input and options, numerous example 
problems, and a discussion of the output generated by MCNP5. The first chapter is a primer on basic MCNP5 use. 
The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and 
the fifth chapter explains the output.  The appendices provide information on the available data libraries for MCNP, 
the format for several input/output files, and plotting the geometry, tallies, and cross-sections.

Volume III (LA-CP-03-0284) provides details on how to install MCNP on various computer systems, how to modify 
the code, the meaning of some of the code variables, and data layouts for certain arrays.

The Monte Carlo method for solving transport problems emerged from work done at Los Alamos during World 
War II. The method is generally attributed to Fermi, von Neumann, Ulam, Metropolis, and Richtmyer.  MCNP, first 
released in 1977, is the successor to their work and has been under continuous development for the past 25 years. 
Neither the code nor the manual is static.  The code is changed as needs arise, and the manual is changed to reflect the 
latest version of the code.  This particular manual refers to Version 5.

MCNP5 and this manual are the product of the combined effort of many people in the Diagnostics Applications Group 
(X-5) in the Applied Physics Division (X Division) at the Los Alamos National Laboratory:

X-5 Monte Carlo Team
Thomas E. Booth H. Grady Hughes Anthony Zukaitis
Forrest B. Brown Russell D. Mosteller Marsha Boggs, (CCN-12)
Jeffrey S. Bull Richard E. Prael Roger Martz (CCN-7)
R. Arthur Forster Avneet Sood
John T. Goorley Jeremy E. Sweezy

X-5 Data Team
Joann M. Campbell Robert C. Little Morgan C. White
Stephanie C. Frankle
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The code and manual can be obtained from the Radiation Safety Information Computational Center (RSICC), 
P. O. Box 2008, Oak Ridge, TN, 37831-6362.
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<jsweezy@lanl.gov>
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MCNP – A General Monte Carlo N-Particle Transport Code
Version 5

X-5 Monte Carlo Team
Diagnostics Applications Group

Los Alamos National Laboratory

ABSTRACT

MCNP is a general-purpose Monte Carlo N–Particle code that can be used for neutron, photon, 
electron, or coupled neutron/photon/electron transport, including the capability to calculate 
eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of 
materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree 
elliptical tori.

Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section 
evaluation (such as ENDF/B-VI) are accounted for. Thermal neutrons are described by both the 
free gas and S(α,β) models. For photons, the code accounts for incoherent and coherent scattering, 
the possibility of fluorescent emission after photoelectric absorption, and absorption in electron-
positron pair production. Electron/positron transport processes account for angular deflection 
through multiple Coulomb scattering, collisional energy loss with optional straggling, and the 
production of secondary particles including K x-rays, knock-on and Auger electrons, 
bremsstrahlung, and annihilation gamma rays from positron annihilation at rest. Electron transport 
does not include the effects of external or self-induced electromagnetic fields. Photonuclear 
physics is available for a limited number of isotopes.

Important standard features that make MCNP very versatile and easy to use include a powerful 
general source, criticality source, and surface source; both geometry and output tally plotters; a rich 
collection of variance reduction techniques; a flexible tally structure; and an extensive collection 
of cross-section data.
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CHAPTER 1 - MCNP OVERVIEW

WHAT IS COVERED IN CHAPTER 1

Brief explanation of the Monte Carlo method
Summary of MCNP features
Introduction to geometry

Chapter 1 provides an overview of the MCNP Monte Carlo code with brief summaries of the 
material covered in-depth in later chapters. It begins with a short discussion of the Monte Carlo 
method. Five features of MCNP are introduced: (1) nuclear data and reactions, (2) source 
specifications, (3) tallies and output, (4) estimation of errors, and (5) variance reduction. The third 
section explains MCNP geometry setup, including the concept of cells and surfaces.

I. MCNP AND THE MONTE CARLO METHOD

MCNP is a general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled 
neutron/photon/electron Monte Carlo transport code. It can be used in several transport modes:  
neutron only, photon only, electron only, combined neutron/photon transport where the photons are 
produced by neutron interactions, neutron/photon/electron, photon/electron, or electron/photon. 
The neutron energy regime is from 10-11 MeV to 20 MeV for all isotopes and up to 150 MeV for 
some isotopes, the photon energy regime is from 1 keV to 100 GeV, and the electron energy regime 
is from 1 KeV to 1 GeV.  The capability to calculate keff  eigenvalues for fissile systems is also a 
standard feature.

The user creates an input file that is subsequently read by MCNP.  This file contains information 
about the problem in areas such as:

the geometry specification,
the description of materials and selection of cross-section evaluations,
the location and characteristics of the neutron, photon, or electron source,
the type of answers or tallies desired, and
any variance reduction techniques used to improve efficiency.

Each area will be discussed in the primer by use of a sample problem. Remember five “rules’’ when 
running a Monte Carlo calculation.  They will be more meaningful as you read this manual and 
gain experience with MCNP, but no matter how sophisticated a user you may become, never forget 
the following five points:

1. Define and sample the geometry and source well.
2. You cannot recover lost information.
3. Question the stability and reliability of results.
4. Be conservative and cautious with variance reduction biasing.
5. The number of histories run is not indicative of the quality of the answer.
10/3/05 1-1
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The following sections compare Monte Carlo and deterministic methods and provide a simple 
description of the Monte Carlo method.

A. Monte Carlo Method vs. Deterministic Method

Monte Carlo methods are very different from deterministic transport methods. Deterministic 
methods, the most common of which is the discrete ordinates method, solve the transport equation 
for the average particle behavior.  By contrast, Monte Carlo obtains answers by simulating 
individual particles and recording some aspects (tallies) of their average behavior. The average 
behavior of particles in the physical system is then inferred (using the central limit theorem) from 
the average behavior of the simulated particles. Not only are Monte Carlo and deterministic 
methods very different ways of solving a problem, even what constitutes a solution is different. 
Deterministic methods typically give fairly complete information (for example, flux) throughout 
the phase space of the problem. Monte Carlo supplies information only about specific tallies 
requested by the user.

When Monte Carlo and discrete ordinates methods are compared, it is often said that Monte Carlo 
solves the integral transport equation, whereas discrete ordinates solves the integro-differential 
transport equation.  Two things are misleading about this statement. First, the integral and integro-
differential transport equations are two different forms of the same equation; if one is solved, the 
other is solved. Second, Monte Carlo “solves” a transport problem by simulating particle histories. 
A transport equation need not be written to solve a problem by Monte Carlo. Nonetheless, one can 
derive an equation that describes the probability density of particles in phase space; this equation 
turns out to be the same as the integral transport equation.

Without deriving the integral transport equation, it is instructive to investigate why the discrete 
ordinates method is associated with the integro-differential equation and Monte Carlo with the 
integral equation. The discrete ordinates method visualizes the phase space to be divided into many 
small boxes, and the particles move from one box to another.  In the limit, as the boxes get 
progressively smaller, particles moving from box to box take a differential amount of time to move 
a differential distance in space. In the limit, this approaches the integro-differential transport 
equation, which has derivatives in space and time. By contrast, Monte Carlo transports particles 
between events (for example, collisions) that are separated in space and time. Neither differential 
space nor time are inherent parameters of Monte Carlo transport. The integral equation does not 
have terms involving time or space derivatives.

Monte Carlo is well suited to solving complicated three-dimensional, time-dependent problems. 
Because the Monte Carlo method does not use phase space boxes, there are no averaging 
approximations required in space, energy, and time. This is especially important in allowing 
detailed representation of all aspects of physical data.

B. The Monte Carlo Method

Monte Carlo can be used to duplicate theoretically a statistical process (such as the interaction of 
nuclear particles with materials) and is particularly useful for complex problems that cannot be 
modeled by computer codes that use deterministic methods. The individual probabilistic events 
that comprise a process are simulated sequentially. The probability distributions governing these 
1-2 10/3/05
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events are statistically sampled to describe the total phenomenon.  In general, the simulation is 
performed on a digital computer because the number of trials necessary to adequately describe the 
phenomenon is usually quite large. The statistical sampling process is based on the selection of 
random numbers—analogous to throwing dice in a gambling casino—hence the name “Monte 
Carlo.” In particle transport, the Monte Carlo technique is pre-eminently realistic (a numerical 
experiment). It consists of actually following each of many particles from a source throughout its 
life to its death in some terminal category (absorption, escape, etc.). Probability distributions are 
randomly sampled using transport data to determine the outcome at each step of its life.

Figure 1-1. 

Figure 1-1 represents the random history of a neutron incident on a slab of material that can 
undergo fission. Numbers between 0 and 1 are selected randomly to determine what (if any) and 
where interaction takes place, based on the rules (physics) and probabilities (transport data) 
governing the processes and materials involved. In this particular example, a neutron collision 
occurs at event 1. The neutron is scattered in the direction shown, which is selected randomly from 
the physical scattering distribution. A photon is also produced and is temporarily stored, or banked, 
for later analysis.  At event 2, fission occurs, resulting in the termination of the incoming neutron 
and the birth of two outgoing neutrons and one photon. One neutron and the photon are banked for 
later analysis. The first fission neutron is captured at event 3 and terminated. The banked neutron 
is now retrieved and, by random sampling, leaks out of the slab at event 4. The fission-produced 
photon has a collision at event 5 and leaks out at event 6.  The remaining photon generated at 
event 1 is now followed with a capture at event 7. Note that MCNP retrieves banked particles such 
that the last particle stored in the bank is the first particle taken out.

This neutron history is now complete. As more and more such histories are followed, the neutron 
and photon distributions become better known. The quantities of interest (whatever the user 
requests) are tallied, along with estimates of the statistical precision (uncertainty) of the results.

     Event Log

1. Neutron scatter, 
photon production

2. Fission, photon 
production

3. Neutron capture
4. Neutron leakage
5. Photon scatter
6. Photon leakage
7. Photon capture

Fissionable MaterialVoid

Incident
Neutron

1

2

3

4

5

6

7
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II. INTRODUCTION TO MCNP FEATURES

Various features, concepts, and capabilities of MCNP are summarized in this section. More detail 
concerning each topic is available in later chapters or appendices.

A. Nuclear Data and Reactions

MCNP uses continuous-energy nuclear and atomic data libraries. The primary sources of nuclear 
data are evaluations from the Evaluated Nuclear Data File (ENDF)1 system, Advanced 
Computational Technology Initiative (ACTI),2 the Evaluated Nuclear Data Library (ENDL)3, 
Evaluated Photon Data Library (EPDL),4 the Activation Library (ACTL)5 compilations from 
Livermore, and evaluations from the Nuclear Physics (T–16) Group6,7,8 at Los Alamos. Evaluated 
data are processed into a format appropriate for MCNP by codes such as NJOY.9,10 The processed 
nuclear data libraries retain as much detail from the original evaluations as is feasible to faithfully 
reproduce the evaluator’s intent.

Nuclear data tables exist for neutron interactions, neutron-induced photons, photon interactions, 
neutron dosimetry or activation, and thermal particle scattering S(α,β).  Most of the photon and 
electron data are atomic rather than nuclear in nature; photonuclear data are also included.  Each 
data table available to MCNP is listed on a directory file, XSDIR.  Users may select specific data 
tables through unique identifiers for each table, called ZAIDs. These identifiers generally contain 
the atomic number Z, mass number A, and library specifier ID.

Over 836 neutron interaction tables are available for approximately 100 different isotopes and 
elements.  Multiple tables for a single isotope are provided primarily because data have been 
derived from different evaluations, but also because of different temperature regimes and different 
processing tolerances. More neutron interaction tables are constantly being added as new and 
revised evaluations become available. Neutron−induced photon production data are given as part 
of the neutron interaction tables when such data are included in the evaluations.

Photon interaction tables exist for all elements from Z = 1 through Z = 100. The data in the photon 
interaction tables allow MCNP to account for coherent and incoherent scattering, photoelectric 
absorption with the possibility of fluorescent emission, and pair production.  Scattering angular 
distributions are modified by atomic form factors and incoherent scattering functions.

Cross sections for nearly 2000 dosimetry or activation reactions involving over 400 target nuclei 
in ground and excited states are part of the MCNP data package.  These cross sections can be used 
as energy-dependent response functions in MCNP to determine reaction rates but cannot be used 
as transport cross sections.

Thermal data tables are appropriate for use with the S(α,β) scattering treatment in MCNP.  The data 
include chemical (molecular) binding and crystalline effects that become important as the 
neutron’s energy becomes sufficiently low. Data at various temperatures are available for light and 
heavy water, beryllium metal, beryllium oxide, benzene, graphite, polyethylene, and zirconium and 
hydrogen in zirconium hydride.
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B. Source Specification

MCNP’s generalized user-input source capability allows the user to specify a wide variety of 
source conditions without having to make a code modification. Independent probability 
distributions may be specified for the source variables of energy, time, position, and direction, and 
for other parameters such as starting cell(s) or surface(s). Information about the geometrical extent 
of the source can also be given. In addition, source variables may depend on other source variables 
(for example, energy as a function of angle) thus extending the built-in source capabilities of the 
code. The user can bias all input distributions.

In addition to input probability distributions for source variables, certain built-in functions are 
available. These include various analytic functions for fission and fusion energy spectra such as 
Watt, Maxwellian, and Gaussian spectra; Gaussian for time; and isotropic, cosine, and 
monodirectional for direction. Biasing may also be accomplished by special built−in functions.

A surface source allows particles crossing a surface in one problem to be used as the source for a 
subsequent problem.  The decoupling of a calculation into several parts allows detailed design or 
analysis of certain geometrical regions without having to rerun the entire problem from the 
beginning each time. The surface source has a fission volume source option that starts particles 
from fission sites where they were written in a previous run.

MCNP provides the user three methods to define an initial criticality source to estimate keff, the 
ratio of neutrons produced in successive generations in fissile systems.

C. Tallies and Output

The user can instruct MCNP to make various tallies related to particle current, particle flux, and 
energy deposition. MCNP tallies are normalized to be per starting particle except for a few special 
cases with criticality sources. Currents can be tallied as a function of direction across any set of 
surfaces, surface segments, or sum of surfaces in the problem.  Charge can be tallied for electrons 
and positrons. Fluxes across any set of surfaces, surface segments, sum of surfaces, and in cells, 
cell segments, or sum of cells are also available. Similarly, the fluxes at designated detectors 
(points or rings) are standard tallies, as well as radiography detector tallies. Fluxes can also be 
tallied on a mesh superimposed on the problem geometry. Heating and fission tallies give the 
energy deposition in specified cells. A pulse height tally provides the energy distribution of pulses 
created in a detector by radiation. In addition, particles may be flagged when they cross specified 
surfaces or enter designated cells, and the contributions of these flagged particles to the tallies are 
listed separately. Tallies such as the number of fissions, the number of absorptions, the total helium 
production, or any product of the flux times the approximately 100 standard ENDF reactions plus 
several nonstandard ones may be calculated with any of the MCNP tallies. In fact, any quantity of 
the form

can be tallied, where  is the energy-dependent fluence, and f(E) is any product or summation 
of the quantities in the cross-section libraries or a response function provided by the user. The 

C φ E( )f E( ) Ed∫=

φ E( )
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tallies may also be reduced by line-of-sight attenuation. Tallies may be made for segments of cells 
and surfaces without having to build the desired segments into the actual problem geometry. All 
tallies are functions of time and energy as specified by the user and are normalized to be per starting 
particle. Mesh tallies are functions of energy and are also normalized to be per starting particle.

In addition to the tally information, the output file contains tables of standard summary information 
to give the user a better idea of how the problem ran. This information can give insight into the 
physics of the problem and the adequacy of the Monte Carlo simulation. If errors occur during the 
running of a problem, detailed diagnostic prints for debugging are given. Printed with each tally is 
also its statistical relative error corresponding to one standard deviation. Following the tally is a 
detailed analysis to aid in determining confidence in the results. Ten pass/no-pass checks are made 
for the user-selectable tally fluctuation chart (TFC) bin of each tally. The quality of the confidence 
interval still cannot be guaranteed because portions of the problem phase space possibly still have 
not been sampled. Tally fluctuation charts, described in the following section, are also 
automatically printed to show how a tally mean, error, variance of the variance, and slope of the 
largest history scores fluctuate as a function of the number of histories run.

All tally results, except for mesh tallies, can be displayed graphically, either while the code is 
running or in a separate postprocessing mode.

D. Estimation of Monte Carlo Errors

MCNP tallies are normalized to be per starting particle and are printed in the output accompanied 
by a second number R, which is the estimated relative error defined to be one estimated standard 
deviation of the mean   divided by the estimated mean . In MCNP, the quantities required for 
this error estimate−−the tally and its second moment−−are computed after each complete Monte 
Carlo history, which accounts for the fact that the various contributions to a tally from the same 
history are correlated. For a well-behaved tally, R will be proportional to  where N is the 
number of histories. Thus, to halve R, we must increase the total number of histories fourfold. For 
a poorly behaved tally, R may increase as the number of histories increases.

The estimated relative error can be used to form confidence intervals about the estimated mean, 
allowing one to make a statement about what the true result is. The Central Limit Theorem states 
that as N approaches infinity there is a 68% chance that the true result will be in the range  
and a 95% chance in the range . It is extremely important to note that these confidence 
statements refer only to the precision of the Monte Carlo calculation itself and not to the accuracy 
of the result compared to the true physical value. A statement regarding accuracy requires a 
detailed analysis of the uncertainties in the physical data, modeling, sampling techniques, and 
approximations, etc., used in a calculation.

The guidelines for interpreting the quality of the confidence interval for various values of R are 
listed in Table 1.1. 

Sx x

1 N⁄

x 1 R±( )
x 1 2R±( )
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For all tallies except next-event estimators, hereafter referred to as point detector tallies, the 
quantity R should be less than 0.10 to produce generally reliable confidence intervals. Point 
detector results tend to have larger third and fourth moments of the individual tally distributions, 
so a smaller value of R, < 0.05, is required to produce generally reliable confidence intervals. The 
estimated uncertainty in the Monte Carlo result must be presented with the tally so that all are 
aware of the estimated precision of the results.

Keep in mind the footnote to Table 1.1. For example, if an important but highly unlikely particle 
path in phase space has not been sampled in a problem, the Monte Carlo results will not have the 
correct expected values and the confidence interval statements may not be correct. The user can 
guard against this situation by setting up the problem so as not to exclude any regions of phase 
space and by trying to sample all regions of the problem adequately.

Despite one’s best effort, an important path may not be sampled often enough, causing confidence 
interval statements to be incorrect. To try to inform the user about this behavior, MCNP calculates 
a figure of merit (FOM) for one tally bin of each tally as a function of the number of histories and 
prints the results in the tally fluctuation charts at the end of the output. The FOM is defined as

where T is the computer time in minutes. The more efficient a Monte Carlo calculation is, the larger 
the FOM will be because less computer time is required to reach a given value of R.

The FOM should be approximately constant as N increases because R2 is proportional to 1/N and 
T is proportional to N. Always examine the tally fluctuation charts to be sure that the tally appears 
well behaved, as evidenced by a fairly constant FOM. A sharp decrease in the FOM indicates that 
a seldom-sampled particle path has significantly affected the tally result and relative error estimate. 
In this case, the confidence intervals may not be correct for the fraction of the time that statistical 
theory would indicate. Examine the problem to determine what path is causing the large scores and 
try to redefine the problem to sample that path much more frequently.

After each tally, an analysis is done and additional useful information is printed about the TFC tally 
bin result.  The nonzero scoring efficiency, the zero and nonzero score components of the relative 
error, the number and magnitude of negative history scores, if any, and the effect on the result if 

Table 1.1:  
Guidelines for Interpreting the Relative Error R*

Range of R Quality of the Tally
0.5 to 1.0 Not meaningful
0.2 to 0.5 Factor of a few 
0.1 to 0.2 Questionable
< 0.10 Generally reliable
< 0.05 Generally reliable for point detectors

*  and represents the estimated relative error at the 1σ level.
These interpretations of R assume that all portions of the problem phase
space are being sampled well by the Monte Carlo process.

R Sx x⁄=

FOM 1 R2T( )⁄≡
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the largest observed history score in the TFC were to occur again on the very next history are given. 
A table just before the TFCs summarizes the results of these checks for all tallies in the problem. 
Ten statistical checks are made and summarized in Table 160 after each tally, with a pass yes/no 
criterion. The empirical history score probability density function (PDF) for the TFC bin of each 
tally is calculated and displayed in printed plots.

The TFCs at the end of the problem include the variance of the variance (an estimate of the error 
of the relative error), and the slope (the estimated exponent of the PDF large score behavior) as a 
function of the number of particles started.

All this information provides the user with statistical information to aid in forming valid 
confidence intervals for Monte Carlo results. There is no GUARANTEE, however. The possibility 
always exists that some as yet unsampled portion of the problem may change the confidence 
interval if more histories were calculated. Chapter 2 contains more information about estimation 
of Monte Carlo precision.

E. Variance Reduction

As noted in the previous section, R (the estimated relative error) is proportional to , where N 
is the number of histories. For a given MCNP run, the computer time T consumed is proportional 
to N.  Thus , where C is a positive constant. There are two ways to reduce R: 
(1) increase T and/or (2) decrease C.  Computer budgets often limit the utility of the first approach. 
For example, if it has taken 2 hours to obtain R = 0.10, then 200 hours will be required to obtain 
R = 0.01. For this reason MCNP has special variance reduction techniques for decreasing C. 
(Variance is the square of the standard deviation.) The constant C depends on the tally choice and/
or the sampling choices.

1. Tally Choice

As an example of the tally choice, note that the fluence in a cell can be estimated either by a 
collision estimate or a track length estimate. The collision estimate is obtained by tallying 1/Σt 
(Σt=macroscopic total cross section) at each collision in the cell and the track length estimate is 
obtained by tallying the distance the particle moves while inside the cell. Note that as Σt gets very 
small, very few particles collide but give enormous tallies when they do, producing a high variance 
situation (see page 2–118). In contrast, the track length estimate gets a tally from every particle that 
enters the cell.  For this reason MCNP has track length tallies as standard tallies, whereas the 
collision tally is not standard in MCNP, except for estimating keff.

2. Nonanalog Monte Carlo

Explaining how sampling affects C requires understanding of the nonanalog Monte Carlo model.

The simplest Monte Carlo model for particle transport problems is the analog model that uses the 
natural probabilities that various events occur (for example, collision, fission, capture, etc.). 
Particles are followed from event to event by a computer, and the next event is always sampled 
(using the random number generator) from a number of possible next events according to the 

1 N⁄
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natural event probabilities. This is called the analog Monte Carlo model because it is directly 
analogous to the naturally occurring transport.

The analog Monte Carlo model works well when a significant fraction of the particles contribute 
to the tally estimate and can be compared to detecting a significant fraction of the particles in the 
physical situation. There are many cases for which the fraction of particles detected is very small, 
less than 10-6. For these problems analog Monte Carlo fails because few, if any, of the particles 
tally, and the statistical uncertainty in the answer is unacceptable.

Although the analog Monte Carlo model is the simplest conceptual probability model, there are 
other probability models for particle transport that estimate the same average value as the analog 
Monte Carlo model, while often making the variance (uncertainty) of the estimate much smaller 
than the variance for the analog estimate. This means that problems that would be impossible to 
solve in days of computer time with analog methods can be solved in minutes of computer time 
with nonanalog methods.

A nonanalog Monte Carlo model attempts to follow “interesting” particles more often than 
“uninteresting” ones.  An “interesting” particle is one that contributes a large amount to the 
quantity (or quantities) that needs to be estimated.  There are many nonanalog techniques, and all 
are meant to increase the odds that a particle scores (contributes).  To ensure that the average score 
is the same in the nonanalog model as in the analog model, the score is modified to remove the 
effect of biasing (changing) the natural odds. Thus, if a particle is artificially made q times as likely 
to execute a given random walk, then the particle’s score is weighted by (multiplied by) . The 
average score is thus preserved because the average score is the sum, over all random walks, of the 
probability of a random walk multiplied by the score resulting from that random walk.

A nonanalog Monte Carlo technique will have the same expected tallies as an analog technique if 
the expected weight executing any given random walk is preserved. For example, a particle can be 
split into two identical pieces and the tallies of each piece are weighted by 1/2 of what the tallies 
would have been without the split. Such nonanalog, or variance reduction, techniques can often 
decrease the relative error by sampling naturally rare events with an unnaturally high frequency 
and weighting the tallies appropriately.

3. Variance Reduction Tools in MCNP

There are four classes of variance reduction techniques11 that range from the trivial to the esoteric.

Truncation Methods are the simplest of variance reduction methods. They speed up calculations 
by truncating parts of phase space that do not contribute significantly to the solution. The simplest 
example is geometry truncation in which unimportant parts of the geometry are simply not 
modeled. Specific truncation methods available in MCNP are the energy cutoff and time cutoff.

Population Control Methods use particle splitting and Russian roulette to control the number of 
samples taken in various regions of phase space. In important regions many samples of low weight 
are tracked, while in unimportant regions few samples of high weight are tracked. A weight 
adjustment is made to ensure that the problem solution remains unbiased. Specific population 

1 q⁄
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control methods available in MCNP are geometry splitting and Russian roulette, energy splitting/
roulette, time splitting/roulette, weight cutoff, and weight windows.

Modified Sampling Methods alter the statistical sampling of a problem to increase the number of 
tallies per particle.  For any Monte Carlo event it is possible to sample from any arbitrary 
distribution rather than the physical probability as long as the particle weights are then adjusted to 
compensate. Thus, with modified sampling methods, sampling is done from distributions that send 
particles in desired directions or into other desired regions of phase space such as time or energy, 
or change the location or type of collisions. Modified sampling methods in MCNP include the 
exponential transform, implicit capture, forced collisions, source biasing, and neutron-induced 
photon production biasing.

Partially-Deterministic Methods are the most complicated class of variance reduction methods. 
They circumvent the normal random walk process by using deterministic-like techniques, such as 
next event estimators, or by controlling the random number sequence. In MCNP these methods 
include point detectors, DXTRAN, and correlated sampling.

Variance reduction techniques, used correctly, can greatly help the user produce a more efficient 
calculation. Used poorly, they can result in a wrong answer with good statistics and few clues that 
anything is amiss. Some variance reduction methods have general application and are not easily 
misused. Others are more specialized and attempts to use them carry high risk. The use of weight 
windows tends to be more powerful than the use of importances but typically requires more input 
data and more insight into the problem. The exponential transform for thick shields is not 
recommended for the inexperienced user; rather, use many cells with increasing importances (or 
decreasing weight windows) through the shield. Forced collisions are used to increase the 
frequency of random walk collisions within optically thin cells but should be used only by an 
experienced user. The point detector estimator should be used with caution, as should DXTRAN.

For many problems, variance reduction is not just a way to speed up the problem but is absolutely 
necessary to get any answer at all. Deep penetration problems and pipe detector problems, for 
example, will run too slowly by factors of trillions without adequate variance reduction. 
Consequently, users have to become skilled in using the variance reduction techniques in MCNP. 
Most of the following techniques cannot be used with the pulse height tally.

The following summarizes briefly the main MCNP variance reduction techniques. Detailed 
discussion is in Chapter 2, page 2–134.

1. Energy cutoff: Particles whose energy is out of the range of interest are terminated so 
that computation time is not spent following them.

2. Time cutoff:  Like the energy cutoff but based on time.
3. Geometry splitting with Russian roulette: Particles transported from a region of higher 

importance to a region of lower importance (where they will probably contribute little to 
the desired problem result) undergo Russian roulette; that is, some of those particles will 
be killed a certain fraction of the time, but survivors will be counted more by increasing 
their weight the remaining fraction of the time. In this way, unimportant particles are 
followed less often, yet the problem solution remains undistorted. On the other hand, if 
a particle is transported to a region of higher importance (where it will likely contribute 
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to the desired problem result), it may be split into two or more particles (or tracks), each 
with less weight and therefore counting less. In this way, important particles are followed 
more often, yet the solution is undistorted because, on average, total weight is conserved.

4. Energy splitting/Russian roulette: Particles can be split or rouletted upon entering 
various user−supplied energy ranges. Thus important energy ranges can be sampled 
more frequently by splitting the weight among several particles and less important 
energy ranges can be sampled less frequently by rouletting particles.

5. Time splitting/Russian roulette: Like energy splitting/roulette, but based on time.
6. Weight cutoff/Russian roulette: If a particle weight becomes so low that the particle 

becomes insignificant, it undergoes Russian roulette. Most particles are killed, and some 
particles survive with increased weight. The solution is unbiased because total weight is 
conserved, but computer time is not wasted on insignificant particles.

7. Weight window:  As a function of energy, geometrical location, or both, low−weighted 
particles are eliminated by Russian roulette and high−weighted particles are split. This 
technique helps keep the weight dispersion within reasonable bounds throughout the 
problem. An importance generator is available that estimates the optimal limits for a 
weight window.

8. Exponential transformation: To transport particles long distances, the distance between 
collisions in a preferred direction is artificially increased and the weight is 
correspondingly artificially decreased. Because large weight fluctuations often result, it 
is highly recommended that the weight window be used with the exponential transform.

9. Implicit absorption: When a particle collides, there is a probability that it is absorbed by 
the nucleus. In analog absorption, the particle is killed with that probability. In implicit 
absorption, also known as implicit capture or survival biasing, the particle is never killed 
by absorption; instead, its weight is reduced by the absorption probability at each 
collision. Important particles are permitted to survive by not being lost to absorption. On 
the other hand, if particles are no longer considered useful after undergoing a few 
collisions, analog absorption efficiently gets rid of them.

10. Forced collisions: A particle can be forced to undergo a collision each time it enters a 
designated cell that is almost transparent to it. The particle and its weight are 
appropriately split into two parts, collided and uncollided. Forced collisions are often 
used to generate contributions to point detectors, ring detectors, or DXTRAN spheres.

11. Source variable biasing: Source particles with phase space variables of more 
importance are emitted with a higher frequency but with a compensating lower weight 
than are less important source particles. This technique can be used with pulse height 
tallies.

12. Point and ring detectors: When the user wishes to tally a flux−related quantity at a point 
in space, the probability of transporting a particle precisely to that point is vanishingly 
small. Therefore, pseudoparticles are directed to the point instead. Every time a particle 
history is born in the source or undergoes a collision, the user may require that a 
pseudoparticle be tallied at a specified point in space. In this way, many pseudoparticles 
of low weight reach the detector, which is the point of interest, even though no particle 
histories could ever reach the detector.  For problems with rotational symmetry, the point 
may be represented by a ring to enhance the efficiency of the calculation.
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13. DXTRAN:  DXTRAN, which stands for deterministic transport, improves sampling in 
the vicinity of detectors or other tallies. It involves deterministically transporting 
particles on collision to some arbitrary, user−defined sphere in the neighborhood of a 
tally and then calculating contributions to the tally from these particles. Contributions to 
the detectors or to the DXTRAN spheres can be controlled as a function of a geometric 
cell or as a function of the relative magnitude of the contribution to the detector or 
DXTRAN sphere.
The DXTRAN method is a way of obtaining large numbers of particles on user–specified 
“DXTRAN spheres.” DXTRAN makes it possible to obtain many particles in a small 
region of interest that would otherwise be difficult to sample. Upon sampling a collision 
or source density function, DXTRAN estimates the correct weight fraction that should 
scatter toward, and arrive without collision at, the surface of the sphere. The DXTRAN 
method then puts this correct weight on the sphere. The source or collision event is 
sampled in the usual manner, except that the particle is killed if it tries to enter the sphere 
because all particles entering the sphere have already been accounted for 
deterministically.

14. Correlated sampling: The sequence of random numbers in the Monte Carlo process is 
chosen so that statistical fluctuations in the problem solution will not mask small 
variations in that solution resulting from slight changes in the problem specification. The 
ith history will always start at the same point in the random number sequence no matter 
what the previous i−1 particles did in their random walks.

III. MCNP GEOMETRY

We will present here only basic introductory information about geometry setup, surface 
specification, and cell and surface card input. Areas of further interest would be the complement 
operator, use of parentheses, and repeated structure and lattice definitions, found in Chapter 2. 
Chapter 4 contains geometry examples and is recommended as a next step. Chapter 3 has detailed 
information about the format and entries on cell and surface cards and discusses macrobodies.

The geometry of MCNP treats an arbitrary 3-dimensional configuration of user-defined materials 
in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. 
The cells are defined by the intersections, unions, and complements of the regions bounded by the 
surfaces. Surfaces are defined by supplying coefficients to the analytic surface equations or, for 
certain types of surfaces, known points on the surfaces. MCNP also provides a “macrobody” 
capability, where basic shapes such as spheres, boxes, cylinders, etc., may be combined using 
boolean operators. This capability is essentially the same as the combinatorial geometry provided 
by other codes such as MORSE, KENO, and VIM.

MCNP has a more general geometry than is available in most combinatorial geometry codes. In 
addition to the capability of combining several predefined geometrical bodies, as in a 
combinatorial geometry scheme, MCNP gives the user the added flexibility of defining 
geometrical regions from all the first and second degree surfaces of analytical geometry and 
elliptical tori and then of combining them with boolean operators. The code does extensive internal 
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checking to find input errors. In addition, the geometry-plotting capability in MCNP helps the user 
check for geometry errors.

MCNP treats geometric cells in a Cartesian coordinate system. The surface equations recognized 
by MCNP are listed in Table 3.1 on page 3–13. The particular Cartesian coordinate system used is 
arbitrary and user defined, but the right−handed system shown in Figure 1-2 is usually chosen. 

 

Figure 1-2. 

Using the bounding surfaces specified on cell cards, MCNP tracks particles through the geometry, 
calculates the intersection of a track’s trajectory with each bounding surface, and finds the 
minimum positive distance to an intersection. If the distance to the next collision is greater than 
this minimum distance and there are no DXTRAN spheres along the track, the particle leaves the 
current cell. At the appropriate surface intersection, MCNP finds the correct cell that the particle 
will enter by checking the sense of the intersection point for each surface listed for the cell. When 
a complete match is found, MCNP has found the correct cell on the other side and the transport 
continues.

A. Cells

When cells are defined, an important concept is that of the sense of all points in a cell with respect 
to a bounding surface. Suppose that s = f(x,y,z) = 0 is the equation of a surface in the problem.  For 
any set of points (x,y,z), if s = 0 the points are on the surface.  However, for points not on the 
surface, if s is negative, the points are said to have a negative sense with respect to that surface and, 
conversely, a positive sense if s is positive.  For example, a point at x = 3 has a positive sense with 
respect to the plane . That is, the equation  is positive for x = 3 
(where D = constant).

Cells are defined on cell cards. Each cell is described by a cell number, material number, and 
material density followed by a list of operators and signed surfaces that bound the cell. If the sense 
is positive, the sign can be omitted. The material number and material density can be replaced by 
a single zero to indicate a void cell. The cell number must begin in columns 1−5. The remaining 
entries follow, separated by blanks. A more complete description of the cell card format can be 
found in Volume II. Each surface divides all space into two regions, one with positive sense with 
respect to the surface and the other with negative sense. The geometry description defines the cell 
to be the intersection, union, and/or complement of the listed regions.

The subdivision of the physical space into cells is not necessarily governed only by the different 
material regions, but may be affected by problems of sampling and variance reduction techniques 
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(such as splitting and Russian roulette), the need to specify an unambiguous geometry, and the tally 
requirements. The tally segmentation feature may eliminate most of the tally requirements.

Be cautious about making any one cell very complicated. With the union operator and disjointed 
regions, a very large geometry can be set up with just one cell. The problem is that for each track 
flight between collisions in a cell, the intersection of the track with each bounding surface of the 
cell is calculated, a calculation that can be costly if a cell has many surfaces. As an example, 
consider Figure 1-3a.  It is just a lot of parallel cylinders and is easy to set up.  However, the cell 
containing all the little cylinders is bounded by twelve surfaces (counting a top and bottom). A 
much more efficient geometry is seen in Figure 1-3b, where the large cell has been broken up into 
a number of smaller cells.

Figure 1-3. 

1. Cells Defined by Intersections of Regions of Space

The intersection operator in MCNP is implicit; it is simply the blank space between two surface 
numbers on the cell card.

If a cell is specified using only intersections, all points in the cell must have the same sense with 
respect to a given bounding surface. This means that, for each bounding surface of a cell, all points 
in the cell must remain on only one side of any particular surface. Thus, there can be no concave 
corners in a cell specified only by intersections. Figure 1-4, a cell formed by the intersection of five 
surfaces (ignore surface 6 for the time being), illustrates the problem of concave corners by 
allowing a particle (or point) to be on two sides of a surface in one cell. Surfaces 3 and 4 form a 
concave corner in the cell such that points p1 and p2 are on the same side of surface 4 (that is, have 
the same sense with respect to 4) but point p3 is on the other side of surface 4 (opposite sense). 
Points p2 and p3 have the same sense with respect to surface 3, but p1 has the opposite sense. One 
way to remedy this dilemma (and there are others) is to add surface 6 between the 3/4 corner and 
surface 1 to divide the original cell into two cells.

(a) (b)
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Figure 1-4. 

With surface 6 added to Figure 1-4, the cell to the right of surface 6 is number 1 (cells indicated by 
circled numbers); to the left number 2; and the outside cell number 3.  The cell cards (in two 
dimensions, all cells void) are

1 0 1 –2 –3 6
2 0 1 –6 –4 5

Cell 1 is a void and is formed by the intersection of the region above (positive sense) surface 1 with 
the region to the left (negative sense) of surface 2, intersected with the region below (negative 
sense) surface 3, and finally intersected with the region to the right (positive sense) of surface 6. 
Cell 2 is described similarly.

Cell 3 cannot be specified with the intersection operator. The following section about the union 
operator is needed to describe cell 3.

2. Cells Defined by Unions of Regions of Space

The union operator, signified by a colon on the cell cards, allows concave corners in cells and also 
cells that are completely disjoint. The intersection and union operators are binary Boolean 
operators, so their use follows Boolean algebra methodology; unions and intersections can be used 
in combination in any cell description.

Spaces on either side of the union operator are irrelevant, but remember that a space without the 
colon signifies an intersection. In the hierarchy of operations, intersections are performed first and 
then unions. There is no left to right ordering. Parentheses can be used to clarify operations and in 
some cases are required to force a certain order of operations.  Innermost parentheses are cleared 
first. Spaces are optional on either side of a parenthesis. A parenthesis is equivalent to a space and 
signifies an intersection.

For example, let A and B be two regions of space. The region containing points that belong to both 
A and B is called the intersection of A and B. The region containing points that belong to A alone 
or to B alone or to both A and B is called the union of A and B. The shaded area in Figure 1-5a 
represents the union of A and B (or A : B), and the shaded area in Figure 1-5b represents the 
intersection of A and B (or A B). The only way regions of space can be added is with the union 
operator. An intersection of two spaces always results in a region no larger than either of the two 
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spaces. Conversely, the union of two spaces always results in a region no smaller than either of the 
two spaces.

Figure 1-5. 

A simple example will further illustrate the concept of Figure 1-5 and the union operator to solidify 
the concept of adding and intersecting regions of space to define a cell. See also the second 
example in Chapter 4. In Figure 1-6 we have two infinite planes that meet to form two cells. Cell 1 
is easy to define; it is everything in the universe to the right of surface 1 (that is, a positive sense) 
that is also in common with (or intersected with) everything in the universe below surface 2 (that 
is, a negative sense). Therefore, the surface relation of cell 1 is 1 –2.

Figure 1-6. 

Cell 2 is everything in the universe to the left (negative sense) of surface 1 plus everything in the 
universe above (positive sense) surface 2, or –1 : 2, illustrated in Figure 1-6b by all the shaded 
regions of space. If cell 2 were specified as –1 2, that would represent the region of space common 
to –1 and 2, which is only the cross-hatched region in the figure and is obviously an improper 
specification for cell 2.

Returning to Figure 1-4 on page 1–15, if cell 1 is inside the solid black line and cell 2 is the entire 
region outside the solid line, then the MCNP cell cards in two dimensions are (assuming both cells 
are voids)

1 0 1 –2 (–3 : –4) 5
2 0 –5 : –1 : 2 : 3 4

Cell 1 is defined as the region above surface 1 intersected with the region to the left of surface 2, 
intersected with the union of regions below surfaces 3 and 4, and finally intersected with the region 

A B

(a) (b)

A B

1

2
12

1

2
12

(a) (b)
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to the right of surface 5. Cell 2 contains four concave corners (all except between surfaces 3 and 
4), and its specification is just the converse (or complement) of cell 1. Cell 2 is the space defined 
by the region to the left of surface 5 plus the region below 1 plus the region to the right of 2 plus 
the space defined by the intersections of the regions above surfaces 3 and 4.

A simple consistency check can be noted with the two cell cards above. All intersections for cell 1 
become unions for cell 2 and vice versa. The senses are also reversed.

Note that in this example, all corners less than 180 degrees in a cell are handled by intersections, 
and all corners greater than 180 degrees are handled by unions.

To illustrate some of the concepts about parentheses, assume an intersection is thought of 
mathematically as multiplication and a union is thought of mathematically as addition.  Parentheses 
are removed first, with multiplication being performed before addition. The cell cards for the 
example cards above from Figure 1-4 may be written in the form

1  
2  

Note that parentheses are required for the first cell but not for the second, although the second could 
have been written as , etc.

Several more examples using the union operator are given in Chapter 4. Study them to get a better 
understanding of this powerful operator that can greatly simplify geometry setups.

B. Surface Type Specification

The first- and second-degree surfaces plus the fourth-degree elliptical and degenerate tori of 
analytical geometry are all available in MCNP. The surfaces are designated by mnemonics such as 
C/Z for a cylinder parallel to the z-axis. A cylinder at an arbitrary orientation is designated by the 
general quadratic (GQ) mnemonic. A paraboloid parallel to a coordinate axis is designated by the 
special quadratic (SQ) mnemonic. The 29 mnemonics representing various types of surfaces are 
listed in Table 3.1 on page 3–13.

C. Surface Parameter Specification

There are two ways to specify surface parameters in MCNP: (1) by supplying the appropriate 
coefficients needed to satisfy the surface equation, and (2) by specifying known geometrical points 
on a surface that is rotationally symmetric about a coordinate axis.

1. Coefficients for the Surface Equations

The first way to define a surface is to use one of the surface-type mnemonics from Table 3.1 on 
page 3–13 and to calculate the appropriate coefficients needed to satisfy the surface equation. 

a b c d+( ) e⋅ ⋅ ⋅
e a b c d⋅+ + +

e a b c d⋅( ) e a b+ +( ) c d⋅( ) e( ) a( ) b( ) c d⋅( )+ + +,+,+ + +
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For example, a sphere of radius 3.62 cm with the center located at the point (4,1,–3) is specified by

S 4 1 –3 3.62

An ellipsoid whose axes are not parallel to the coordinate axes is defined by the GQ mnemonic plus 
up to 10 coefficients of the general quadratic equation. Calculating the coefficients can be (and 
frequently is) nontrivial, but the task is greatly simplified by defining an auxiliary coordinate 
system whose axes coincide with the axes of the ellipsoid.  The ellipsoid is easily defined in terms 
of the auxiliary coordinate system, and the relationship between the auxiliary coordinate system 
and the main coordinate system is specified on a TRn card, described on page 3–30.

The use of the SQ and GQ surfaces is determined by the orientation of the axes.  One should always 
use the simplest possible surface in describing geometries; for example, using a GQ surface instead 
of an S to specify a sphere will require more computational effort for MCNP.

2. Points that Define a Surface

The second way to define a surface is to supply known points on the surface. This method is 
convenient if you are setting up a geometry from something like a blueprint where you know the 
coordinates of intersections of surfaces or points on the surfaces. When three or more surfaces 
intersect at a point, this second method also produces a more nearly perfect point of intersection if 
the common point is used in the surface specification. It is frequently difficult to get complicated 
surfaces to meet at one point if the surfaces are specified by the equation coefficients. Failure to 
achieve such a meeting can result in the unwanted loss of particles.

There are, however, restrictions that must be observed when specifying surfaces by points that do 
not exist when specifying surfaces by coefficients. Surfaces described by points must be either 
skew planes or surfaces rotationally symmetric about the x, y, or z axes. They must be unique, real, 
and continuous. For example, points specified on both sheets of a hyperboloid are not allowed 
because the surface is not continuous. However, it is valid to specify points that are all on one sheet 
of the hyperboloid. (See the X, Y, Z, and P input card descriptions on page 3–15 for additional 
explanation.)
1-18 10/3/05



CHAPTER 1 - MCNP OVERVIEW
REFERENCES
IV. REFERENCES

1. P. F. Rose, Compiler and Editor, “ENDF-201, ENDF/B-VI Summary Documentation,” 
BNL-NCS-17541, Brookhaven National Laboratory (October 1991).

2. S. C. Frankle, R. C. Reedy, and P. G. Young, “ACTI An MCNP Data Library for Prompt 
Gamma-ray Spectroscopy,” 12th Biennial Radiation Protection and Shielding Topical 
Meeting, Santa Fe, NM, April 15-19, 2002.

3. R. J. Howerton, D. E. Cullen, R. C. Haight, M. H. MacGregor, S. T. Perkins, and E. F. 
Plechaty, “The LLL Evaluated Nuclear Data Library (ENDL):  Evaluation Techniques, 
Reaction Index, and Descriptions of Individual Reactions,” Lawrence Livermore National 
Laboratory report UCRL-50400, Vol. 15, Part A (September 1975).

4. D. E. Cullen, M. H. Chen, J. H. Hubbell, S. T. Perkins, E. F. Plechaty, J. A. Rathkopf, and 
J. H. Scofield, "Tables and Graphs of Photon Interaction Cross Sections from 10 eV to 100 
GeV Derived from the LLNL Evaluated Photon Data Library (EPDL)," Lawrence Livermore 
National Laboratory report UCRL-50400, Volume 6, Rev. 4, Part A: Z = 1 to 50 and Part B: 
Z = 51 to 100 (1989).

5. M. A. Gardner and R. J. Howerton, “ACTL:  Evaluated Neutron Activation Cross–Section 
Library-Evaluation Techniques and Reaction Index,” Lawrence Livermore National 
Laboratory report UCRL-50400, Vol. 18 (October 1978).

6. E. D. Arthur and P. G. Young, “Evaluated Neutron-Induced Cross Sections for 54,56Fe to 40 
MeV,” Los Alamos Scientific Laboratory report LA-8626-MS (ENDF-304) (December 
1980).

7. D. G. Foster, Jr. and E. D. Arthur, “Average Neutronic Properties of “Prompt” Fission 
Products,” Los Alamos National Laboratory report LA-9168-MS (February 1982).

8. E. D. Arthur, P. G. Young, A. B. Smith, and C. A. Philis, “New Tungsten Isotope Evaluations 
for Neutron Energies Between 0.1 and 20 MeV,” Trans. Am. Nucl. Soc. 39, 793 (1981). 

9. R. E. MacFarlane and D. W. Muir, "The NJOY Nuclear Data Processing System Version 91," 
Los Alamos National Laboratory report LA-12740-M, (October 1994).

10. R. E. MacFarlane, D. W. Muir, and R. M. Boicourt, “The NJOY Nuclear Data Processing 
System, Volume I: User’s Manual,” Los Alamos National Laboratory report LA-9303-M, 
Vol. I (ENDF-324) (May 1982).
R. E. MacFarlane, D. W. Muir, and R. M. Boicourt, “The NJOY Nuclear Data Processing 
System, Volume II: The NJOY, RECONR, BROADR, HEATR, and THERMR Modules,” 
Los Alamos National Laboratory report LA-9303-M, Vol. II (ENDF-324) (May 1982).

11. R. A. Forster, R. C. Little, J. F. Briesmeister, and J. S. Hendricks, “MCNP Capabilities For 
Nuclear Well Logging Calculations,” IEEE Transactions on Nuclear Science, 37 (3), 1378 
(June 1990)

12. A. Geist et al, “PVM 3 User’s Guide and Reference Manual,” ORNL/TM-12187, Oak Ridge 
National Laboratory (1993).

13. G. McKinney, “A Practical Guide to Using MCNP with PVM,” Trans. Am. Nucl. Soc. 71, 
397 (1994).

14. G. McKinney, “MCNP4B Multiprocessing Enhancements Using PVM,” Los Alamos 
National Laboratory memorandum X-6:GWM-95-212 (1995).
10/3/05 1-19



CHAPTER 1 - MCNP OVERVIEW
REFERENCES
1-20 10/3/05



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
INTRODUCTION
CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND 
MATHEMATICS

I. INTRODUCTION

Chapter 2 discusses the mathematics and physics of MCNP, including geometry, cross−section 
libraries, sources, variance reduction schemes, Monte Carlo simulation of neutron and photon 
transport, and tallies. This discussion is not meant to be exhaustive; many details of the particular 
techniques and of the Monte Carlo method itself will be found elsewhere. Carter and Cashwell's 
book Particle-Transport Simulation with the Monte Carlo Method,1 a good general reference on 
radiation transport by Monte Carlo, is based upon what is in MCNP. A more recent reference is 
Lux and Koblinger's book, Monte Carlo Particle Transport Methods: Neutron and Photon 
Calculations.2 Methods of sampling from standard probability densities are discussed in the Monte 
Carlo samplers by Everett and Cashwell.3

MCNP was originally developed by the Monte Carlo Group, currently the Diagnostic Applications 
Group, (Group X-5) in the Applied Physics Division (X Division) at the Los Alamos National 
Laboratory.  Group X-5 improves MCNP (releasing a new version every two to three years), 
maintains it at Los Alamos and at other laboratories where we have collaborators or sponsors, and 
provides limited free consulting and support for MCNP users. MCNP is distributed to other users 
through the Radiation Safety Information Computational Center (RSICC) at Oak Ridge, 
Tennessee, and the OECD/NEA data bank in Paris, France. There are about 250 MCNP users at 
Los Alamos and 3000 users at 200 installations worldwide.

MCNP is comprised of about 425 subroutines written in Fortran 90 and C.  MCNP has been made 
as system independent as possible to enhance its portability, and has been written to comply with 
the ANSI Fortran 90 standard.  With one source code, MCNP is supported on many platforms.  
MCNP takes advantage of parallel computer architectures using three parallel models.  MCNP 
supports threading using the OpenMP model. Distributed processing is supported through the use 
of both the Message Passing Interface (MPI) model and the Parallel Virtual Machine (PVM) 
software from Oak Ridge.  MCNP also combines threading with both MPI and PVM.

A. History

The Monte Carlo method is generally attributed to scientists working on the development of 
nuclear weapons in Los Alamos during the 1940s. However, its roots go back much farther.

Perhaps the earliest documented use of random sampling to solve a mathematical problem was that 
of Compte de Buffon in 1772.4 A century later people performed experiments in which they threw 
a needle in a haphazard manner onto a board ruled with parallel straight lines and inferred the value 
of π from observations of the number of intersections between needle and lines.5,6 Laplace 
suggested in 1786 that π could be evaluated by random sampling.7 Lord Kelvin appears to have 
used random sampling to aid in evaluating some time integrals of the kinetic energy that appear in 
the kinetic theory of gasses8 and acknowledged his secretary for performing calculations for more 
than 5000 collisions.9
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According to Emilio Segrè, Enrico Fermi's student and collaborator, Fermi invented a form of the 
Monte Carlo method when he was studying the moderation of neutrons in Rome.9,10 Though Fermi 
did not publish anything, he amazed his colleagues with his predictions of experimental results. 
After indulging himself, he would reveal that his “guesses” were really derived from the statistical 
sampling techniques that he performed in his head when he couldn't fall asleep.

During World War II at Los Alamos, Fermi joined many other eminent scientists to develop the 
first atomic bomb. It was here that Stan Ulam became impressed with electromechanical computers 
used for implosion studies. Ulam realized that statistical sampling techniques were considered 
impractical because they were long and tedious, but with the development of computers they could 
become practical. Ulam discussed his ideas with others like John von Neumann and Nicholas 
Metropolis. Statistical sampling techniques reminded everyone of games of chance, where 
randomness would statistically become resolved in predictable probabilities. It was Nicholas 
Metropolis who noted that Stan had an uncle who would borrow money from relatives because he 
“just had to go to Monte Carlo” and thus named the mathematical method “Monte Carlo.”10

Meanwhile, a team of wartime scientists headed by John Mauchly was working to develop the first 
electronic computer at the University of Pennsylvania in Philadelphia. Mauchly realized that if 
Geiger counters in physics laboratories could count, then they could also do arithmetic and solve 
mathematical problems. When he saw a seemingly limitless array of women cranking out firing 
tables with desk calculators at the Ballistic Research Laboratory at Aberdeen, he proposed10 that 
an electronic computer be built to deal with these calculations. The result was ENIAC (Electronic 
Numerical Integrator and Computer), the world’s first computer, built for Aberdeen at the 
University of Pennsylvania.  It had 18,000 double triode vacuum tubes in a system with 500,000 
solder joints.10

John von Neumann was a consultant to both Aberdeen and Los Alamos. When he heard about 
ENIAC, he convinced the authorities at Aberdeen that he could provide a more exhaustive test of 
the computer than mere firing-table computations. In 1945 John von Neumann, Stan Frankel, and 
Nicholas Metropolis visited the Moore School of Electrical Engineering at the University of 
Pennsylvania to explore using ENIAC for thermonuclear weapon calculations with Edward Teller 
at Los Alamos.10 After the successful testing and dropping of the first atomic bombs a few months 
later, work began in earnest to calculate a thermonuclear weapon. On March 11, 1947, John von 
Neumann sent a letter to Robert Richtmyer, leader of the Theoretical Division at Los Alamos, 
proposing use of the statistical method to solve neutron diffusion and multiplication problems in 
fission devices.10 His letter was the first formulation of a Monte Carlo computation for an 
electronic computing machine. In 1947, while in Los Alamos, Fermi invented a mechanical device 
called FERMIAC11 to trace neutron movements through fissionable materials by the Monte Carlo 
Method.

By 1948 Stan Ulam was able to report to the Atomic Energy Commission that not only was the 
Monte Carlo method being successfully used on problems pertaining to thermonuclear as well as 
fission devices, but also it was being applied to cosmic ray showers and the study of partial 
differential equations.10 In the late 1940s and early 1950s, there was a surge of papers describing 
the Monte Carlo method and how it could solve problems in radiation or particle transport and 
other areas.12,13,14 Many of the methods described in these papers are still used in Monte Carlo 
today, including the method of generating random numbers15 used in MCNP. Much of the interest 
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was based on continued development of computers such as the Los Alamos MANIAC (Mechanical 
Analyzer, Numerical Integrator, and Computer) in March, 1952.

The Atomic Energy Act of 1946 created the Atomic Energy Commission to succeed the Manhattan 
Project.  In 1953 the United States embarked upon the “Atoms for Peace” program with the intent 
of developing nuclear energy for peaceful applications such as nuclear power generation. 
Meanwhile, computers were advancing rapidly. These factors led to greater interest in the Monte 
Carlo method. In 1954 the first comprehensive review of the Monte Carlo method was published 
by Herman Kahn16 and the first book was published by Cashwell and Everett17 in 1959.

At Los Alamos, Monte Carlo computer codes developed along with computers. The first Monte 
Carlo code was the simple 19-step computing sheet in John von Neumann's letter to Richtmyer. 
But as computers became more sophisticated, so did the codes. At first the codes were written in 
machine language and each code would solve a specific problem. In the early 1960s, better 
computers and the standardization of programming languages such as Fortran made possible more 
general codes. The first Los Alamos general-purpose particle transport Monte Carlo code was 
MCS,18 written in 1963. Scientists who were not necessarily experts in computers and Monte Carlo 
mathematical techniques now could take advantage of the Monte Carlo method for radiation 
transport. They could run the MCS code to solve modest problems without having to do either the 
programming or the mathematical analysis themselves. MCS was followed by MCN19 in 1965. 
MCN could solve the problem of neutrons interacting with matter in a three−dimensional geometry 
and used physics data stored in separate, highly−developed libraries.

In 1973 MCN was merged with MCG,20 a Monte Carlo gamma code that treated higher energy 
photons, to form MCNG, a coupled neutron−gamma code. In 1977 MCNG was merged with 
MCP,20 a Monte Carlo Photon code with detailed physics treatment down to 1 keV, to accurately 
model neutron-photon interactions. The code has been known as MCNP ever since. Though at first 
MCNP stood for Monte Carlo Neutron Photon, now it stands for Monte Carlo N−Particle. Other 
major advances in the 70s included the present generalized tally structure, automatic calculation of 
volumes, and a Monte Carlo eigenvalue algorithm to determine keff for nuclear criticality 
(KCODE).

In 1983 MCNP3 was released, entirely rewritten in ANSI standard Fortran 77. MCNP3 was the 
first MCNP version internationally distributed through the Radiation Shielding and Information 
Center at Oak Ridge, Tennessee.  Other 1980s versions of MCNP were MCNP3A (1986) and 
MCNP3B (1988), that included tally plotting graphics (MCPLOT), the present generalized source, 
surface sources, repeated structures/lattice geometries, and multigroup/adjoint transport.

MCNP4 was released in 1990 and was the first UNIX version of the code. It accommodated 
N−particle transport and multitasking on parallel computer architectures. MCNP4 added electron 
transport (patterned after the Integrated TIGER Series (ITS) electron physics),21 the pulse height 
tally (F8), a thick−target bremsstrahlung approximation for photon transport, enabled detectors and 
DXTRAN with the S(α,β) thermal treatment, provided greater random number control, and 
allowed plotting of tally results while the code was running.

MCNP4A, released in 1993, featured enhanced statistical analysis, distributed processor 
multitasking for running in parallel on a cluster of scientific workstations, new photon libraries, 
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ENDF−6 capabilities, color X−Windows graphics, dynamic memory allocation, expanded 
criticality output, periodic boundaries, plotting of particle tracks via SABRINA, improved tallies 
in repeated structures, and many smaller improvements.

MCNP4B, released in 1997, featured differential operator perturbations, enhanced photon physics 
equivalent to ITS3.0, PVM load balance and fault tolerance, cross-section plotting, postscript file 
plotting, 64−bit workstation upgrades, PC X−windows, inclusion of LAHET HMCNP, lattice 
universe mapping, enhanced neutron lifetimes, coincident−surface lattice capability, and many 
smaller features and improvements.

MCNP4C, released in 2000, featured an unresolved resonance treatment, macrobodies, 
superimposed importance mesh, perturbation enhancements, electron physics enhancements, 
plotter upgrades, cumulative tallies, parallel enhancements and other small features and 
improvements.

MCNP5, released in 2003, is rewritten in ANSI standard Fortran 90.  It includes the addition of 
photonuclear collision physics, superimposed mesh tallies, time splitting, and plotter upgrades.  
MCNP5 also includes parallel computing enhancements with the addition of support for OpenMP 
and MPI.

Large production codes such as MCNP have revolutionized science −− not only in the way it is 
done, but also by becoming the repositories for physics knowledge. MCNP represents over 500 
person-years of sustained effort. The knowledge and expertise contained in MCNP is formidable.

Current MCNP development is characterized by a strong emphasis on quality control, 
documentation, and research.  New features continue to be added to the code to reflect new 
advances in computer architecture, improvements in Monte Carlo methodology, and better physics 
models. MCNP has a proud history and a promising future.

B. MCNP Structure

MCNP is written in ANSI-Standard Fortran 90.22  Global data is shared via Fortran modules.  See 
Appendix E for a list of data modules and their purposes. The general internal structure of MCNP 
is as follows:

Initiation (IMCN):
• Read input file (INP) to get dimensions;
• Set up variable dimensions or dynamically allocated storage;
• Re-read input file (INP) to load input;
• Process source;
• Process tallies;
• Process materials specifications including masses without loading the data files;
• Calculate cell volumes and surface areas.

Interactive Geometry Plot (PLOT).

Cross-section Processing (XACT): 
• Load libraries;
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• Eliminate excess neutron data outside problem energy range;
• Doppler broaden elastic and total cross sections to the proper temperature if the problem 

temperature is higher than the library temperature;
• Process multigroup libraries;
• Process electron libraries including calculation of range tables, straggling tables, scattering 

angle distributions, and bremsstrahlung.

MCRUN sets up multitasking and multiprocessing, runs histories, and returns to print, write 
RUNTPE dumps, or process another criticality cycle.

Under MCRUN, MCNP runs neutron,  photon, or electron histories:
• Start a source particle;
• Find the distance to the next boundary, cross the surface and enter the next cell;
• Find the total neutron cross section and process neutron collisions producing photons as 

appropriate;
• Find the total photon cross section and process photon collisions producing electrons as 

appropriate;
• Use the optional thick−target bremsstrahlung approximation if no electron transport;
• Follow electron tracks;
• Process optional multigroup collisions;
• Process detector tallies or DXTRAN;
• Process surface, cell, and pulse height tallies.

Periodically write output file, restart dumps, update to next criticality cycle, rendezvous for 
multitasking and updating detector and DXTRAN Russian roulette criteria, etc.:

• Go to the next criticality cycle;
• Print output file summary tables;
• Print tallies;
• Generate weight windows.

Plot tallies, cross sections, and other data (MCPLOT).
GKS graphics simulation routines.
PVM and MPI distributed processor multiprocessing routines.
Random number generator and control.
Mathematics, character manipulation, and other slave routines.

C. History Flow

The basic flow of a particle history for a coupled neutron/photon/electron problem is handled as 
follows:

For a given history, the random number sequence is set up and the number of the history, NPS,  is 
incremented. The flag IPT is set for the type of particle being run: 1 for a neutron,  2 for a photon, 
and 3 for an electron.  Some arrays and variables are initialized to zero.  The branch of the history, 
NODE, is set to 1.

Next, the appropriate source routine is called. Source options are the standard fixed sources, the 
surface source, the criticality source, or a user-provided source. All of the parameters describing 
the particle are set in these source routines, including position, direction of flight, energy, weight, 
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time, and starting cell (and possibly surface), by sampling the various distributions described on 
the source input control cards. Several checks are made at this time to verify that the particle is in 
the correct cell or on the correct surface, and directed toward the correct cell.

Next, the initial parameters of the first fifty particle histories are printed. Then some of the 
summary information is incremented (see Appendix E for an explanation of these arrays). Energy, 
time, and weight are checked against cutoffs. A number of error checks are made. Detector 
contributions are scored, and then DXTRAN is called (if used in the problem) to create particles 
on the spheres. The particles are saved in the bank for later tracking. Bookkeeping is started for the 
pulse height cell tally energy balance. The weight window game is played, with any additional 
particles from splitting put into the bank and any losses to Russian roulette terminated.

Then the actual particle transport is started. For an electron source, electrons are run separately. For 
a neutron or photon source, the intersection of the particle trajectory with each bounding surface 
of the cell is calculated. The minimum positive distance DLS to the cell boundary indicates the next 
surface JSU the particle is heading toward. The distance to the nearest DXTRAN sphere is 
calculated, as is the distance to time cutoff, and energy boundary for multigroup charged particles. 
The cross sections for cell ICL are calculated using a binary table lookup in data tables for neutrons 
or photons. (New to MCNP5, the total photon cross section may include the photonuclear portion 
of the cross section, if photonuclear physics is in use. See page 3–129 for a discussion of turning 
photonuclear physics on.) The total cross section is modified by the exponential transformation if 
necessary. The distance to the next collision is determined (if a forced collision is required, the 
uncollided part is banked).  The track length of the particle in the cell is found as the minimum of 
the distance to collision, the distance to the surface JSU, one mean free path (in the case of a 
mesh-based weight window), the distance to a DXTRAN sphere, the distance to time cutoff, or the 
distance to energy boundary. Track length cell tallies are then incremented.  Some summary 
information is incremented.  The particle’s parameters (time, position, and energy) are then 
updated. If the particle's distance to a DXTRAN sphere (of the same type as the current particle) is 
equal to the minimum track length, the particle is terminated because particles reaching the 
DXTRAN sphere are already accounted for by the DXTRAN particles from each collision. If the 
particle exceeds the time cutoff, the track is terminated. If the particle was detected leaving a 
DXTRAN sphere, the DXTRAN flag is set to zero and the weight cutoff game is played. The 
particle is either terminated to weight cutoff or survives with an increased weight. Weight 
adjustments then are made for the exponential transformation.

If the minimum track length is equal to the distance-to-surface crossing, the particle is transported 
to surface JSU, any surface tallies are processed, and the particle is processed for entering the next 
cell. Reflecting surfaces, periodic boundaries, geometry splitting, Russian roulette from 
importance sampling, and loss to escape are treated. For splitting, one bank entry of NPA particle 
tracks is made for an (NPA+1)-for-1 split. The bank entries or retrievals are made on a last-in, first-
out basis. The history is continued by going back to the previous paragraph and repeating the steps.

If the distance to collision is less than the distance to surface, or if a multigroup charged particle 
reaches the distance to energy boundary, the particle undergoes a collision. For neutrons, the 
collision analysis determines which nuclide is involved in the collision, samples the target velocity 
of the collision nuclide for the free gas thermal treatment, generates and banks any photons 
(ACEGAM), handles analog capture or capture by weight reduction, plays the weight cutoff game, 
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handles  thermal collisions and elastic or inelastic scattering.  For criticality problems, 
fission sites are stored for subsequent generations. Any additional tracks generated in the collision 
are put in the bank. The energies and directions of particles exiting the collision are determined. 
Multigroup and multigroup/adjoint collisions are treated separately. The collision process and 
thermal treatments are described in more detail later in this chapter (see page 2–28).

The collision analysis for photons is similar to that for neutrons, but includes either the simple or 
the detailed physics treatments. (See page 3–129 for a discussion of turning photonuclear physics 
on.) The simple physics treatment is valid only for photon interactions with free electrons, i.e. it 
does not account for electron binding effects when sampling emission distributions; the detailed 
treatment is the default and includes form factors and Compton profiles for electron binding 
effects, coherent (Thomson) scatter, and fluorescence from photoelectric capture (see page 2–57). 
New as of MCNP5, there may also be photonuclear physics (if photonuclear physics is in use). 
Additionally, photonuclear biasing is available (similar to forced collisions) to split the photon 
(updating the weight by the interaction probabilities) and force one part to undergo a photoatomic 
collision and the second part to undergo a photonuclear collision. The collision analysis samples 
for the collision nuclide, treats photonuclear collisions, treats photoelectric absorption, or capture 
(with fluorescence in the detailed physics treatment), incoherent (Compton) scatter (with Compton 
profiles and incoherent scattering factors in the detailed physics treatment to account for electron 
binding), coherent (Thomson) scatter for the detailed physics treatment only (again with form 
factors), and pair production. Secondary particles from photonuclear collisions (either photons or 
neutrons) are sampled using the same routines as for inelastic neutron collisions (see Elastic and 
Inelastic Scattering on page 2–35).  Electrons are generated for incoherent scatter, pair production, 
and photoelectric absorption.  These electrons may be assumed to deposit all their energy instantly 
if IDES=1 on the PHYS:P card, or they may produce electrons with the thick−target 
bremsstrahlung approximation (default for MODE P problems, IDES=0 on the PHYS:P card), or 
they may undergo full electron transport (default for MODE P E problems, IDES=0 on the PHYS:P 
card.) Multigroup or multigroup/adjoint photons are treated separately.

After the surface crossing or collision is processed, transport continues by calculating the distance 
to cell boundary, and so on. Or if the particle involved in the collision was killed by capture or 
variance reduction, the bank is checked for any remaining progeny, and if none exists, the history 
is terminated. Appropriate summary information is incremented, the tallies of this particular 
history are added to the total tally data, the history is terminated, and a return is made.

For each history, checks are made to see if output is required or if the job should be terminated 
because enough histories have been run or too little time remains to continue. For continuation, 
HSTORY is called again. Otherwise a return is made to MCRUN, and the summary information 
and tally data are printed.

II. GEOMETRY

The basic MCNP geometry concepts, discussed in Chapter 1, include the sense of a cell, the 
intersection and union operators, and surface specification. Covered in this section are the 
complement operator; the repeated structure capability; an explanation of two surfaces, the cone 
and the torus; and a description of ambiguity, reflecting, white, and periodic boundary surfaces.

S α β,( )
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A. Complement Operator

The complement operator provides no new capability over the intersection and union operators. It 
is just a shorthand cell-specifying method that implicitly uses the intersection and union operators.

The complement operator is the # symbol.  The complement operator can be thought of as standing 
for not in.  There are two basic uses of the operator:

#n means that the description of the current cell is the complement of the description of cell n.
#(...) means complement the portion of the cell description in the parentheses (usually just a list 

of surfaces describing another cell).
In the first of the two above forms, MCNP performs five operations: (1) the symbol # is removed, 
(2) parentheses are placed around n, (3) any intersections in n become unions, (4) any unions in n 
are replaced by back-to-back parentheses, “)(“, which is an intersection, and (5) the senses of the 
surfaces defining n are reversed.

A simple example is a cube. We define a two−cell geometry with six surfaces, where cell 1 is the 
cube and cell 2 is the outside world:

1    0 −1  2 −3  4 −5  6
2    0  1:−2:  3:−4:  5:−6

Note that cell 2 is everything in the universe that is not in cell 1, or

2    0 #1

The form #(n) is not allowed; it is functionally available as the equivalent of −n.

CAUTION: Using the complement operator can destroy some of the necessary conditions for 
some cell volume and surface area calculations by MCNP. See page 4–15 for an example.

The complement operator can be easily abused if it is used indiscriminately. A simple example can 
best illustrate the problems. Figure 2-1 consists of two concentric spheres inside a box. Cell 4 can 
be described using the complement operator as

4     0    #3 #2 #1

Although cells 1 and 2 do not touch cell 4, to omit them would be incorrect. If they were omitted, 
the description of cell 4 would be everything in the universe that is not in cell 3. Since cells 1 and 
2 are not part of cell 3, they would be included in cell 4. Even though surfaces 1 and 2 do not 
physically bound cell 4, using the complement operator as in this example causes MCNP to think 
that all surfaces involved with the complement do bound the cell. Even though this specification is 
correct and required by MCNP, the disadvantage is that when a particle enters cell 4 or has a 
collision in cell 4, MCNP must calculate the intersection of the particle's trajectory with all real 
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bounding surfaces of cell 4 plus any extraneous ones brought in by the complement operator. This 
intersection calculation is very expensive and can add significantly to the required computer time.  

Figure 2-1

A better description of cell 4 would be to complement the description of cell 3 (omitting surface 2) 
by reversing the senses and interchanging union and intersection operators as illustrated in the cell 
cards that describe the simple cube in the preceding paragraphs.

B. Repeated Structure Geometry

The repeated structure geometry feature is explained in detail starting on page 3–25.  The 
capabilities are only introduced here. Examples are shown in Chapter 4. The cards associated with 
the repeated structure feature are U (universe), FILL, TRCL, URAN, and LAT (lattice) and cell 
cards with LIKE m BUT.

The repeated structure feature makes it possible to describe only once the cells and surfaces of any 
structure that appears more than once in a geometry. This unit then can be replicated at other 
locations by using the “LIKE m BUT” construct on a cell card. The user specifies that a cell is filled 
with something called a universe. The U card identifies the universe, if any, to which a cell belongs. 
The FILL card specifies with which universe a cell is to be filled.  A universe is either a lattice or 
an arbitrary collection of cells. The two types of lattice shapes, hexagonal prisms and hexahedra, 
need not be rectangular nor regular, but they must fill space exactly. Several concepts and cards 
combine in order to use this capability.

C. Surfaces

1. Explanation of Cone and Torus

Two surfaces, the cone and torus, require more explanation. The quadratic equation for a cone 
describes a cone of two sheets (just like a hyperboloid of two sheets)−one sheet is a cone of positive 
slope, and the other has a negative slope. A cell whose description contains a two−sheeted cone 
may require an ambiguity surface to distinguish between the two sheets. MCNP provides the 
option to select either of the two sheets; this option frequently simplifies geometry setups and 
eliminates any ambiguity. The +1 or the −1 entry on the cone surface card causes the one sheet cone 
treatment to be used. If the sign of the entry is positive, the specified sheet is the one that extends

1
2

1
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3

4
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to infinity in the positive direction of the coordinate axis to which the cone axis is parallel. The 
converse is true for a negative entry.  This feature is available only for cones whose axes are parallel 
to the coordinate axes of the problem.

The treatment of fourth degree surfaces in Monte Carlo calculations has always been difficult 
because of the resulting fourth order polynomial (“quartic”) equations. These equations must be 
solved to find the intersection of a particle’s line of flight with a toroidal surface. In MCNP these 
equations must also be solved to find the intersection of surfaces in order to compute the volumes 
and surface areas of geometric regions of a given problem. In either case, the quartic equation,

is difficult to solve on a computer because of roundoff errors. For many years the MCNP toroidal 
treatment required 30 decimal digits (CDC double-precision) accuracy to solve quartic equations. 
Even then there were roundoff errors that had to be corrected by Newton-Raphson iterations. 
Schemes using a single-precision quartic formula solver followed by a Newton-Raphson iteration 
were inadequate because if the initial guess of roots supplied to the Newton-Raphson iteration is 
too inaccurate, the iteration will often diverge when the roots are close together. 

The single-precision quartic algorithm in MCNP basically follows the quartic solution of Cashwell 
and Everett.23 When roots of the quartic equation are well separated, a modified Newton-Raphson 
iteration quickly achieves convergence. But the key to this method is that if the roots are double 
roots or very close together, they are simply thrown out because a double root corresponds to a 
particle’s trajectory being tangent to a toroidal surface, and it is a very good approximation to 
assume that the particle then has no contact with the toroidal surface. In extraordinarily rare cases 
where this is not a good assumption, the particle would become “lost.” Additional refinements to 
the quartic solver include a carefully selected finite size of zero, the use of a cubic rather than a 
quartic equation solver whenever a particle is transported from the surface of a torus, and a gross 
quartic coefficient check to ascertain the existence of any real positive roots. As a result, the single-
precision quartic solver is substantially faster than double-precision schemes, portable, and also 
somewhat more accurate.

In MCNP, elliptical tori symmetric about any axis parallel to a coordinate axis may be specified.  
The volume and surface area of various tallying segments of a torus usually will be calculated 
automatically.

2. Ambiguity Surfaces

The description of the geometry of a cell must eliminate any ambiguities as to which region of 
space is included in the cell. That is, a particle entering a cell should be able to determine uniquely 
which cell it is in from the senses of the bounding surfaces. This is not possible in a geometry such 
as shown in Figure 2-2 unless an ambiguity surface is specified. Suppose the figure is rotationally 
symmetric about the y−axis.

A particle entering cell 2 from the inner spherical region might think it was entering cell 1 because 
a test of the senses of its coordinates would satisfy the description of cell 1 as well as that of cell 
2. In such cases, an ambiguity surface is introduced such as plane a. An ambiguity surface need not 

x4 Bx3 Cx2 Dx E+ + + + 0=
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be a bounding surface of a cell, but  it may be and frequently is. It can also be the bounding surface 
of some cell other than the one in question. However, the surface must be listed among those in the 
problem and must not be a reflecting surface (see page 2–12). The description of cells 1 and 2 in 
Figure 2-2 is augmented by listing for each its sense 

Figure 2-2

relative to surface a as well as that of each of its other bounding surfaces. A particle in cell 1 cannot 
have the same sense relative to surface a as does a particle in cell 2. More than one ambiguity 
surface may be required to define a particular cell.

A second example may help to clarify the significance of ambiguity surfaces. We would like to 
describe the geometry of Figure 2-3a. Without the use of an ambiguity surface, the result will be 
Figure 2-3b. Surfaces 1 and 3 are spheres about the origin, and surface 2 is a cylinder around the 
y−axis. Cell 1 is both the center and outside world of the geometry connected by the region interior 
to surface 2.

Figure 2-3

At first glance it may appear that cell 1 can easily be specified by −1 : −2 : 3 whereas cell 2 is simply 
#1. This results in Figure 2-3b, in which cell 1 is everything in the universe interior to surface 1 
plus everything in the universe interior to surface 2 (remember the cylinder goes to plus and minus 
infinity) plus everything in the universe exterior to surface 3.
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An ambiguity surface (plane 4 at y = 0) will solve the problem. Everything in the universe to the 
right of the ambiguity surface intersected with everything in the universe interior to the cylinder is 
a cylindrical region that goes to plus infinity but terminates at y=0. Therefore, −1 : (4 −2) : 3 defines 
cell 1 as desired in Figure 2-3a. The parentheses in this last expression are not required because 
intersections are done before unions. Another expression for cell 2 rather than #1 is 1 −3 #(4 −2).

For the user, ambiguity surfaces are specified the same way as any other surface–simply list the 
signed surface number as an entry on the cell card. For MCNP, if a particular ambiguity surface 
appears on cell cards with only one sense, it is treated as a true ambiguity surface. Otherwise, it 
still functions as an ambiguity surface but the TRACK subroutine will try to find intersections with 
it, thereby using a little more computer time.

3. Reflecting Surfaces

A surface can be designated a reflecting surface by preceding its number on the surface card with 
an asterisk. Any particle hitting a reflecting surface is specularly (mirror) reflected. Reflecting 
planes are valuable because they can simplify a geometry setup (and also tracking) in a problem. 
They can, however, make it difficult (or even impossible) to get the correct answer. The user is 
cautioned to check the source weight and tallies to ensure that the desired result is achieved. Any 
tally in a problem with reflecting planes should have the same expected result as the tally in the 
same problem without reflecting planes. Detectors or DXTRAN used with reflecting surfaces give 
WRONG answers (see page 2–101).

The following example illustrates the above points and should make MCNP users very cautious in 
the use of reflecting surfaces. Reflecting surfaces should never be used in any situation without a 
lot of thought.

Consider a cube of carbon 10 cm on a side sitting on top of a 5-MeV neutron source distributed 
uniformly in volume. The source cell is a 1-cm-thick void completely covering the bottom of the 
carbon cube and no more. The average neutron flux across any one of the sides (but not top or 
bottom) is calculated to be 0.150 (±0.5%) per cm2 per starting neutron from an MCNP F2 tally, and 
the flux at a point at the center of the same side is 1.55e-03 n/cm2 (±1%) from an MCNP F5 tally. 

The cube can be modeled by half a cube and a reflecting surface. All dimensions remain the same 
except the distance from the tally surface to the opposite surface (which becomes the reflecting 
surface) is 5 cm.  The source cell is cut in half also. Without any source normalization, the flux 
across the surface is now 0.302 ( %), which is twice the flux in the nonreflecting geometry. 
The detector flux is 2.58E −03 ( %), which is less than twice the point detector flux in the 
nonreflecting problem.

The problem is that for the surface tally to be correct, the starting weight of the source particles has 
to be normalized; it should be half the weight of the nonreflected source particles. The detector 
results will always be wrong (and lower) for the reason discussed on page 2–101.

In this particular example, the normalization factor for the starting weight of source particles 
should be 0.5 because the source volume is half of the original volume. Without the normalization, 

0.5±
1±
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the full weight of source particles is started in only half the volume. These normalization factors 
are problem dependent and should be derived very carefully.

Another way to view this problem is that the tally surface has doubled because of the reflecting 
surface; two scores are being made across the tally surface when one is made across each of two 
opposite surfaces in the nonreflecting problem.  The detector has doubled too, except that the 
contributions to it from beyond the reflecting surface are not being made, see page 2–101.

4. White Boundaries

A surface can be designated a white boundary surface by preceding its number on the surface card 
with a plus. A particle hitting a white boundary is reflected with a cosine distribution, p(µ) = µ, 
relative to the surface normal; that is, µ = , where ξ is a random number. White boundary 
surfaces are useful for comparing MCNP results with other codes that have white boundary 
conditions. They also can be used to approximate a boundary with an infinite scatterer.  They make 
absolutely no sense in problems with next-event estimators such as detectors or DXTRAN 
(see page 2–101) and should always be used with caution.

5. Periodic Boundaries

Periodic boundary conditions can be applied to pairs of planes to simulate an infinite lattice. 
Although the same effect can be achieved with an infinite lattice, the periodic boundary is easier 
to use, simplifies comparison with other codes having periodic boundaries, and can save 
considerable computation time. There is approximately a 55% run-time penalty associated with  
repeated structures and lattices that can be avoided with periodic boundaries. However, collisions 
and other aspects of the Monte Carlo random walk usually dominate running time, so the savings 
realized by using periodic boundaries are usually much smaller. A simple periodic boundary 
problem is illustrated in Figure 2-4. 

Figure 2-4 

It consists of a square reactor lattice infinite in the z direction and 10 cm on a side in the x and y 
directions with an off-center 1-cm radius cylindrical fuel pin. The MCNP surface cards are:

ξ

1
2

3

4

5

10/3/05 2-13



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
CROSS SECTIONS
1 −2 px −5
2 −1 px  5
3 −4 py  −5
4 −3 py  5
5 c/z  −2 4 1

The negative entries before the surface mnemonics specify periodic boundaries. Card one says that 
surface 1 is periodic with surface 2 and is a px plane. Card two says that surface 2 is periodic with 
surface 1 and is a px plane. Card three says that surface 3 is periodic with surface 4 and is a py 
plane. Card four says that surface 4 is periodic with surface 3 and is a py plane. Card five says that 
surface 5 is an infinite cylinder parallel to the z−axis. A particle leaving the lattice out the left side 
(surface 1) reenters on the right side (surface 2). If the surfaces were reflecting, the reentering 
particle would miss the cylinder, shown by the dotted line. In a fully specified lattice and in the 
periodic geometry, the reentering particle will hit the cylinder as it should.

Much more complicated examples are possible, particularly hexagonal prism lattices. In all cases, 
MCNP checks that the periodic surface pair matches properly and performs all the necessary 
surface rotations and translations to put the particle in the proper place on the corresponding 
periodic plane.

The following limitations apply:

• Periodic boundaries cannot be used with next event estimators such as detectors or DXTRAN 
(see page 2–101);

• All periodic surfaces must be planes;
• Periodic planes cannot also have a surface transformation;
• The periodic cells may be infinite or bounded by planes on the top or bottom that must be 

reflecting or white boundaries but not periodic;
• Periodic planes can only bound other periodic planes or top and bottom planes;
• A single zero-importance cell must be on one side of each periodic plane;
• All periodic planes must have a common rotational vector normal to the geometry top and 

bottom.

III. CROSS SECTIONS

The MCNP code package is incomplete without the associated nuclear data tables. The kinds of 
tables available and their general features are outlined in this section. The manner in which 
information contained on nuclear data tables is used in MCNP is described in Section IV beginning 
on page 2–25.

There are two broad objectives in preparing nuclear data tables for MCNP. First, the data available 
to MCNP should reproduce the original evaluated data as much as is practical. Second, new data 
should be brought into the MCNP package in a timely fashion, thereby giving users access to the 
most recent evaluations.

Nine classes of data tables exist for MCNP. They are: (1) continuous-energy neutron interaction 
data; (2) discrete reaction neutron interaction data; (3) continuous-energy photoatomic interaction 
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data; (4) continuous-energy photonuclear interaction data; (5) neutron dosimetry cross sections;  
(6) neutron S(α,β) thermal data; (7) multigroup neutron, coupled neutron/photon, and charged 
particles masquerading as neutrons; (8) multigroup photon; and (9) electron interaction data.

It is understood that photoatomic and electron data are atomic in nature, i.e. one elemental table is 
acceptable for any isotope of the element. For example, any isotope of tungsten may use a table 
with a  ZA of 74000. Likewise, it is understood that neutron and photonuclear tables are nuclear 
(or isotopic) in nature, i.e. each isotope requires its own table. For tables describing these reactions, 
it is necessary to have a table for every isotope in a material. (Note that some older neutron 
evaluations are “elemental” in that they combine the reactions on several isotopes into a single 
table.) For example, natural tungsten would need tables with ZA equal 74180, 74182, 74183, 
74184 and 74186.  This can create difficulties when specifying material definitions. This has been 
true in the past, e.g. no neutron table exists for 74180 (0.13 atom percent) and it is typically ignored. 
This is even more true now that tables must be selected for both neutron and photonuclear 
interactions. The MPN card has been introduced to alleviate this problem.

In MODE N problems, one continuous-energy or discrete-reaction neutron interaction table is 
required for each isotope in the problem (some older “elemental” tables are available for neutron 
interactions). In MODE P problems, one photoatomic interaction table is required for each element 
and one photonuclear table is required for each isotope (if photonuclear physics is in use). In 
MODE E problems, one electron interaction table is required for each element. Dosimetry and 
thermal data are optional. Cross sections from dosimetry tables can be used as response functions 
with the FM card to determine reaction rates. Thermal S(α,β) tables should be used if the neutrons 
are transported at sufficiently low energies that molecular binding effects are important.

MCNP can read from data tables in two formats. Data tables are transmitted between computer 
installations as ASCII text files using an 80-column card-image Binary Coded Decimal (BCD) 
format (Type-1 format). If desired, an auxiliary processing code, MAKXSF, converts these files 
into unformatted binary files (Type-2 format), allowing faster access of the data during execution 
of MCNP and reduced disk-space for storing the files. The data contained on a table are 
independent of how they are stored.

The format for each class of ACE table is given in full detail in Appendix F. This appendix may be 
useful for users making extensive modifications to MCNP involving cross sections or for users 
debugging MCNP at a fairly high level.

The available data tables are listed in Appendix G. Each data table is identified by a ZAID. The 
general form of a ZAID is ZZZAAA.nnX, where ZZZ is the atomic number, AAA is the atomic 
mass number, nn is the unique evaluation identifier, and X indicates the class of data. For elemental 
evaluations AAA=000. Data tables are selected by the user with the Mn, MPNn and MTn cards.

In the remainder of this section we describe several characteristics of each class of data such as 
evaluated sources, processing tools, and differences between data on the original evaluation and on 
the MCNP data tables.  The means of accessing each class of data through MCNP input will be 
detailed, and some hints will be provided on how to select the appropriate data tables.
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A. Neutron Interaction Data: Continuous-Energy and Discrete-Reaction

In neutron problems, one neutron interaction table is required for each isotope (or element if using 
the older “elemental” tables) in the problem. The form of the ZAIDs is ZZZAAA.nnC for a 
continuous-energy table and ZZZAAA.nnD for a discrete reaction table. The neutron interaction 
tables available to MCNP are listed in Table G.2 of Appendix G. (It should be noted that although 
all nuclear data tables in Appendix G are available to users at Los Alamos, users at other 
installations will generally have only a subset of the tables available. Also note that your institution 
may make their own tables available to you.)

For most materials, there are many cross-section sets available (represented by different values of 
nn in the ZAIDs) because of multiple sources of evaluated data and different parameters used in 
processing the data. An evaluated nuclear data set is produced by analyzing experimentally 
measured cross sections and combining those data with the predictions of nuclear model 
calculations in an attempt to extract the most accurate interaction description.  Preparing evaluated 
cross-section sets has become a discipline in itself and has developed since the early 1960s. In the 
US, researchers at many of the national laboratories as well as several industrial firms are involved 
in such work. The American evaluators joined forces in the mid-1960s to create the national ENDF 
system.24

There has been some confusion due to the use of the term ENDF to refer to both a library and a 
format.  The US effort to create a national evaluated nuclear data library led to formation of the 
Cross Section Evaluation Working Group (CSEWG) in the 1960s.  This body standardized the 
ENDF format, which is used to store evaluated nuclear data files, and created the US ENDF/B 
library that contains the set of data evaluations currently recommended by CSEWG.  Each update 
of the ENDF/B library receives a unique identifier (discussed below). While ENDF began as a US 
effort, over time other data centers have adopted the ENDF storage format for their own use 
(this international standardization has encouraged and facilitated many collaborations).  Today the 
ENDF-6 format (note that the Arabic number 6 indicates the ENDF format version) has become 
the international standard for storing evaluated nuclear data and is used by data centers in Europe, 
Japan, China, Russia, Korea and elsewhere. The user should be aware that there are many 
evaluated nuclear data libraries of which ENDF/B is only one.

It is worth discussing the ENDF/B library for a moment. The US-based CSEWG meets once a year 
to discuss and approve changes to the ENDF/B library.  In order to track the updates to the 
ENDF/B library, the following notation has been adopted.  The “/B” in ENDF/B is used to indicate 
the US data library as recommended by CSEWG. (There was at one time an ENDF/A that was a 
repository for other, possibly useful, data. However, this is no longer used.) The major version of 
the library is indicated by a Roman numeral, e.g. ENDF/B-V or ENDF/B-VI. Changes in the major 
version are generally tied to changes in the standard cross sections. (Many cross-section 
measurements are made relative to the standard cross sections, e.g. elastic scattering off hydrogen 
or the U235(n,f) cross section. When one of the standard cross sections is changed, the evaluated 
data that were based on that standard must be updated.) Within a major release, revisions are 
generally indicated as ENDF/B-VI.2 or ENDF/B-VI.6 where the “.2” and “.6” indicate release 2 
and release 6, respectively. A release indicates that some evaluations have been revised, added or 
deleted.  Users should note that neither a major release nor an interim release guarantee that a 
particular evaluation has been updated.  In fact, only a few evaluations change in each release and 
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often the change is limited to a certain energy region. This numbering scheme simply indicates that 
something within the data library has changed. It is up to the user to read the accompanying 
documentation to determine exactly what, if anything, changed. Each ACE table provided with the 
MCNP package is listed in Appendix G where its lineage (e.g. ENDF/B-V.0 or ENDF/B-VI.2) is 
given.  The ENDF/B evaluations are available through the National Nuclear Data Center at 
Brookhaven National Laboratory (http://www.nndc.bnl.gov/).

In addition to the ENDF/B library, many other data centers provide libraries of evaluated data. 
These include the Japanese Atomic Energy Research Institute’s (JAERI) JENDL library, the 
European JEFF library maintained by the Nuclear Energy Agency (NEA), the Chinese Nuclear 
Data Center’s (CNDC) CENDL library, and the Russian BOFOD library.  Other libraries also exist. 
These centers may provide processed versions of their library in MCNP ACE format.  Contact the 
appropriate center for more information.

In recent years the primary evaluated source of neutron interaction data provided as part of the 
MCNP code package has been the ENDF/B library (i.e. ENDF/B-V and ENDF/B-VI).  However, 
these have been supplemented with evaluated neutron interaction data tables from other sources, 
in particular data from Lawrence Livermore National Laboratory's Evaluated Nuclear Data Library 
(ENDL)25 library and supplemental evaluations performed in the Nuclear Physics Group in the 
Theoretical Division at Los Alamos.26,27,28 The package also includes older evaluations from 
previous versions of ENDF/B, ENDL, the Los Alamos Master Data File,29 and the Atomic 
Weapons Research Establishment in Great Britain.

MCNP does not access evaluated data directly from the ENDF format; these data must first be 
processed into ACE format. (ACE is an acronym for A Compact ENDF. A better description of 
ACE is that it is the processed data for use in MCNP, as these files are often not compact.) The very 
complex processing codes used for this purpose include NJOY30 for evaluated data in ENDF-5 and 
ENDF-6 format and MCPOINT31 for evaluated data in the ENDL format.

Data on the MCNP neutron interaction tables include cross sections and emission distributions for 
secondary particles. Cross sections for all reactions given in the evaluated data are specified. For a 
particular table, the cross sections for each reaction are given on one energy grid that is sufficiently 
dense that linear-linear interpolation between points reproduces the evaluated cross sections within 
a specified tolerance. Over the years this tolerance has been tightened as computer memory has 
increased. In general, the tables currently available have cross sections that are reproduced to a 
tolerance of 1% or less, although many recent tables have been created with tolerances of 0.1%. 
Depending primarily on the number of resolved resonances for each isotope, the resulting energy 
grid may contain up to ∼100,000 points (see Appendix G for information about specific tables).

Angular distributions for neutron (and photonuclear) collisions are given in each table for all 
reactions emitting neutrons or photons (note that older neutron tables may not include photon 
distributions). The distributions are typically given in the center-of-mass system for elastic 
scattering and discrete-level inelastic scattering. Other distributions may be given in either the 
center-of-mass or laboratory system as specified by the ENDF-6 scattering law from which they 
are derived. Angular distributions are given on a reaction-dependent grid of incident energies.
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The sampled angle of scattering uniquely determines the secondary energy for elastic scattering 
and discrete-level inelastic scattering. For other inelastic reactions, energy distributions of the 
scattered particles are provided in each table. As with angular distributions, the energy 
distributions are given on a reaction-dependent grid of incident energies. The energy and angle of 
particles scattered by inelastic collisions is sampled in a stochastic manner such that the overall 
emission distribution and energy are preserved for many collisions but not necessarily for any 
single collision.

When neutron evaluations contain data about secondary photon production, that information 
appears in the MCNP neutron interaction tables. Many processed data sets contain photon 
production cross sections, photon angular distributions, and photon energy distributions for each 
neutron reaction that produces secondary photons.  However, the user should be aware that not all 
evaluations include this information and the information is sometimes approximate, e.g. individual 
gamma lines may be lumped into average photon emission bins.

Other miscellaneous information on the neutron (and photonuclear) interaction tables includes the 
atomic weight ratio of the target nucleus, the Q-values of each reaction, and nubar ( ) data (the 
average number of neutrons per fission) for fissionable isotopes. In many cases both prompt and 
total  are given. Prompt  is the default for all but KCODE criticality problems, and total  is 
the default for KCODE criticality problems. The TOTNU input card can be used to change the 
default.

Approximations must be made when processing an evaluated data set into ACE format. As 
mentioned above, cross sections are reproduced to within a certain tolerance, generally less 
than 1%. Until recently, evaluated angular distributions for non-isotropic secondary particles could 
only be approximated on ACE tables by 32 equally-probable cosine bins. This approximation is 
extremely fast to use but may not adequately represent a distribution originally given as a 20th-
order Legendre polynomial. Starting with MCNP version 4C, tabular angular distributions may be 
used to represent the scattering angle with a tolerance generally between 0.1% to 1% or better. 
On the whole, the approximations within more recent ACE tables are small, and MCNP interaction 
data tables for neutron (and photonuclear) collisions are extremely faithful representations of the 
original evaluated data.

Discrete-reaction tables are identical to continuous-energy tables except that in the discrete 
reaction tables all cross sections have been averaged into 262 groups. The averaging is done with 
a flat weighting function. This is not a multigroup representation; the cross sections are simply 
given as histograms rather than as continuous curves. The remaining data (angular distributions, 
energy distributions, , etc.) are identical in discrete-reaction and continuous-energy neutron 
tables. Discrete-reaction tables have been provided in the past as a method of shrinking the required 
data storage to enhance the ability to run MCNP on small machines or in a time-sharing 
environment. Given the advances in computing speed and storage, they are no longer necessary and 
should not be used. There original purpose was for preliminary scoping studies. They were never 
recommended as a substitute for the continuous-energy tables when performing final calculations.

The matter of how to select the appropriate neutron interaction tables for your calculation is now 
discussed. Multiple tables for the same isotope are differentiated by the “nn” evaluation identifier 
portion of the ZAID. The easiest choice for the user is not to enter the nn at all. If no identifier nn 
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is entered,  MCNP will select the first match found in the directory file XSDIR.  The XSDIR file 
provided as part of the MCNP package contains the evaluations in the recommended (by the 
nuclear data team at LANL) order. Thus, the user can select the currently recommended table by 
entering only the ZZZAAA portion (without the nn) of the ZAID on the Mn card. The default nnX 
can be changed for all isotopes of a material by using the NLIB keyword entry on the Mm card. 
Given the NLIB option, MCNP will choose only tables with the given nn identifier.  However, if a 
specific table is desired, MCNP will always use the table requested by a fully specified ZAID, i.e. 
ZZZAAA.nnX.

Careful users will want to think about what neutron interaction tables to choose. There is, 
unfortunately, no strict formula for choosing the tables. The following guidelines and observations 
are the best that can be offered:

1. Users should, in general, use the most recent data available. The nuclear data evaluation 
community works hard to continually update these libraries with the most faithful 
representations of the cross sections and emission distributions.

2. Consider checking the sensitivity of the results to various sets of nuclear data. Try, for 
example, a calculation with ENDF/B-VI.6 cross sections, and then another with ENDL 
cross sections. If the results of a problem are extremely sensitive to the choice of nuclear 
data, it is advisable to find out why.

3. Consider differences in evaluators' philosophies. The Physical Data Group at Livermore 
is justly proud of its extensive cross-section efforts; their evaluations manifest a 
philosophy of reproducing the data with the fewest number of points. Livermore 
evaluations are available mainly in the “.40C” series. We at Los Alamos are particularly 
proud of the evaluation work being carried out in the Nuclear Physics Group T-16; 
generally, these evaluations are the most complex because they are the most thorough. 
Recent evaluations from Los Alamos are available in the “.66c” series.

4. Be aware of the neutron energy spectrum in your problem. For high-energy problems, 
the “thinned” and discrete reaction data are probably not bad approximations. 
Conversely, it is essential to use the most detailed continuous-energy set available for 
problems influenced strongly by transport through the resonance region.

5. Check the temperature at which various data tables have been processed. Do not use a 
set that is Doppler broadened to 3,000 K for a room temperature calculation. 

6. For a coupled neutron/photon problem, be careful that the tables you choose have photon 
production data available. If possible, use the more-recent sets that have been processed 
into expanded photon production format.

7. Users should be aware of the differences between the “.50C” series of data tables and the 
“.51C” series.  Both are derived from ENDF/B-V. The “.50C” series is the most faithful 
reproduction of the evaluated data. The “.51C” series, also called the “thinned” series, 
has been processed with a less rigid tolerance than the “.50C” series. As with discrete 
reaction data tables, although by no means to the same extent, users should be careful 
when using the “thinned” data for transport through the resonance region.

8. In general, use the best data available. It is understood that the latest evaluations tend to 
be more complex and therefore require more memory and longer execution times. If you 
are limited by available memory, try to use smaller data tables such as thinned or 
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discrete-reaction for the minor isotopes in the calculation. Discrete reaction data tables 
might be used for a parameter study, followed by a calculation with the full continuous-
energy data tables for confirmation.

In conclusion, the additional time necessary to choose appropriate neutron interaction data tables 
rather than simply to accept the defaults often will be rewarded by increased understanding of your 
calculation.

B. Photon Interaction Data

Photon interaction cross sections are required for all photon problems. Photon interactions can now 
account for both photoatomic and photonuclear events.  Because these events are different in 
nature, i.e. elemental versus isotopic, the data are stored on separate tables.

Photoatomic data are stored on ACE tables that use ZAIDs with the form ZZZ000.nnP. There are 
currently four photoatomic interaction data libraries: nn equal 01, 02, 03 and 04.

The “01p” ACE tables were introduced in 1982 and combine data from several sources.  The 
incoherent, coherent, photoelectric and pair production cross sections, the coherent form factors, 
and incoherent scattering function for this data set come from two sources. For Z equal to 84, 85, 
87, 88, 89, 91, and 93, these values are based on the compilation of Storm and Israel32 and include 
data for incident photon energies from 1 keV to 15 MeV. For all other elements from Z equal to 1 
through 94, the data are based on ENDF/B-IV33 and include data for incident photon energies from 
1 keV to 100 MeV. Fluorescence data for Z equal to 1 through 94 are taken from work by Everett 
and Cashwell34 as derived from multiple sources.

The “02p” ACE tables were introduced in 1993 and are an extension of the “01p” to higher incident 
energies.35 Below 10 MeV the data are identical to the “01p” data (i.e. the cross sections, form 
factors, scattering function, and fluorescence data in this region are identical). From 10 MeV to the 
top of the table (either 15 or 100 MeV, depending on the table) the cross-section values are 
smoothly transitioned from the “01p” values to the values from the Livermore Evaluated Photon 
Data Library (EPDL89).36 Above this transition region, the cross section values are derived from 
the EPDL89 data and are given for incident energies up to 100 GeV.  The pair production threshold 
was also corrected for some tables.

The “03p” ACE tables were introduced in 2002 and are an extension of the “02p” tables to include 
additional data. The energy of a photon after an incoherent (Compton) collision is a function of the 
momentum of the bound electron involved in the collision. To calculate this effect (which is seen 
as a broadening of the Compton peak), it is necessary to know the probability with which a photon 
interacts with an electron from a particular shell and the momentum profile for the electrons of each 
shell.  The probabilities and momentum profile data of Biggs et al.37 are included in the “03p” 
tables. All other data in the “03p” are identical to the “02p” data. The ability to use the new data 
for broadening of the Compton scattering energy requires MCNP5 or later; however, these tables 
are compatible with older versions of the code (you simply will not access or use the new data).

The “04p” ACE tables were introduced in 2002 and contain the first completely new data set since 
1982.  These tables were processed from the ENDF/B-VI.8 library.  (The ENDF/B-VI.8 
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photoatomic and atomic relaxation data are in turn based upon the EPDL9738 library.) They include 
incoherent, coherent, photoelectric and pair production cross sections for incident energies from 
1 keV to 100 GeV and Z equal to 1 to 100.  They also include coherent form factors, incoherent 
scattering functions, and fluorescence data derived from the ENDF/B-VI.8 data. It should be noted 
that the form factor and scattering data have been evaluated and stored on the traditional fixed grid 
(see the photon table description in Appendix F).  The fluorescence data use the traditional scheme 
defined by Everett and Cashwell34 but updated and consistent with the new data. Also included are 
the bound electron momenta of Biggs et al.37 (i.e. identical to those data in the “03p” tables). This 
is the recommended data set.

For each element the photoatomic interaction libraries contain an energy grid–explicitly including 
the photoelectric edges and the pair production threshold–the incoherent, coherent, photoelectric 
and pair production cross sections (all stored as the logarithm of the value to facilitate log-log 
interpolation). The total cross section is not stored; instead it is calculated from the partial cross 
sections as needed. The energy grid for each table is tailored specifically for that element. The 
average material heating due to photon scattering is calculated by the processing code and included 
as a tabulation on the main energy grid. The incoherent scattering function and coherent form 
factors are tabulated as a function of momentum transfer on a predefined, fixed-momenta grid. 
Average fluorescence data (according to the scheme of Everett and Cashwell34) are also included. 
The most recent data (on the 03p and 04p libraries) also include momentum profile data for 
broadening of the photon energy from Compton scattering from bound electrons.

The determination of directions and energies of atomically scattered photons requires information 
different from the sets of angular and energy distributions found on neutron interaction tables. The 
angular distribution for fluorescence x-rays from the relaxation cascade after a photoelectric event 
is isotropic. The angular distributions for coherent and incoherent scattering come from sampling 
the well-known Thomson and Klein-Nishina formulas, respectively. By default, this sampling 
accounts for the form factor and scattering function data at incident energies below 100 MeV. 
Above, 100 MeV (or at the user’s request) the form factor and scattering function data are ignored 
(a reasonable approximation for high-energy photons). The energy of an incoherently scattered 
photon is calculated from the sampled scattering angle. If available, this energy is modified to 
account for the momentum of the bound electron.

Very few approximations are made in the various processing codes used to transfer photon data 
from ENDF into the format of MCNP photon interaction tables. Cross sections are reproduced 
exactly as given (except as the logarithm of the value). Form factors and scattering functions are 
reproduced as given; however, the momentum transfer grid on which they are tabulated may be 
different from that of the original evaluation (see the description of the photoatomic table in 
Appendix F for the momenta grid used by all photoatomic tables). Heating numbers are calculated 
values, not given in evaluated sets, but inferred from them. Fluorescence data are calculated using 
the scheme developed by Everett and Cashwell.34

Photonuclear data are stored on ACE tables that use ZAIDs with the form ZZZAAA.nnU. New to 
MCNP5, photon interactions can include photonuclear events. However, the current data 
distribution includes tables for only 13 nuclides. Because of this, photonuclear physics must be 
explicitly turned on. If on, a table must be provided for each nuclide of every material or a fatal 
error will occur and the simulation will not run. This situation should improve sometime relatively 
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soon. More than 150 other photonuclear data evaluations exist; these were created as part of an 
IAEA collaboration.39 These evaluations have been processed and are available for beta testing use 
through the nuclear data website at Los Alamos National Laboratory (see http://t2.lanl.gov/ and 
click on photonuclear). These files need peer review and validation testing before becoming part 
of the official MCNP data package.

Photonuclear interaction data describe nuclear events with specific isotopes. The reaction 
descriptions use the same ENDF-6 format as used for neutron data. Their processing, storage as 
ACE tables, and sampling in a simulation are completely analogous to what is done for neutrons. 
See the previous discussion of the neutron data for more details. Note that the photonuclear data 
available so far are complete in the sense that they provide secondary particle distributions for all 
light-particles, i.e. photons, neutrons, protons, alphas, etc.  At this time, MCNP makes use of the 
photon and neutron emission distributions.

The selection of photon interaction data has become more complicated. Let us first examine the 
simple cases. Photon or photon/electron problems where photonuclear events are to be ignored 
(i.e. photonuclear physics is explicitly off) should specify the material composition on the Mn card 
by mass or weight fraction of each element, i.e. using the form ZZZ000 to describe each element. 
Partial ZAID specification, i.e. only ZZZ000 with no library evaluation number nn, will choose the 
default table (the first table listed in the XSDIR). This will be overridden if the evaluation identifier 
nn is given by the PLIB option, e.g. PLIB=02p will select all photoatomic tables for that material 
from the 02p data set. Specifying a full ZAID, e.g. 13000.03p, will override any other selection and 
always result in selecting that specific table. The next most simple case is a coupled neutron-photon 
problem that will explicitly ignore photonuclear events. In this case, one should specify the 
material composition according to the rules discussed in the previous section on neutron data 
tables. Given an isotopic material component, e.g. 13027, the appropriate elemental photoatomic 
table will be selected, e.g. 13000. If no evaluation identifier is given, the default (first) table from 
the XSDIR will be used. If a particular evaluation set is desired, the PLIB option on the Mn card 
may be used to select all photoatomic tables from a given library. It is recommended in all cases 
that the photoatomic tables for any given problem all be from the same library (these data sets are 
created in masse and thus are self-consistent across a library).

The most complicated case for material definition is the selection of tables for coupled neutron-
photon problems where photonuclear events are not ignored. In such a case, the composition must 
be chosen based on the availability of most appropriate isotopic neutron and photonuclear tables 
as needed for the specific problem at hand. The MPNn card may be used to accommodate 
mismatches in the availability of specific isotopes (see page 3–120). As always, a fully specified 
ZAID, e.g. 13027.24u, will ensure that a specific table is selected. The PNLIB option on the 
material card may be used to select all photonuclear tables from a specific evaluation set nn. 
Otherwise, the isotope ZZZAAA will select the first match in the XSDIR file. Note that if no 
photonuclear table is available for the isotope ZZZAAA, the problem will report the error and will 
not run. See the discussion in the description of the MPNn card for more information on 
page 3–120).
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C. Electron Interaction Data

Electron interaction data tables are required both for problems in which electrons are actually 
transported, and for photon problems in which the thick-target bremsstrahlung model is used. 
Electron data tables are identified by ZAIDs of the form ZZZ000.nnE, and are selected by default 
when the problem mode requires them. There are two electron interaction data libraries:  
el (ZAID endings of .01e) and el03 (ZAID endings of .03e).

The electron libraries contain data on an element-by-element basis for atomic numbers from Z 
equal 1 to 94. The library data contain energies for tabulation, radiative stopping power parameters, 
bremsstrahlung production cross sections, bremsstrahlung energy distributions, K-edge energies, 
Auger electron production energies, parameters for the evaluation of the Goudsmit-Saunderson 
theory for angular deflections based on the Riley cross-section calculation, and Mott correction 
factors to the Rutherford cross sections also used in the Goudsmit-Saunderson theory.  The el03 
library also includes the atomic data of Carlson used in the density effect calculation. Internal to 
the code at run-time, data are calculated for electron stopping powers and ranges, K x-ray 
production probabilities, knock-on probabilities, bremsstrahlung angular distributions, and the 
Landau-Blunck-Leisegang theory of energy-loss fluctuations.  The el03 library is derived from the 
ITS3.0 code system.40 Discussions of the theoretical basis for these data and references to the 
relevant literature are presented in Section IV-E beginning on page 2–67 of this chapter.

The hierarchy rules for electron cross sections require that each material must use the same electron 
library. If a specific ZAID is selected on a material card, such as specifying ZZZ000.01E, that 
choice of library will be used as the default for all elements in that material. Alternatively, the 
default electron library for a given material can be chosen by specifying ELIB = nnE on the M card. 
Under no circumstances should data tables from different libraries be specified for use in the same 
material (e.g., "m6  12000.01e  1  20000.03e  1" should not be used). This will result in a fatal error 
as reported at run-time. Overriding this error with a FATAL option will result in unreliable results. 
In the absence of any specification, MCNP will use the first electron data table listed in the XSDIR 
cross-section directory file for the relevant element.

D. Neutron Dosimetry Cross Sections

Dosimetry cross-section tables cannot be used for transport through material. These incomplete 
cross-section sets provide energy-dependent neutron cross sections to MCNP for use as response 
functions with the FM tally feature, e.g. they may be used in the calculation of a reaction rate.  
ZAIDs for dosimetry tables are of the form ZZZAAA.nnY. Remember, dosimetry cross-section 
tables have no effect on the particle transport of a problem.

The available dosimetry cross sections are from three sources: ENDF/B−V Dosimetry Tape 531, 
ENDF/B−V Activation Tape 532, and ACTL41–an evaluated neutron activation cross-section 
library from the Lawrence Livermore National Laboratory. Various codes have been used to 
process evaluated dosimetry data into the format of MCNP dosimetry tables.

Data on dosimetry tables are simply energy-cross-section pairs for one or more reactions. The 
energy grids for all reactions are independent of each other. Interpolation between adjacent energy 
points can be specified as histogram, linear-linear, linear-log, log-linear, or log-log. With the 
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exception of the tolerance involved in any reconstruction of pointwise cross sections from 
resonance parameters, evaluated dosimetry cross sections can be reproduced on the MCNP data 
tables with no approximation.

ZAIDs for dosimetry tables must be entered on material cards that are referenced by FM cards; 
under no circumstances may a material card specifying dosimetry data tables be referenced by a 
cell card. The complete ZAID, ZZZAAA.nnY, must be given; there are no defaults for dosimetry 
tables.

E. Neutron Thermal S(α,β) Tables

Thermal S(α,β) tables are not required, but they are absolutely essential to get correct answers in 
problems involving neutron thermalization. Thermal tables have ZAIDs of the form 
XXXXXX.nnT, where XXXXXX is a mnemonic character string. The data on these tables 
encompass those required for a complete representation of thermal neutron scattering by molecules 
and crystalline solids. The source of S(α,β) data is a special set of ENDF tapes.42 The THERMR 
and ACER modules of the NJOY30 system have been used to process the evaluated thermal data 
into a format appropriate for MCNP.

Data are for neutron energies generally less than 4 eV. Cross sections are tabulated on table-
dependent energy grids; inelastic scattering cross sections are always given and elastic scattering 
cross sections are sometimes given.  Correlated energy-angle distributions are provided for 
inelastically scattered neutrons. A set of equally probable final energies is tabulated for each of 
several initial energies. Further, a set of equally probable cosines or cosine bins is tabulated for 
each combination of initial and final energies. Elastic scattering data can be derived from either an 
incoherent or a coherent approximation. In the incoherent case, equally probable cosines or cosine 
bins are tabulated for each of several incident neutron energies. In the coherent case, scattering 
cosines are determined from a set of Bragg energies derived from the lattice parameters. During 
processing, approximations to the evaluated data are made when constructing equally probable 
energy and cosine distributions.

ZAIDs for the thermal tables are entered on an MTn card that is associated with an existing Mn 
card. The thermal table generally will provide data for one component of a material–for example, 
hydrogen in light water. Thermal ZAIDs may be entered on the MTn card(s) as XXXXXX, 
XXXXXX.nn, or XXXXXX.nnT.

F. Multigroup Tables

Multigroup cross-section libraries are the only libraries allowed in multigroup/adjoint problems. 
Neutron multigroup problems cannot be supplemented with S(α,β) thermal libraries; the thermal 
effects must be included in the multigroup neutron library. Photon problems cannot be 
supplemented with electron libraries; the electrons must be part of the multigroup photon library. 
The form of the ZAID is ZZZAAA.nnM for neutrons (or other particles masquerading as neutrons) 
or ZZZAAA.nnG for photons.
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Although continuous-energy data are more accurate than multigroup data, the multigroup option is 
useful for a number of important applications: (1) comparison of deterministic (Sn) transport codes 
to Monte Carlo; (2) use of adjoint calculations in problems where the adjoint method is more 
efficient; (3) generation of adjoint importance functions; (4) cross-section sensitivity studies; 
(5) solution of problems for which continuous-cross sections are unavailable; and (6) charged 
particle transport using the Boltzmann-Fokker-Planck algorithm in which charged particles 
masquerade as neutrons.

Multigroup cross sections are very problem dependent. Some multigroup libraries are available 
from the Transport Methods Group at Los Alamos but must be used with caution. Users are 
encouraged to generate or get their own multigroup libraries and then use the supplementary code 
CRSRD43 to convert them to MCNP format. Reference 43 describes the conversion procedure. 
This report also describes how to use both the multigroup and adjoint methods in MCNP and 
presents several benchmark calculations demonstrating the validity and effectiveness of the 
multigroup/adjoint method.

To generate cross-section tables for electron/photon transport problems that will use the multigroup 
Boltzmann-Fokker-Planck algorithm,44 the CEPXS47 code developed by Sandia National 
Laboratory and available from RSICC can be used. The CEPXS manuals describe the algorithms 
and physics database upon which the code is based; the physics package is essentially the same as 
ITS version 2.1. The keyword “MONTE-CARLO” is needed in the CEPXS input file to generate 
a cross-section library suitable for input into CRSRD; this undocumented feature of the CEPXS 
code should be approached with caution.

IV. PHYSICS

The physics of neutron, photon, and electron interactions is the very essence of MCNP. This section 
may be considered a software requirements document in that it describes the equations MCNP is 
intended to solve. All the sampling schemes essential to the random walk are presented or 
referenced. But first, particle weight and particle tracks, two concepts that are important for setting 
up the input and for understanding the output, are discussed in the following sections.

A. Weight

At the most fundamental level, weight is a tally multiplier. That is, the tally contribution for a 
weight w is the unit weight tally contribution multiplied by w. Weight is an adjustment for 
deviating from a direct physical simulation of the transport process. Note that if a Monte Carlo 
code always sampled from the same distributions as nature does, then the Monte Carlo code would 
have the same mean and variance as seen in nature. Quite often, the natural variance is 
unacceptably high and the Monte Carlo code modifies the sampling using some form of "variance 
reduction" (see Section VII on page 2–134). The variance reduction methods use weighting 
schemes to produce the same mean as the natural transport process, but with lower calculational 
variance than the natural variance of the transport process.

With the exception of the pulse height tally (F8), all tallies in MCNP are made by individual 
particles. In this case, weight is assigned to the individual particles as a "particle weight." The 
10/3/05 2-25



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
manual discusses the "particle weight" cases first and afterward discusses the weight associated 
with the F8 tally.

1. Particle Weight

If MCNP were used only to simulate exactly physical transport, then each MCNP particle would 
represent one physical particle and would have unit weight. However, for computational efficiency, 
MCNP allows many techniques that do not exactly simulate physical transport. For instance, each 
MCNP particle might represent a number w of particles emitted from a source. This number w is 
the initial weight of the MCNP particle. The w physical particles all would have different random 
walks, but the one MCNP particle representing these w physical particles will only have one 
random walk. Clearly this is not an exact simulation; however, the true number of physical particles 
is preserved in MCNP in the sense of statistical averages and therefore in the limit of a large 
number of MCNP source particles (of course including particle production or loss if they occur). 
Each MCNP particle result is multiplied by the weight so that the full results of the w physical 
particles represented by each MCNP particle are exhibited in the final results (tallies). This 
procedure allows users to normalize their calculations to whatever source strength they desire. The 
default normalization is to weight one per MCNP particle. A second normalization to the number 
of Monte Carlo histories is made in the results so that the expected means will be independent of 
the number of source particles actually initiated in the MCNP calculation.

The utility of particle weight, however, goes far beyond simply normalizing the source. Every 
Monte Carlo biasing technique alters the probabilities of random walks executed by the particles. 
The purpose of such biasing techniques is to increase the number of particles that sample some part 
of the problem of special interest (1) without increasing (sometimes actually decreasing) the 
sampling of less interesting parts of the problem, and (2) without erroneously affecting the 
expected mean physical result (tally). This procedure, properly applied, increases precision in the 
desired result compared to an unbiased calculation taking the same computing time. For example, 
if an event is made  times as likely to occur (as it would occur without biasing), the tally ought 
to be multiplied by  so that the expected average tally is unaffected. This tally multiplication 
can be accomplished by multiplying the particle weight by  because the tally contribution by 
a particle is always multiplied by the particle weight in MCNP. Note that weights need not be 
integers.

In short, particle weight is a number carried along with each MCNP particle, representing that 
particle's relative contribution to the final tallies. Its magnitude is determined to ensure that 
whenever MCNP deviates from an exact simulation of the physics, the expected physical result 
nonetheless is preserved in the sense of statistical averages, and therefore in the limit of large 
MCNP particle numbers. Its utility is in the manipulation of the number of particles, sampling just 
a part of the problem to achieve the same results and precision, obviating a full unbiased calculation 
which has a longer computing time.

2. Pulse Height Tally (F8) Weight

Unlike other tallies in MCNP, the pulse height tally depends on a collection of particles instead of 
just individual particles. Because of this, a weight is assigned to each collection of tallying 
particles. It is this "collective weight" that multiplies the F8 tally, not the particle weight. 
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When variance reduction is used, a "collective weight" is assigned to every collection of particles. 
If variance reduction techniques have made a collection's random walk q times as likely as without 
variance reduction, then the collective weight is multiplied by 1/q so that the expected F8 tally of 
the collection is preserved. The interested reader should consult Refs. 45 and 46 for more details.

B. Particle Tracks

When a particle starts out from a source, a particle track is created. If that track is split 2 for 1 at a 
splitting surface or collision, a second track is created and there are now two tracks from the 
original source particle, each with half the single track weight.  If one of the tracks has an (n,2n) 
reaction, one more track is started for a total of three. A track refers to each component of a source 
particle during its history. Track length tallies use the length of a track in a given cell to determine 
a quantity of interest, such as fluence, flux, or energy deposition. Tracks crossing surfaces are used 
to calculate fluence, flux, or pulse-height energy deposition (surface estimators). Tracks 
undergoing collisions  are used to calculate multiplication and criticality (collision estimators).

Within a given cell of fixed composition, the method of sampling a collision along the track is 
determined using the following theory. The probability of a first collision for a particle between l 
and l + dl along its line of flight is given by

,

where  is the macroscopic total cross section of the medium and is interpreted as the probability 
per unit length of a collision. Setting ξ the random number on [0,1), to be 

,

it follows that

.

But, because  is distributed in the same manner as ξ and hence may be replaced by ξ, we 
obtain the well-known expression for the distance to collision,

   .

C. Neutron Interactions

When a particle (representing any number of neutrons, depending upon the particle weight) 
collides with a nucleus, the following sequence occurs:

1. the collision nuclide is identified;

p l( )dl e
Σ– tlΣt= dl

Σt

ξ e
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0
 l
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2. either the S treatment is used or the velocity of the target nucleus is sampled for 
low-energy neutrons;

3. photons are optionally generated for later transport;
4. neutron capture (that is, neutron disappearance by any process) is modeled;
5. unless the S treatment is used, either elastic scattering or an inelastic reaction 

(including fission) is selected, and the new energy and direction of the outgoing track(s) 
are determined;

6. if the energy of the neutron is low enough and an appropriate S table is present, the 
collision is modeled by the S treatment instead of by step 5.

1. Selection of Collision Nuclide

If there are n different nuclides forming the material in which the collision occurred, and if ξ is a 
random number on the unit interval [0,1), then the kth nuclide is chosen as the collision nuclide if

where  is the macroscopic total cross section of nuclide . If the energy of the neutron is low 
enough (below about 4 eV) and the appropriate  table is present, the total cross section is the 
sum of the capture cross section from the regular cross-section table and the elastic and inelastic 
scattering cross sections from the  table. Otherwise, the total cross section is taken from the 
regular cross-section table and is adjusted for thermal effects as described below.

2. Free Gas Thermal Treatment

A collision between a neutron and an atom is affected by the thermal motion of the atom, and in 
most cases, the collision is also affected by the presence of other atoms nearby. The thermal motion 
cannot be ignored in many applications of MCNP without serious error. The effects of nearby 
atoms are also important in some applications.  MCNP uses a thermal treatment based on the free 
gas approximation to account for the thermal motion. It also has an explicit S  capability that 
takes into account the effects of chemical binding and crystal structure for incident neutron 
energies below about 4 eV, but is available for only a limited number of substances and 
temperatures. The S  capability is described later on page 2–54.

The free gas thermal treatment in MCNP assumes that the medium is a free gas and also that, in 
the range of atomic weight and neutron energy where thermal effects are significant, the elastic 
scattering cross section at zero temperature is nearly independent of the energy of the neutron, and 
that the reaction cross sections are nearly independent of temperature. These assumptions allow 
MCNP to have a thermal treatment of neutron collisions that runs almost as fast as a completely 
nonthermal treatment and that is adequate for most practical problems.

With the above assumptions, the free gas thermal treatment consists of adjusting the elastic cross 
section and taking into account the velocity of the target nucleus when the kinematics of a collision 
are being calculated. The MCNP free gas thermal treatment effectively applies to elastic scattering 
only.
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Cross-section libraries processed by NJOY already include Doppler broadening of elastic, capture, 
fission, and other low-threshold absorption cross-sections (<1 eV). Inelastic cross sections are 
never broadened by NJOY.

a. Adjusting the Elastic Cross Section: The first aspect of the free gas thermal treatment is 
to adjust the zero-temperature elastic cross section by raising it by the factor

 ,

where , A = atomic weight, E = neutron energy, and T = temperature. For speed, F 
is approximated by F = 1 + 0.5/a2 when  and by linear interpolation in a table of 51 values of 
aF when a < 2. Both approximations have relative errors less than 0.0001. The total cross section 
also is increased by the amount of the increase in the elastic cross section.

The adjustment to the elastic and total cross sections is done partly in the setup of a problem and 
partly during the actual transport calculation. No adjustment is made if the elastic cross section in 
the data library was already processed to the temperature that is needed in the problem. If all of the 
cells that contain a particular nuclide have the same temperature, which is constant in time, that is 
different from the temperature of the library, the elastic and total cross sections for that nuclide are 
adjusted to that temperature during the setup so that the transport will run a little faster. Otherwise, 
these cross sections are reduced, if necessary, to zero temperature during the setup and the thermal 
adjustment is made when the cross sections are used. For speed, the thermal adjustment is omitted 
if the neutron energy is greater than 500 kT/A. At that energy the adjustment of the elastic cross 
section would be less than 0.1%.

b. Sampling the Velocity of the Target Nucleus: The second aspect of the free gas thermal 
treatment takes into account the velocity of the target nucleus when the kinematics of a collision 
are being calculated. The target velocity is sampled and subtracted from the velocity of the neutron 
to get the relative velocity. The collision is sampled in the target-at-rest frame and the outgoing 
velocities are transformed to the laboratory frame by adding the target velocity.

There are different schools of thought as to whether the relative energy between the neutron and 
target, Er , or the laboratory frame incident neutron energy (target-at-rest), Eo , should be used for 
all the kinematics of the collision. Eo is used in MCNP to obtain the distance-to-collision, select 
the collision nuclide, determine energy cutoffs, generate photons, generate fission sites for the next 
generation of a KCODE criticality problem, for S(α, β) scattering, and for capture. Er is used for 
everything else in the collision process, namely elastic and inelastic scattering, including fission 
and (n,xn) reactions. It is shown in Eqn. 2.1 that Er  is based upon vrel  that is based upon the elastic 
scattering cross section, and, therefore, Er is truly valid only for elastic scatter. However, the only 
significant thermal reactions for stable isotopes are absorption, elastic scattering, and fission. 181Ta 
has a 6 keV threshold inelastic reaction; all other stable isotopes have higher inelastic thresholds. 
Metastable nuclides like 242mAm have inelastic reactions all the way down to zero, but these 
inelastic reaction cross sections are neither constant nor 1/v cross sections and these nuclides are 
generally too massive to be affected by the thermal treatment anyway. Furthermore, fission is very 
insensitive to incident neutron energy at low energies. The fission secondary energy and angle 
distributions are nearly flat or constant for incident energies below about 500 keV. Therefore, it 
makes no significant difference if Er is used only for elastic scatter or for other inelastic collisions 
as well. At thermal energies, whether Er or Eo  is used only makes a difference for elastic scattering.

F 1 0.5 a2⁄+( )erf a( ) a2–( ) a π( )⁄exp+=

a AE kT⁄=
a 2≥
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If the energy of the neutron is greater than 400 kT  and the target is not 1H, the velocity of the target 
is set to zero. Otherwise, the target velocity is sampled as follows. The free-gas kernel is a thermal 
interaction model that results in a good approximation to the thermal flux spectrum in a variety of 
applications and can be sampled without tables. The effective scattering cross section in the 
laboratory system for a neutron of kinetic energy E is

(E) = (2.1)

Here, vrel is the relative velocity between a neutron moving with a scalar velocity vn and a target 
nucleus moving with a scalar velocity V, and  is the cosine of the angle between the neutron and 
the target direction-of-flight vectors. The equation for vrel is

The scattering cross section at the relative velocity is denoted by σs(vrel), and p(V) is the probability 
density function for the Maxwellian distribution of target velocities,

with β defined as

 ,

where A is the mass of a target nucleus in units of the neutron mass, Mn is the neutron mass in MeV-
sh2/cm2, and kT is the equilibrium temperature of the target nuclei in MeV.

The most probable scalar velocity V of the target nuclei is 1/β, which corresponds to a kinetic 
energy of kT for the target nuclei. This is not the average kinetic energy of the nuclei, which is 
3kT/2. The quantity that MCNP expects on the TMPn input card is kT and not just T 
(see page 3–132).  Note that kT is not a function of the particle mass and is therefore the kinetic 
energy at the most probable velocity for particles of any mass.

Equation (2.1) implies that the probability distribution for a target velocity V and cosine  is

 .

It is assumed that the variation of  with target velocity can be ignored. The justification for 
this approximation is that (1) for light nuclei,  is slowly varying with velocity, and (2) for 
heavy nuclei, where  can vary rapidly, the moderating effect of scattering is small so that 

σs
eff 1

vn
----- σs∫∫ vrel( )vrelp V( )dv

dµt
2

--------

µt

vrel vn
2 V2 2vnVµt–+( )

1
2
---

=

p V( ) 4
π1 2⁄
-----------β3V2e β– 2V2

=

β
AMn
2kT
-----------⎝ ⎠

⎛ ⎞
1
2
---

=

µt

P V µt,( )
σs vrel( )vrelP V( )

2σs
eff E( )vn

----------------------------------------=

σs v( )
σs vrel( )

σs vrel( )
2-30 10/3/05



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
the consequences of the approximation will be negligible. As a result of the approximation, the 
probability distribution actually used is

.

Note that the above expression can be written as

.

As a consequence, the following algorithm is used to sample the target velocity.

1. With probability , the target velocity V is sampled from the 

distribution . The transformation  reduces this 

distribution to the sampling distribution for . MCNP actually codes .

2. With probability 1 − α, the target velocity is sampled from the distribution 

. Substituting V = y/β reduces the distribution to the 

sampling distribution for y: .

3. The cosine of the angle between the neutron velocity and the target velocity is sampled 
uniformly on the interval + 1.

4. The rejection function R(V, µt) is computed using

.

With probability R(V,µt), the sampling is accepted; otherwise, the sampling is rejected and the 
procedure is repeated. The minimum efficiency of this rejection algorithm averaged over µt is 68% 
and approaches 100% as either the incident neutron energy approaches zero or becomes much 
larger than kT.

3. Optional Generation of Photons

Photons are generated if the problem is a combined neutron/photon run and if the collision nuclide 
has a nonzero photon production cross section. The number of photons produced is a function of 
neutron weight, neutron source weight, photon weight limits (entries on the PWT card), photon 
production cross section, neutron total cross section, cell importance, and the importance of the 
neutron source cell.  No more than 10 photons may be born from any neutron collision. In a 
KCODE calculation, secondary photon production from neutrons is turned off during the inactive 
cycles.
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Because of the many low-weight photons typically created by neutron collisions, Russian roulette 
is played for particles with weight below the bounds specified on the PWT card, resulting in fewer 
particles, each having a larger weight. The created photon weight before Russian roulette is

,

where Wp = photon weight,

Wn = neutron weight,

= photon production cross section,

σT = total neutron cross section.

Both  and σT are evaluated at the incoming neutron energy without the effects of the thermal 
free gas treatment because nonelastic cross sections are assumed independent of temperature.

The Russian roulette game is played according to neutron cell importances for the collision and 
source cell. For a photon produced in cell i where the minimum weight set on the PWT card is 

, let Ii be the neutron importance in cell i and let Is be the neutron importance in the source 
cell. If , one or more photons will be produced.  The number of photons created 
is Np, where Np = (Wp ∗ Ii)/(5 *  ∗ Is) + 1. .  Each photon is stored in the bank with 
weight Wp/Np. If  ∗ Is/Ii, Russian roulette is played and the photon survives with 
probability Wp∗  and is given the weight,  ∗ Is/Ii.

If weight windows are not used and if the weight of the starting neutrons is not unity, setting all the 
 on the PWT card to negative values will make the photon minimum weight relative to the 

neutron source weight. This will make the number of photons being created roughly proportional 
to the biased collision rate of neutrons. It is recommended for most applications that negative 
numbers be used and be chosen to produce from one to four photons per source neutron.  The 
default values for  on the PWT card are −1, which should be adequate for most problems 
using cell importances.

If energy-independent weight windows are used, the entries on the PWT card should be the same 
as on the WWN1:P card. If energy-dependent photon weight windows are used, the entries on the 
PWT card should be the minimum WWNn:P entry for each cell, where n refers to the photon 
weight window energy group. This will cause most photons to be born within the weight window 
bounds.

Any photons generated at neutron collision sites are temporarily stored in the bank. There are two 
methods for determining the exiting energies and directions, depending on the form in which the 
processed photon production data are stored in a library. The first method has the evaluated photon 
production data processed into an “expanded format.”48 In this format, energy-dependent cross 
sections, energy distributions, and angular distributions are explicitly provided for every photon−
producing neutron interaction.  In the second method, used with data processed from older 
evaluations, the evaluated photon production data have been collapsed so that the only information 
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about secondary photons is in a matrix of 20 equally probable photon energies for each of 30 
incident neutron energy groups.  The sampling techniques used in each method are now described.

a. Expanded Photon Production Method:  In the expanded photon production method, the 
reaction n responsible for producing the photon is sampled from

where ξ is a random number on the interval (0,1), N is the number of photon production reactions, 
and σi is the photon production cross section for reaction i at the incident neutron energy. Note that 
there is no correlation between the sampling of the type of photon production reaction and the 
sampling of the type of neutron reaction described on page 2–35.

Just as every neutron reaction (for example, (n,2n)) has associated energy-dependent angular and 
energy distributions for the secondary neutrons, every photon production reaction (for example, 
(n,pγ)) has associated energy-dependent angular and energy distributions for the secondary 
photons. The photon distributions are sampled in much the same manner as their counterpart 
neutron distributions.

All non-isotropic secondary photon angular distributions are represented by either 32 equiprobable 
cosine bins or by a tabulated angular distribution. The distributions are given at a number of 
incident neutron energies. All photon-scattering cosines are sampled in the laboratory system. The 
sampling procedure is identical to that described for secondary neutrons on page 2–36.

Secondary photon energy distributions are also a function of incident neutron energy. There are two 
representations of secondary photon energy distributions allowed in ENDF-6 format: tabulated 
spectra and discrete (line) photons.  Correspondingly, there are two laws used in MCNP for the 
determination of secondary photon energies. Law 4 provides for representation of a tabulated 
photon spectra possibly including discrete lines. Law 2 is used solely for discrete photons. These 
laws are described in more detail beginning on page 2–41.

The expanded photon production method has clear advantages over the original 30 x 20 matrix 
method described below. In coupled neutron/photon problems, users should attempt to specify data 
sets that contain photon production data in expanded format. Such data sets are identified by “yes” 
entries in the GPD column in Table G.2 in Appendix G. However, it should be noted that the 
evaluations from which these data are processed may not include all discrete lines of interest; 
evaluators may have binned sets of photons into average spectra that simply preserve the energy 
distribution.

b. 30 x 20 Photon Production Method: For lack of better terminology, we will refer to the 
photon production data contained in older libraries as “30 x 20 photon production” data. In contrast 
to expanded photon production data, there is no information about individual photon production 
reactions in the 30 x 20 data.  This method is not used in modern tables and is only included to 
maintain backwards compatibility for very old data libraries.
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The only secondary photon data are a 30 x 20 matrix of photon energies; that is, for each of 30 
incident neutron energy groups there are 20 equally probable exiting photon energies. There is no 
information regarding secondary photon angular distributions; therefore, all photons are taken to 
be produced isotropically in the laboratory system.

There are several problems associated with 30 x 20 photon production data. The 30 x 20 matrix is 
an inadequate representation of the actual spectrum of photons produced. In particular, discrete 
photon lines are not well represented, and the high-energy tail of a photon continuum energy 
distribution is not well sampled. Also, the multigroup representation is not consistent with the 
continuous-energy nature of MCNP. Finally, not all photons should be produced isotropically. 
None of these problems exists for data processed into the expanded photon production format.

4. Absorption

Absorption is treated in one of two ways: analog or implicit. Either way, the incident incoming 
neutron energy does not include the relative velocity of the target nucleus from the free gas thermal 
treatment because nonelastic reaction cross sections are assumed to be nearly independent of 
temperature. That is, only the scattering cross section is affected by the free gas thermal treatment. 
The terms“absorption” and “capture” are used interchangeably for non-fissile nuclides, both 
meaning (n,0n). For fissile nuclides, "absorption" includes both capture and fission reactions.

a. Analog Absorption: In analog absorption, the particle is killed with probability σa/σT, 
where σa and σT are the absorption and total cross sections of the collision nuclide at the incoming 
neutron energy. The absorption cross section is specially defined for MCNP as the sum of all (n,x) 
cross sections, where x is anything except neutrons.  Thus σa is the sum of σn,g, σn,a, σn,d, σf,  
etc. For all particles killed by analog absorption, the entire particle energy and weight are deposited 
in the collision cell.

b. Implicit Absorption: For implicit absorption, also called survival biasing, the neutron 
weight Wn is reduced to Wn as follows:

 

If the new weight Wn is below the problem weight cutoff (specified on the CUT card), Russian 
roulette is played, resulting overall in fewer particles with larger weight.

For implicit absorption, a fraction σa/σT of the incident particle weight and energy is deposited in 
the collision cell corresponding to that portion of the particle that was absorbed. Implicit absorption 
is the default method of neutron absorption in MCNP.

c. Implicit Absorption Along a Flight Path: Implicit absorption also can be done 
continuously along the flight path of a particle trajectory as is the common practice in astrophysics. 
In this case, the distance to scatter, rather than the distance to collision, is sampled. The distance to 
scatter is

…
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.

The particle weight at the scattering point is reduced to account for the expected absorption along 
the flight path,

,

where  = reduced weight after expected absorption along flight path,
W = weight at the start of the flight path,
σa = absorption cross section,
σs = scattering cross section,
σt = σs + σa = total cross section,
l = distance to scatter, and
ξ = random number.

Implicit absorption along a flight path is a special form of the exponential transformation coupled 
with implicit absorption at collisions. (See the description of the exponential transform on 
page 2–148.) The path length is stretched in the direction of the particle, µ = 1, and the stretching 
parameter is p = Σa/Σt. Using these values the exponential transform and implicit absorption at 
collisions yield the identical equations as does implicit absorption along a flight path.

Implicit absorption along a flight path is invoked in MCNP as a special option of the exponential 
transform variance reduction method. It is most useful in highly absorbing media, that is, Σa/Σt 
approaches 1. When almost every collision results in absorption, it is very inefficient to sample 
distance to collision. However, implicit absorption along a flight path is discouraged. In highly 
absorbing media, there is usually a superior set of exponential transform parameters. In relatively 
nonabsorbing media, it is better to sample the distance to collision than the distance to scatter.

5. Elastic and Inelastic Scattering

If the conditions for the S(α,β) treatment are not met, the particle undergoes either an elastic or 
inelastic collision. The selection of an elastic collision is made with the probability

where

σel is the elastic scattering cross section.
σin is the inelastic cross section; includes any neutron-out process−(n,n'), (n,f), (n,np), etc.
σa is the absorption cross section; , that is, all neutron disappearing
reactions.
σT is the total cross section, σT = σel + σin + σa.

Both σel and σT are adjusted for the free gas thermal treatment at thermal energies.

l 1
Σs
-----– 1 ξ–( )ln=

W′ We
Σal–

=

W′

σel
σin σel+
---------------------

σel
σT σa–
------------------=

Σσ n x,( )  where x n≠,
10/3/05 2-35



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
The selection of an inelastic collision is made with the remaining probability

.

If the collision is determined to be inelastic, the type of inelastic reaction, n, is sampled from

,

where ξ is a random number on the interval [0,1), N is the number of inelastic reactions, and σi is 
the ith inelastic reaction cross section at the incident neutron energy.

Directions and energies of all outgoing particles from neutron collisions are determined by 
sampling data from the appropriate cross-section table.  Angular distributions are provided and 
sampled for scattered neutrons resulting from either elastic or discrete-level inelastic events; the 
scattered neutron energy is then calculated from two-body kinematics. For other reaction types, a 
variety of data representations is possible. These representations may be divided into two types: 
(a) the outgoing energy and outgoing angle are sampled independently of each other, or (b) the 
outgoing energy and outgoing angle are correlated. In the latter case, the outgoing energy may be 
specified as a function of the sampled outgoing angle, or the outgoing angle may be specified as a 
function of the sampled outgoing energy. Details of the possible data representations and sampling 
schemes are provided in the following sections.

a. Sampling of Angular and Energy Distributions: The cosine of the angle between incident 
and exiting particle directions, , is sampled from angular distribution tables in the collision 
nuclide’s cross-section library. The cosines are either in the center-of-mass or target-at-rest system, 
depending on the type of reaction.  Data are provided at a number of incident neutron energies. If 
E is the incident neutron energy, if En is the energy of table n, and if En+1 is the energy of table 
n + 1, then a value of  is sampled from table n + 1 with probability (E - En)/(En + 1 - En) and from 
table n with probability (En + 1 - E)/(En+1 - En). There are two options in MCNP for representing 
and sampling a non-isotropic scattering cosine. The first method involves the use of 32 equally 
probable cosine bins.  The second method is to sample a tabulated distribution as a function of .

When the method with 32 equiprobable cosine bins is employed, a random number  on the 
interval [0,1) is used to select the ith cosine bin such that I = 32 + 1. The value of  is then 
computed as

µ = µi + (32 ξ − i)(µi+1 − µi) .

The method of 32 equiprobable cosine bins accurately represents high-probability regions of the 
scattering probability; however, it can be a very crude approximation in low-probability regions.  
For example, it accurately represents the forward scattering in a highly forward-peaked 
distribution, but may represent all the back angle scattering using only one or a few bins.

σin
σT σa–
------------------

σi

i 1=

n 1–

∑ ξ σi

i 1=

N

∑ σi

i 1=

n

∑≤<

µ

µ

µ

ξ
µ

‘

2-36 10/3/05



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
A new, more rigorous angular distribution representation was implemented in MCNP 4C. This new 
representation features a tabulation of the probability density function (PDF) as a function of the 
cosine of the scattering angle. Interpolation of the PDF between cosine values may be either by 
histogram or linear-linear interpolation. The new tabulated angular distribution allows more 
accurate representations of original evaluated distributions (typically given as a set of Legendre 
polynomials) in both high-probability and low-probability regions.

Tabular angular distributions are equivalent to tabular energy distribution (as defined using ENDF 
law 4) except that the sampled value is the cosine of the scattering angle, and discrete lines are not 
allowed. For each incident neutron energy Ei there is a pointer to a table of cosines µi,k, probability 
density functions pi,k, and cumulative density functions ci,k. The index i and the interpolation 
fraction r are found on the incident energy grid for the incident energy Ein such that

and

.

A random number, ξ1, on the unit interval [0,1) is used to sample a cosine bin k from the cumulative 
density function

,

where l = i if ξ2 > r and l = i+1 if ξ2 < r , and ξ2 is a random number on the unit interval. For 
histogram interpolation the sampled cosine is

.

For linear-linear interpolation the sampled cosine is

If the emitted angular distribution for some incident neutron energy is isotropic, µ is chosen from 
µ = ξ', where ξ' is a random number on the interval [−1,1). Strictly, in MCNP random numbers are 
always furnished on the interval [0,1).  Thus, to compute ξ' on [−1,1) we calculate ξ' = 2 ξ − 1, 
where ξ is a random number on [0,1).)

The ENDF-6 format also has various formalisms to describe correlated secondary energy-angle 
spectra.  These are discussed later in this chapter.

Ei Ein Ei 1+< <

Ein Ei r Ei 1+ Ei–( )+=

cl k, ξ1 cl k 1+,< <

µ′ µ l k,
ξ1 cl k,–( )

pl k,
------------------------+=

µ′ µ l k,

Pl k,
2 2

pl k 1+, p– l k,

µ l k 1+, µ l k,–
----------------------------------- ξ1 cl k,–( )+ pl k,–

pl k 1+, pl k,–
µ l k 1+, µ l k,–
-----------------------------------

-------------------------------------------------------------------------------------------------------

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

+=
10/3/05 2-37



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
For elastic scattering, inelastic level scattering, and some ENDF−6 inelastic reactions, the 
scattering cosine is chosen in the center-of-mass system. Conversion must then be made to µlab, 
the cosine in the target-at-rest system. For other inelastic reactions, the scattering cosine is sampled 
directly in the target-at-rest system.

The incident particle direction cosines (uo,vo,wo) are rotated to new outgoing target-at-rest system 
cosines (u, v, w) through a polar angle whose cosine is µlab, and through an azimuthal angle 
sampled uniformly. For random numbers ξ1 and ξ2 on the interval [−1,1) with rejection criterion 

, the rotation scheme is (Ref. 2 page 54):

.

If , then

.

If the scattering distribution is isotropic in the target-at-rest system, it is possible to use an even 
simpler formulation that takes advantage of the exiting direction cosines, (u,v,w), being 
independent of the incident direction cosines, (uo,vo,wo). In this case,

   ,

   , 

ξ1
2 ξ2

2 1≤

u uoµlab
1 µlab

2– ξ1uowo ξ2o–( )

ξ1
2 ξ2

2+( ) 1 wo
2–( )

-------------------------------------------------------------+=

v voµlab
1 ulab

2– ξ1vowo ξ2uo+( )

ξ1
2 ξ2

2+( ) 1 wo
2–( )

---------------------------------------------------------------+=

w woµlab
ξ1 1 µlab

2–( ) 1 wo
2–( )

ξ1
2 ξ2

2+( )
----------------------------------------------------–=

1 wo
2 0∼–

u uoµlab
1 µlab

2– ξ1uovo ξ2wo+( )

ξ1
2 ξ2

2+( ) 1 υo
2–( )

---------------------------------------------------------------+=

v voµlab
ξ1 1 µlab

2–( ) 1 vo
2–( )

ξ1
2 ξ2

2+( )
-----------------------------------------------------–=

w woµlab=
1 µlab

2– ξ1wovo ξ2uo–( )

ξ1
2 ξ2

2+( ) 1 vo
2–( )

---------------------------------------------------------------+

u 2ξ1
2 2ξ2

2 1–+=

v ξ1
1 u2–
ξ1

2 ξ2
2+

-----------------=
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,

where ξ1 and ξ2 are rejected if .

b. Energy from Elastic Scattering:  Once the particle direction is sampled from the 
appropriate angular distribution tables, then the exiting energy, Eout, is dictated by two-body 
kinematics:

,

where Ein = incident neutron energy, µcm = center-of-mass cosine of the angle between incident 
and exiting particle directions,

and A = mass of collision nuclide in units of the mass of a neutron (atomic weight ratio).

c. Inelastic Reactions: The treatment of inelastic scattering depends upon the particular 
inelastic reaction chosen. Inelastic reactions are defined as (n,y) reactions such as (n, n'), (n, 2n), 
(n, f), (n, n'α) in which y includes at least one neutron.

For many inelastic reactions, such as (n, 2n), more than one neutron can be emitted for each 
incident neutron. The weight of each exiting particle is always the same as the weight of the 
incident particle minus any implicit capture.  The energy of exiting particles is governed by various 
scattering laws that are sampled independently from the cross-section files for each exiting particle. 
Which law is used is prescribed by the particular cross-section evaluation used.  In fact, more than 
one law can be specified, and the particular one used at a particular time is decided with a random 
number. In an (n, 2n) reaction, for example, the first particle emitted may have an energy sampled 
from one or more laws, but the second particle emitted may have an energy sampled from one or 
more different laws, depending upon specifications in the nuclear data library. Because emerging 
energy and scattering angle is sampled independently for each particle, there is no correlation 
between the emerging particles. Hence energy is not conserved in an individual reaction because, 
for example, a 14-MeV particle could conceivably produce two 12-MeV particles in a single 
reaction. But the net effect of many particle histories is unbiased because on the average the correct 
amount of energy is emitted. Results are biased only when quantities that depend upon the 
correlation between the emerging particles are being estimated.

Users should note that MCNP follows a very particular convention. The exiting particle energy and 
direction are always given in the target-at-rest (laboratory) coordinate system. For the kinematical 
calculations in MCNP to be performed correctly, the angular distributions for elastic, discrete 

w ξ2
1 u2–
ξ1

2 ξ2
2+

-----------------=

ξ1
2 ξ2

2 1>+

Eout
1
2
---Ein 1 α–( )µcm 1 α+ +[ ]=

Ein
1 A2 2Aµcm+ +

1 A+( )2
--------------------------------------=

α A 1–
A 1+
-------------⎝ ⎠

⎛ ⎞ 2
=

10/3/05 2-39



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
inelastic level scattering, and some ENDF-6 inelastic reactions must be given in the center-of-mass 
system, and the angular distributions for all other reactions must be given in the target-at-rest 
system. MCNP does not stop if this convention is not adhered to, but the results will be erroneous. 
In the checking of the cross-section libraries prepared for MCNP at Los Alamos, however, careful 
attention has been paid to ensure that these conventions are followed.

The exiting particle energy and direction in the target-at-rest (laboratory) coordinate system are 
related to the center-of-mass energy and direction as follows:1

; and

 ,

where 

 = exiting particle energy (laboratory),
 = exiting particle energy (center-of-mass),

E = incident particle energy (laboratory),
µcm = cosine of center-of-mass scattering angle,
µlab = cosine of laboratory scattering angle, and
A = atomic weight ratio (mass of nucleus divided by mass of incident particle).

For point detectors it is necessary to convert

,

where 

and

   .

E′ E′cm
E 2µcm A 1+( ) EE′cm+

A 1+( )2
------------------------------------------------------------+=

µlab µcm
E′cm
E′

----------- 1
A 1+
------------- E

E′
-----    +=

E′
E′cm

p µlab( ) p µcm( )
dµcm
dµlab
-------------=

µcm µlab
E′

Ecm
′

--------- 1
A 1+
------------- E

Ecm
′

---------–=

dµcm
dµlab
-------------

E′ E′cm⁄

E′
E′cm
-----------

µlab
A 1+
------------- E

E′cm
-----------–

---------------------------------------------------=

E′
E′cm
-----------

1
µlab

A 1+
------------- E

E′
-----–

--------------------------------=
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d. Nonfission Inelastic Scattering and Emission Laws: Nonfission inelastic reactions are 
handled differently from fission inelastic reactions. For each nonfission reaction Np particles are 
emitted, where Np is an integer quantity specified for each reaction in the cross-section data library 
of the collision nuclide. The direction of each emitted particle is independently sampled from the 
appropriate angular distribution table, as was described earlier. The energy of each emitted particle 
is independently sampled from one of the following scattering or emission laws. Energy and angle 
are correlated only for ENDF-6 laws 44 and 67.  For completeness and convenience, all the laws 
are listed together, regardless of whether the law is appropriate for nonfission inelastic scattering 
(for example, Law 3), fission spectra (for example, Law 11), both (for example, Law 9), or 
neutron-induced photon production (for example, Law 2). The conversion from center−of−mass to 
target−at−rest (laboratory) coordinate systems is given in the above equations.

Law 1  (ENDF law 1):  Equiprobable energy bins.
The index i and the interpolation fraction r are found on the incident energy grid for the 
incident energy Ein such that

and

.

A random number on the unit interval ξ1 is used to select an equiprobable energy bin k 
from the K equiprobable outgoing energies Eik

.

Then scaled interpolation is used with random numbers ξ2 and ξ3 on the unit interval. Let
and

; and

 

 if and

; then

.

Law 2 Discrete photon energy.
The value provided in the library is Eg. The secondary photon energy Eout is either

Eout = Eg for non-primary photons or
Eout = Eg + [A/(A+1)]Ein for primary photons,

where A is the atomic weight to neutron weight ratio of the target
and Ein is the incident neutron energy.

Ei Ein Ei 1+< <

Ein Ei r Ei 1+ Ei–( )+=

k ξiK 1+=

E1 Ei 1, r Ei 1 1,+ Ei 1,–( )+=

EK Ei K, r Ei 1 K,+ Ei K,–( )+=

l i  if  ξ3 r  or>=

l i 1+= ξ3 r<

E′ El k, ξ2 El k 1+, El k,–( )+=

Eout E1
E′ El 1,–( ) EK E1–( )

El K, El 1,–
--------------------------------------------------+=
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Law 3 (ENDF law 3):  Inelastic scattering (n,n') from nuclear levels.
The value provided in the library is Q.

.

Law 4 Tabular distribution (ENDF law 4).
For each incident neutron energy Ei there is a pointer to a table of secondary energies Ei,k, 
probability density functions pi,k, and cumulative density functions ci,k. The index i and 
the interpolation fraction r are found on the incident energy grid for the incident energy 
Ein such that

and

.

The tabular distribution at each Ei may be composed of discrete lines, a continuous 
spectra, or a mixture of discrete lines superimposed on a continuous background. If 
discrete lines are present, there must be the same number of lines (given one per bin) in 
each table. The sampling of the emission energy for the discrete lines (if present) is 
handled separately from the sampling for the continuous spectrum (if present). A random 
number, ξ1, on the unit interval [0,1) is used to sample a second energy bin k from the 
cumulative density function.

If discrete lines are present, the algorithm first checks to see if the sampled bin is within 
the discrete line portion of the table as determined by

If this condition is met, then the sampled energy E' for the discrete line is interpolated 
between incident energy grids as

.

If a discrete line has been sampled, the energy sampling is finished.  If a discrete line has 
not been sampled, the secondary energy is sampled from the remaining continuous 
background. 

For continuous distributions, the secondary energy bin k is sampled from

,

where l = i if ξ2 > r and l = i + 1 if ξ2 < r , and ξ2 is a random number on the unit interval. 
For histogram interpolation the sampled energy is

Eout
A

A 1+
-------------⎝ ⎠

⎛ ⎞ 2
Ein

Q A 1+( )
A

----------------------–=

Ei Ein Ei 1+< <

Ein Ei r Ei 1+ Ei–( )+=

ci k, r ci 1 k,+ ci k,–( ) ξ1 ci k 1+, r ci 1 k 1+,+ ci k 1+,–( )+< <+

E′ Ei k, r Ei 1 k,+ Ei k,–( )+=

cl k, ξ1 cl k 1+,< <
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.

For linear-linear interpolation the sampled energy is

The secondary energy is then interpolated between the incident energy bins i and i + 1 to 
properly preserve thresholds. Let

and

; then

.

The final step is to adjust the energy from the center-of-mass system to the laboratory 
system, if the energies were given in the center-of-mass system.

Law 4 is an independent distribution, i.e. the emission energy and angle are not correlated. 
The outgoing angle is selected from the angular distribution as described on page 2–36. 
Data tables built using this methodology are designed to sample the distribution correctly 
in a statistical sense and will not necessarily sample the exact distribution for any specific 
collision.

Law 5 (ENDF law 5):  General evaporation spectrum.
The function g(x) is tabulated versus  and the energy is tabulated versus incident energy 
Ein. The law is then

.

This density function is sampled by
Eout = χ(ξ) T(Ein),
where T(Ein) is a tabulated function of the incident energy and
c(ξ) is a table of equiprobable  values.

Law 7 (ENDF law 7): Simple Maxwell Fission Spectrum.

 * 

E′ El k,
ξ1 cl k,–( )

pl k,
------------------------+=

E′ El k,

Pl k,
2 2

pl k 1+, p– l k,

El k 1+, El k,–
------------------------------- ξ1 cl k,–( )+ pl k,–

pl k 1+, pl k,–
El k 1+, El k,–
-------------------------------

----------------------------------------------------------------------------------------------------

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

+=

E1 Ei 1, r Ei 1 1,+ Ei 1,–( )+=

EK Ei K, r Ei 1 K,+ Ei K,–( )+=

Eout E1
E′ El 1,–( ) EK E1–( )

El K, El 1,–( )
--------------------------------------------------+=

χ

f Ein Eout→( ) g
Eout

T Ein( )
----------------⎝ ⎠

⎛ ⎞=

χ

f Ein Eout→( ) C= Eoute
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The nuclear temperature T(Ein) is a tabulated function of the incident energy. The 
normalization constant C is given by

U is a constant provided in the library and limits Eout to . In MCNP this 
density function is sampled by the rejection scheme

,

where ξ1, ξ2, ξ3, and ξ4 are random numbers on the unit interval. ξ1 and ξ1 are rejected if 

.

Law 9 (ENDF law 9): Evaporation spectrum.

 ,

where the nuclear temperature T(Ein) is a tabulated function of the incident energy. The 
energy U is provided in the library and is assigned so that Eout is limited by 

. The normalization constant C is given by

.

In MCNP this density function is sampled by

,

where ξ1 and ξ2 are random numbers on the unit interval, and ξ1 and ξ2 are rejected if Eout 
> Ein − U.

Law 11 (ENDF law 11): Energy Dependent Watt Spectrum.

.

The constants a and b are tabulated functions of incident energy and U is a constant from 
the library. The normalization constant C is given by

C 1– T3 2⁄ π
2

-------⎝ ⎠
⎛ ⎞ erf 

Ein U–( )
T

----------------------⎝ ⎠
⎛ ⎞ Ein U–( )

T
----------------------e

Ein U–( ) T⁄–
–=

0 Eout Ein U–≤ ≤

Eout T Ein( )
ξ1

2 ξ3ln

ξ1
2 ξ2

2+
----------------- ξ4ln+–=

ξ1
2 ξ2

2 1>+

f Ein Eout→( ) C= Eoute
Eout T Ein( )⁄–

0 Eout Ein U–≤ ≤

C 1– T2 1 e
Ein U–( ) T⁄–

1 Ein U–( ) T⁄+( )–[ ]=

Eout T Ein( ) ξ1ξ2( )ln–=

f Ein Eout→( ) Ce
Eout a Ein( )⁄–

b Ein( )Eoutsinh=

c 1– 1
2
--- πa3b

4
------------ ab

4
------⎝ ⎠

⎛ ⎞
erf

Ein U–( )
a

---------------------- ab
4

------–⎝ ⎠
⎛ ⎞ erf 

Ein U–( )
a

---------------------- ab
4

------+⎝ ⎠
⎛ ⎞+

a Ein U–( )
a
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,

2-44 10/3/05



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
PHYSICS
where the constant U limits the range of outgoing energy so that . This 
density function is sampled as follows. Let

. Then Eout = − ag ln ξ1.

Eout is rejected if

 ,

where ξ1 and ξ2 are random numbers on the unit interval.

Law 22 (UK law 2): Tabular linear functions of incident energy out.
Tables of Pij, Cij, and Tij are given at a number of incident energies Ei.  If  
then the ith Pij, Cij, and Tij tables are used.

,

where k is chosen according to

,

where ξ is a random number on the unit interval [0,1).

Law 24 (UK law 6): Equiprobable energy multipliers. The law is

.

The library provides a table of K equiprobable energy multipliers Ti,k for a grid of incident 
neutron energies Ei. For incident energy Ein such that

,

the random numbers ξ1 and ξ2 on the unit interval are used to find T:

 and then

.

Law 44 Tabular Distribution (ENDF Law=1 Lang=2, Kalbach-87 correlated energy-angle 
scattering).  Law 44 is an extension of Law 4. For each incident energy Ei there is a pointer 
to a table of secondary energies Ei,k, probability density functions pi,k, cumulative density 
functions ci,k, precompound fractions Ri,k, and angular distribution slope values Ai,k. The 
secondary emission energy is found exactly as stated in the Law 4 description on 
page 2–42. Unlike Law 4, Law 44 includes a correlated angular distribution associated 

0 Eout Ein U–≤ ≤

g 1 ab
8

------+⎝ ⎠
⎛ ⎞ 2

1– 1 ab
8

------+⎝ ⎠
⎛ ⎞+=

1 g–( ) 1 ξ1ln–( ) ξ2ln–[ ]2 bEout>

Ei Ein Ei 1+<≤

Eout Cik Ein Tik–( )=

Pij ξ Pij

j 1=

k 1+

∑≤<

j 1=

k

∑

Eout EinT Ein( )=

Ei Ein Ei 1+< <

k ξ1K 1+=

T Ti k, ξ2 Ti k 1+, Ti k,–( )+=

Eout EinT=
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with each incident energy Ei as given by the Kalbach parameters Ri,k, and Ai,k. Thus, the 
sampled emission angle is dependent on the sampled emission energy.

The sampled values for R  and A are interpolated on both the incident and outgoing energy 
grids. For discrete spectra,

and

.

For continuous spectra with histogram interpolation,

and

For continuous spectra with linear-linear interpolation,

and

.

The outgoing neutron center-of-mass scattering angle µ is sampled from the Kalbach 
density function

 

using the random numbers ξ3 and ξ4 on the unit interval as follows.  If ξ3 > R, then let

 ,

or if ξ3 < R, then

.

As with Law 4, the emission energy and angle are transformed from the center-of-mass to 
the laboratory system as necessary.

Law 61 Tabular Distribution (ENDF Law=1 Lang=0, 12 or 14; correlated energy-angle 
scattering).  Law 61 is an extension of Law 4. For each incident energy Ei there is a pointer 
to a table of secondary energies Ei,k, probability density functions pi,k, cumulative density 
functions ci,k, and pointers to tabulated angular distributions Li,k. The secondary emission 

A Ai k, r Ai 1 k,+ Ai k,–( )+=

R Ri k, r Ri 1 k,+ Ri k,  –( )+=

A Ai k,=

R Ri k,=

A Al k, Al k 1+, Al k,–( ) E′ El k,–( ) El k 1+, El k,–( )⁄+=

R Rl k, Rl k 1+, Rl k,–( ) E′ El k,–( ) El k 1+, El k,–( )⁄+=

p µ Ein Eout, ,( ) 1
2
---= A

A( )sinh
------------------- Aµ( ) R Aµ( )sinh+cosh[ ]

T 2ξ4 1–( ) A( )   andsinh=

µ T T2 1++( ) A⁄ln=

µ ξ4eA 1 ξ4–( )e A–+ A⁄ln=
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energy is found exactly as stated in the Law 4 description on page 2–42. Unlike Law 4, 
Law 61 includes a correlated angular distribution associated with each incident energy Ei 
as given by the tabular angular distribution located using the pointers Li,k. Thus, the 
sampled emission angle is dependent on the sampled emission energy.

If the secondary distribution is given using histogram interpolation, the angular 
distribution located at Li,k is used to sample the emission angle.  If the secondary 
distribution is specified as linear interpolation between energy points, Li,k is chosen by 
selecting the bin closest to the randomly sampled cumulative distribution function (CDF) 
point.  If the value of Li,k is zero, the angle is sampled from an isotropic distribution as 
described on page 2–37. If the value of Li,k is positive, it points to a tabular angular 
distribution which is then sampled as described on page 2–37.

As with Law 4, the emission energy and angle are transformed from the center-of-mass to 
the laboratory system as necessary.

Law 66 N-body phase space distribution (ENDF law 6). 
The phase space distribution for particle i in the center-of-mass coordinate system is:

where all energies and angles are also in the center-of-mass system and  is the 
maximum possible energy for particle i, µ and T. T is used for calculating Eout. The Cn 
normalization constants for n = 3, 4, 5 are:

and

 

Ei
max is a fraction of the energy available, Ea,

where M is the total mass of the n particles being treated, mi is the mass of particle i, and

where mT is the target mass and mp is the projectile mass. For neutrons,

Pi µ Ein T, ,( ) Cn T Ei
max T–( )

3n 2 4–⁄
,=

Ei
max

C3
4

π Ei
max( )

2
---------------------- ,=

C4
105

32 Ei
max( )

7 2⁄
------------------------------ ,=

C5
256

14π Ei
max( )

5
----------------------------- ⋅=

Ei
max M mi–

M
----------------Ea ,=

Ea
mT

mp mT+
--------------------Ein Q ,+=
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and for a total mass ratio Ap = M/mi,

.

Thus,

The total mass Ap and the number of particles in the reaction n are provided in the data 
library. The outgoing energy is sampled as follows.

Let ξi, i = 1,9 be random numbers on the unit interval. Then from rejection technique R28 
from the Monte Carlo Sampler,3 accept ξ1 and ξ2 if

and accept ξ3 and ξ4 if

Then let

and

and let

and

then

mT
mp mT+
-------------------- A

A 1+
-------------=

M mi–
M

----------------
Ap 1–

Ap
---------------=

Ei
max Ap 1–
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--------------- A

A 1+
-------------Ein Q+⎝ ⎠
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ξ1
2 ξ2

2+ 1≤

ξ3
2 ξ4

2 1 ⋅≤+

p ξ5 if n 3 ,= =

p ξ5ξ6 if n 4 ,= =

p ξ5ξ6ξ7ξ8 if n 5 ,= =

x
ξ1 ξ1

2 ξ2
2+( )ln–

ξ1
2 ξ2

2+( )
------------------------------------ ξ9 ,ln–=

y
ξ3 ξ3
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T x
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The cosine of the scattering angle is always sampled isotropically in the center-of-mass 
system using another random number ξ2 on the unit interval:

Law 67 Correlated energy-angle scattering (ENDF law 7).
For each incident neutron energy, first the exiting particle direction µ is sampled as 
described on page 2–36.  In other Law data, first the exiting particle energy is sampled and 
then the angle is sampled. The index i and the interpolation fraction r are found on the 
incident energy grid for the incident energy Ein, such that

For each incident energy Ei there is a table of exiting particle direction cosines µi,j and 
locators Li,j. This table is searched to find which ones bracket µ, namely,

Then the secondary energy tables at Li,j and Li,j+1 are sampled for the outgoing particle 
energy. The secondary energy tables consist of a secondary energy grid Ei,j,k,  probability 
density functions pi,j,k, and cumulative density functions ci,j,k. A random number ξ1 on the 
unit interval is used to pick between incident energy indices: if ξ1 < r then l = i + 1;  
otherwise, l = i. Two more random numbers ξ2 and ξ3 on the unit interval are used to 
determine interpolation energies. If , then

Otherwise,

If ξ3 < (µ − µi+1,j)/(µi+1,j+1 − µi+1,j), then

Otherwise,

A random number ξ4 on the unit interval is used to sample a secondary energy bin k from 
the cumulative density function

.

For histogram interpolation the sampled energy is

µ 2ξ2 1 ⋅–=

Ei Ein Ei 1+ and< <

Ein Ei r Ei 1+ Ei–( ) ⋅+=

µi j, µ µi j, 1+ ⋅< <

ξ2 µ µ1 j,–( ) µ1 j 1+, µi j,–( )⁄<

Ei k, Ei j 1 k,+, and m j 1,+= = if l i ⋅=

Ei k, Ei j k, , and m j,= = if l i ⋅=

Ei 1 k,+ Ei 1 j 1 k,+,+ and m j 1,+= = if l i 1 ⋅+=

Ei 1 k,+ Ei 1 j k, ,+ and m j if l, i 1 ⋅+= = =

cl m k, , ξ4 cl m k 1+, ,< <
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For linear-linear interpolation the sampled energy is

.

The final outgoing energy Eout uses scaled interpolation. Let

.

e. Emission from Fission:   For any fission reaction a number of neutrons, n, is emitted 
according to the value of (Ein).  Depending on the type of problem (fixed source or KCODE) and 
on user input (TOTNU card), MCNP may use either prompt (Ein) or total (Ein).  For either 
case, the average number of neutrons per fission, (Ein), may be a tabulated function of energy or 
a polynomial function of energy.  

If the fifth entry on the PHYS:N card is zero (default), then n is sampled between I (the largest 
integer less than (Ein)) and I + 1 by  

n = I + 1 if   <= (Ein) - I

n = I  if  > (Ein) - I, where  is a random number.

If more microscopically correct fission neutron multiplicities are desired for fixed source 
problems, the fifth entry on the PHYS:N card can be used to select which set of Gaussian widths 
are used to sample the actual number of neutrons from fission that typically range from 0 to 7 
or 8.49 For a given fission event, there is a probability Pn that n neutrons are emitted. This 
distribution is generally called the neutron multiplicity distribution. Fission neutron multiplicity 
distributions are known to be well reproduced by simple Gaussian distributions,50

, (2.2)
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and

,

where  is the mean multiplicity, b is a small adjustment to make the mean equal to , and   is 
the Gaussian width. For the range of realistic widths, the adjustment b can be accurately expressed 
as a single smooth function of ( +0.5)/ .51 To determine the value of  from experimental data, 
many authors have minimized the chi-squared

 , (2.3)

where is the uncertainty in the experimentally measured multiplicity distribution . The 
factorial moments of the neutron multiplicity distribution ( ) emitted by a 
multiplying sample can be expressed as a function of the factorial moments for spontaneous and 
induced fission.52 Therefore, for many applications it is not necessary to know the details of the 
neutron multiplicity distribution, but it is more important to know the corresponding first three 
factorial moments. A reevaluation of the existing spontaneous fission and neutron induced fission 
data has been performed51 where the widths of Gaussians are adjusted to fit the measured second 
and third factorial moments. This reevaluation was done by minimizing the chi-squared

   . (2.4)

These results are summarized in Table 2.1. Despite the change in emphasis from the detailed shape 
to the moments of the distributions, the inferred widths are little changed from those obtained by 
others. However, by minimizing the chi-squared in Eq. (2.4) the inferred widths are guaranteed to 
be in reasonable agreement with the measured second and third factorial moments. The widths 
obtained using Eq. (2.4) give Gaussian distributions that reproduce the experimental second and 
third factorial moments to better than 0.6%. The adjustment parameter b ensures that the first 
moment ( ) is accurately reproduced. If the chi-squared in Eq. (2.3) is used, then the second and 
third factorial moments can differ from the experimental values by as much as 10%.

Table 2.1
Recommended Gaussian 
Widths51 from Eq. (2.4) 

Reaction
233U(n,f) 1.070
235U(n,f) 1.088
238U(n,f) 1.116
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1SF: Spontaneous fission.

Assuming that the widths of the multiplicity distributions are independent of the initial excitation 
energy of the fissioning system,51 the relationship between different factorial moments is easily 
calculated as a function of . The corresponding calculated relationships between the first three 
factorial moments are in good agreement with experimental neutron induced fission data up to an 
incoming neutron energy of 10 MeV.51 This implies that an energy independent width can be used 
with confidence up to an incoming neutron energy of at least 10 MeV. The Gaussian widths in 
Table 2.1 are used for fission multiplicity sampling in MCNP when the fifth entry on the PHYS:N 
card is 1. Induced fission multiplicities for isotopes not listed in Table 2.1 use a Gaussian width 
that is linearly dependent on the mass number of the fissioning system.51

The direction of each emitted neutron is sampled independently from the appropriate angular 
distribution table by the procedure described on page 2–36.

The energy of each fission neutron is determined from the appropriate emission law.  These laws 
are discussed in the preceding section.  MCNP then models the transport of the first neutron out 
after storing all other neutrons in the bank.

f.  Prompt and Delayed Neutron Emission:  If (1) MCNP is using , (2) the data for the 
collision isotope includes delayed-neutron spectra, and (3) the use of detailed delayed-neutron data 
has not been preempted (on the PHYS:N card), then each fission neutron is first determined by 
MCNP to be either a prompt fission neutron or a delayed fission neutron. Assuming analog 

239Pu(n,f) 1.140
241Pu(n,f) 1.150
238Pu SF1 1.135
240Pu SF 1.151
242Pu SF 1.161

242Cm SF 1.091
244Cm SF 1.103
246Cm SF 1.098
248Cm SF 1.108
250Cf SF 1.220
252Cf SF 1.245
254Cf SF 1.215
254Fm SF 1.246

Table 2.1 (Continued)
Recommended Gaussian 
Widths51 from Eq. (2.4) 

Reaction σ

ν

νt
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sampling, the type of emitted neutron is determined from the ratio of delayed (Ein) to total (Ein) 
as

   if ξ   (Ein) /  (Ein), produce a delayed neutron, or 

   if ξ >  (Ein) /  (Ein), produce a prompt neutron,

where  is the expected number of delayed neutrons.

If the neutron is determined to be a prompt fission neutron, it is emitted instantaneously, and the 
emission laws (angle and energy) specified for prompt fission are sampled.

If the neutron is determined to be a delayed fission neutron, then MCNP first samples for the decay 
group by using the specified abundances. Then, the time delay is sampled from the exponential 
density with decay constant specified for the sampled decay group. 

Finally, the emission laws (angle and energy) specified for that decay group are then sampled.  
Since the functionality in MCNP to produce delayed neutrons using appropriate emission data is 
new, we include next a somewhat more expanded description.

A small but important fraction (~1%) of the neutrons emitted in fission events are delayed neutrons 
emitted as a result of fission-product decay at times later than prompt fission neutrons.  MCNP 
users have always been able to specify whether or not to include delayed fission neutrons by using 
either  (prompt plus delayed) or (prompt only).  However, in versions of MCNP up through 
and including 4B, all fission neutrons (whether prompt or delayed) were produced instantaneously 
and with an energy sampled from the spectra specified for prompt fission neutrons.

For many applications this approach is adequate. However, it is another example of a data 
approximation that is unnecessary. Therefore, Versions 4C and later of MCNP allow delayed 
fission neutrons to be sampled (either analog or biased) from time and energy spectra as specified 
in nuclear data evaluations. The libraries with detailed delayed fission neutron data are listed in 
Table G-2 with a “yes” in the “DN” column. 

The explicit sampling of a delayed-neutron spectrum implemented in MCNP 4C has two effects.  
One is that the delayed neutron spectra have the correct energy distribution; they tend to be softer 
than the prompt spectra. The second is that experiments measuring neutron decay after a pulsed 
source can now be modeled with MCNP because the delay in neutron emission following fission 
is properly accounted for. In this treatment, a natural sampling of prompt and delayed neutrons is 
implemented as the default and an additional delayed neutron biasing control is available to the 
user via the PHYS:N card. The biasing allows the number of delayed neutrons produced to be 
increased artificially because of the low probability of a delayed neutron occurrence. The delayed 
neutron treatment is intended to be used with the TOTNU option in MCNP, giving the user the 
flexibility to use the time-dependent treatment of delayed neutrons whenever the delayed data are 
available.

The impact of sampling delayed-neutron energy spectra on reactivity calculations has been 
studied.53 As expected, most of the reactivity impacts are very small, although changes of 0.1-0.2% 

ν ν

≤ νd νtot

νd νtot

νd

νt νp
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in keff were observed for certain cases. Overall, inclusion of delayed-neutron spectra can be 
expected to produce small positive reactivity changes for systems with significant fast neutron 
leakage and small negative changes for some systems in which a significant fraction of the fissions 
occurs in isotopes with an effective fission threshold (e.g., 238U and 240Pu).

6. The S(α,β) Treatment

The S(α,β) thermal scattering treatment is a complete representation of thermal neutron scattering 
by molecules and crystalline solids. Two processes are allowed: (1) inelastic scattering with cross 
section σin and a coupled energy-angle representation derived from an ENDF S(α,β) scattering 
law, and (2) elastic scattering with no change in the outgoing neutron energy for solids with cross 
section σel and an angular treatment derived from lattice parameters. The elastic scattering 
treatment is chosen with probability σel/(σel + σin). This thermal scattering treatment also allows 
the representation of scattering by multiatomic molecules (for example, BeO).

For the inelastic treatment, the distribution of secondary energies is represented by a set of equally 
probable final energies (typically 16 or 32) for each member of a grid of initial energies from an 
upper limit of typically 4 eV down to 10−5 eV, along with a set of angular data for each initial and 
final energy. The selection of a final energy E' given an initial energy E can be characterized by 
sampling from the distribution 

where Ei and Ei+1 are adjacent elements on the initial energy grid,

N is the number of equally probable final energies, and Eij is the jth discrete final energy for incident 
energy Ei.

There are two allowed schemes for the selection of a scattering cosine following selection of a final 
energy and final energy index j.  In each case, the (i,j)th set of angular data is associated with the 
energy transition .

(1) The data consist of sets of equally probable discrete cosines µi,j,k for k = 1,...,ν with ν 
typically 4 or 8. An index k is selected with probability 1/ν, and µ is obtained by the relation

(2) The data consist of bin boundaries of equally probable cosine bins. In this case, random 
linear interpolation is used to select one set or the other, with ρ being the probability of selecting 
the set corresponding to incident energy Ei. The subsequent procedure consists of sampling for one 
of the equally probable bins and then choosing µ uniformly in the bin.

p E′  Ei ξ Ei 1+< <( ) 1
N
---- δ E′ ρEi j, 1 ρ–( )Ei 1 j,+––[ ] ,

j 1=

N

∑=

ρ
Ei 1+ E–
Ei 1+ Ei–
----------------------- ,=

E Ei E′→ Ei j,= =

µ ρµi j k, , 1 ρ–( )µi 1 j k, ,+ ⋅+=
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For elastic scattering, the above two angular representations are allowed for data derived by an 
incoherent approximation. In this case, one set of angular data appears for each incident energy and 
is used with the interpolation procedures on incident energy described above.

For elastic scattering, when the data have been derived in the coherent approximation, a completely 
different representation occurs. In this case, the data actually stored are the set of parameters Dk, 
where

and EBk are Bragg energies derived from the lattice parameters. For incident energy E such that 
,

represents a discrete cumulative probability distribution that is sampled to obtain index i, 
representing scattering from the ith Bragg edge. The scattering cosine is then obtained from the 
relationship

Using next event estimators such as point detectors with S(α, β), scattering cannot be done exactly 
because of the discrete scattering angles. MCNP uses an approximate scheme54,55 that in the next 
event estimation calculation replaces discrete lines with histograms of width

 < .1 .

See also page 2–104.

7. Probability Tables for the Unresolved Resonance Range

Within the unresolved resonance range (e.g., in ENDF/B-VI, 2.25 - 25 keV for 235U, 10 - 149.03 
keV for 238U, and 2.5 - 30 keV for 239Pu), continuous-energy neutron cross sections appear to be 
smooth functions of energy. This behavior occurs not because of the absence of resonances, but 
rather because the resonances are so close together that they are unresolved. Furthermore, the 
smoothly-varying cross sections do not account for resonance self-shielding effects, which may be 
significant for systems whose spectra peak in or near the unresolved resonance range. 

Fortunately, the resonance self-shielding effects can be represented accurately in terms of  
probabilities based on a stratified sampling technique. This technique produces tables of 
probabilities for the cross sections in the unresolved resonance range. Sampling the cross section 
in a random walk from these probability tables is a valid physics approximation so long as the 
average energy loss in a single collision is much greater than the average width of a resonance; that 
is, if the narrow resonance approximation56 is valid.  Then the detail in the resonance structure 
following a collision is statistically independent of the magnitude of the cross sections prior to the 
collision.

σeI Dk E for⁄ Ebk E Ebk 1+<≤=

σeI 0( ) E for⁄ E EB1<=

EBk E EBk 1+≤ ≤

Pi Di Dk⁄ for i 1 … k, ,= =
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The utilization of probability tables is not a new idea in Monte Carlo applications.  A code57 to 
calculate such tables for Monte Carlo fast reactor applications was utilized in the early 1970s.  
Temperature-difference Monte Carlo calculations58 and a summary of the VIM Monte Carlo 
code59 that uses probability tables are pertinent early examples.  Versions of MCNP up through and 
including 4B did not take full advantage of the unresolved resonance data provided by evaluators. 
Instead, smoothly varying average cross sections were used in the unresolved range.  As a result, 
any neutron self-shielding effects in this energy range were unaccounted for. Better utilizations of 
unresolved data have been known and demonstrated for some time, and the probability table 
treatment has been incorporated60 into MCNP Version 4C  and its successors. The column “UR” 
in Table G.2 of Appendix G lists whether unresolved resonance probability table data is available 
for each nuclide library.

Sampling cross sections from probability tables is straightforward. At each of a number of incident 
energies there is a table of cumulative probabilities (typically 20) and the value of the near-total, 
elastic, fission, and radiative capture cross sections and heat deposition numbers corresponding to 
those probabilities. These data supplement the usual continuous data; if probability tables are 
turned off (PHYS:N card), then the usual smooth cross section is used. But if the probability tables 
are turned on (default), if they exist for the nuclide of a collision, and if the energy of the collision 
is in the unresolved resonance energy range of the probability tables, then the cross sections are 
sampled from the tables. The near-total is the total of the elastic, fission, and radiative capture cross 
sections; it is not the total cross section, which may include other absorption or inelastic scatter in 
addition to the near-total. The radiative capture cross section is not the same as the usual MCNP 
capture cross section, which is more properly called “destruction” or absorption and includes not 
only radiative capture but all other reactions not emitting a neutron. Sometimes the probability 
tables are provided as factors (multipliers of the average or underlying smooth cross section) which 
adds computational complexity but now includes any structure in the underlying smooth cross 
section.

It is essential to maintain correlations in the random walk when using probability tables to properly 
model resonance self-shielding. Suppose we sample the 17th level (probability) from the table for 
a given collision. This position in the probability table must be maintained for the neutron 
trajectory until the next collision, regardless of particle splitting for variance reduction or surface 
crossings into various other materials whose nuclides may or may not have probability table data. 
Correlation must also be retained in the unresolved energy range when two or more cross-section 
sets for an isotope that utilize probability tables are at different temperatures.

The impact of the probability-table approach has been studied71 and found to have negligible 
impact for most fast and thermal systems.  Small but significant changes in reactivity may be 
observed for plutonium and 233U systems, depending upon the detailed shape of the spectrum.  
However, the probability-table method can produce substantial increases in reactivity for systems 
that include large amounts of 238U and have high fluxes within the unresolved resonance region.  
Calculations for such systems will produce significantly nonconservative results unless the 
probability-table method is employed.
2-56 10/3/05
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D. Photon Interactions

Sampling of a collision nuclide, analog capture, implicit capture, and many other aspects of photon 
interactions such as variance reduction, are the same as for neutrons.  The collision physics are 
completely different.

MCNP has two photon interaction models: simple and detailed.

The simple physics treatment ignores coherent (Thomson) scattering and fluorescent photons from 
photoelectric absorption.  It is intended for high-energy photon problems or problems where 
electrons are free and is also important for next event estimators such as point detectors, where 
scattering can be nearly straight ahead with coherent scatter. The simple physics treatment uses 
implicit capture unless overridden with the CUT:P card, in which case it uses analog capture.

The detailed physics treatment includes coherent (Thomson) scattering and accounts for 
fluorescent photons after photoelectric absorption. Form factors and Compton profiles are used to 
account for electron binding effects. Analog capture is always used.  The detailed physics treatment 
is used below energy EMCPF on the PHYS:P card, and because the default value of EMCPF is 
100 MeV, that means it is almost always used by default. It is the best treatment for most 
applications, particularly for high Z nuclides or deep penetration problems.

The generation of electrons from photons is handled three ways. These three ways are the same for 
both the simple and detailed photon physics treatments. (1) If electron transport is turned on (Mode 
P E), then all photon collisions except coherent scatter can create electrons that are banked for later 
transport. (2) If electron transport is turned off (no E on the Mode card), then a thick-target 
bremsstrahlung model (TTB) is used. This model generates electrons, but assumes that they are 
locally slowed to rest. Any bremsstrahlung photons produced by the nontransported electrons are 
then banked for later transport. Thus electron-induced photons are not neglected, but the expensive 
electron transport step is omitted. (The TTB production model contains many approximations 
compared to models used in actual electron transport.  In particular, the bremsstrahlung photons 
inherit the direction of the parent electron.) (3) If IDES = 1 on the PHYS:P card, then all electron 
production is turned off, no electron-induced photons are created, and all electron energy is 
assumed to be locally deposited.

The TTB approximation is the default for MODE P problems. In MODE P E problems, it plays a 
role when the energy cutoff for electrons is greater than that for photons.  In this case, the TTB 
model is used in the terminal processing of the electrons to account for the few low-energy 
bremsstrahlung photons that would be produced at the end of the electrons’ range.

1. Simple Physics Treatment

The simple physics treatment is intended primarily for higher energy photons. It is inadequate for 
high Z nuclides or deep penetration problems. The physical processes treated are photoelectric 
effect, pair production, Compton scattering from free electrons, and (optionally) photonuclear 
interactions (described on page 2–64). The photoelectric effect is regarded as an absorption 
(without fluorescence). The kinematics of Compton scattering is assumed to be with free electrons 
(without the use of form factors or Compton profiles). The total scattering cross section, however, 
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includes the incoherent scattering factor regardless of the use of simple or detailed physics. Thus, 
strict comparisons with codes using only the Klein-Nishina differential cross section are not valid. 
Highly forward coherent Thomson scattering is ignored. Thus the total cross section σt is regarded 
as the sum of three components:

a. Photoelectric effect: This is treated as a pure absorption by implicit capture with a 
corresponding reduction in the photon weight WGT, and hence does not result in the loss of a 
particle history except for Russian roulette played on the weight cutoff. The noncaptured weight 
WGT(1 − σpe/σt) is then forced to undergo either pair production or Compton scattering. The 
captured weight either is assumed to be locally deposited or becomes a photoelectron for electron 
transport or for the TTB approximation.

b. Pair production: In a collision resulting in pair production [probability σpp/(σt − σpe)], 
either an electron-positron pair is created for further transport (or the TTB treatment) and the 
photon disappears, or it is assumed that the kinetic energy WGT(E − 1.022) MeV of the electron-
positron pair produced is deposited as thermal energy at the time and point of collision, with 
isotropic production of one photon of energy 0.511 MeV headed in one direction and another 
photon of energy 0.511 MeV headed in the opposite direction. The rare single 1.022−MeV 
annihilation photon is ignored. The relatively unimportant triplet production process is also 
ignored. The simple physics treatment for pair production is the same as the detailed physics 
treatment that is described in detail below.

c. Compton scattering: The alternative to pair production is Compton scattering on a free 
electron, with probabilityσs/(σt − σpe). In the event of such a collision, the objective is to determine 
the energy E' of the scattered photon, and  for the angle  of deflection from the line of 
flight. This yields at once the energy  deposited at the point of collision and the new 
direction of the scattered photon. The energy deposited at the point of collision can then be used to 
make a Compton recoil electron for further transport or for the TTB approximation.

The differential cross section for the process is given by the Klein-Nishina formula1

(2.5)

where ro is the classical electron radius , α and  are the incident and final 
photon energies in units of 0.511 MeV , where m is the mass of the electron and c 
is the speed of light], and .

The Compton scattering process is sampled exactly by Kahn's method72 below 1.5 MeV and by 
Koblinger's method73 above 1.5 MeV as analyzed and recommended by Blomquist and Gelbard.74

For next event estimators such as detectors and DXTRAN, the probability density for scattering 
toward the detector point must be calculated:

σt σpe σpp σs ⋅+ +=
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where  is the total Klein-Nishina cross section obtained by integrating K(α,µ) over all 
angles for energy α. This is a difficult integration, so the empirical formula of Hastings2 is used:

,

where η = 1 + .222037a, c1 = 1.651035, c2 = 9.340220, c3 = -8.325004, d1 = 12.501332, 
d2 = -14.200407, and d3 = 1.699075. Thus,

Above 100 MeV, where the Hastings fit is no longer valid, the approximation

is made so that

.

2. Detailed Physics Treatment

The detailed physics treatment includes coherent (Thomson) scattering and accounts for 
fluorescent photons after photoelectric absorption. Again, photonuclear interactions may 
(optionally) be included (see page 2–64). Form factors are used with coherent and incoherent 
scattering to account for electron binding effects. Photo-neutron reactions can also be included for 
select isotopes. Analog capture is always used, as described below under photoelectric effect. The 
detailed physics treatment is used below energy EMCPF on the PHYS:P card, and because the 
default value of EMCPF is 100 MeV, that means it is almost always used by default. It is the best 
treatment for most applications, particularly for high Z nuclides or deep penetration problems.

The detailed physics treatment for next event estimators such as point detectors is inadvisable, as 
explained on page 2–64, unless the NOCOH=1 option is used on the PHYS:P card to turn off 
coherent scattering.

a. Incoherent (Compton) Scattering: To model Compton scattering it is necessary to 
determine the angle θ of scattering from the incident line of flight (and thus the new direction), the 
new energy E  of the photon, and the recoil kinetic energy of the electron, E−E . The recoil kinetic 
energy can be deposited locally, can be transported in Mode P E problems, or (default) can be 
treated with the TTB approximation.
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Incoherent scattering is assumed to have the differential cross section 
, where I(Z,v) is an appropriate scattering factor modifying 

the Klein-Nishina cross section in Eq. (2.2).

Qualitatively, the effect of I(Z,v) is to decrease the Klein-Nishina cross section (per electron) more 
extremely in the forward direction, for low E and for high Z independently. For any Z, I(Z,v) 
increases from  to . The parameter v is the inverse length 

. The maximum 
value of ν is  at µ = −1. The essential features of I(Z,v) are indicated 
in Figure 2-5.  

For hydrogen, an exact expression for the form factor is used:75

,

where f is the inverse fine structure constant, f = 137.0393, and .

The Klein-Nishina formula is sampled exactly by Kahn's method72 below 1.5 MeV and by 
Koblinger's method73 above 1.5 MeV as analyzed and recommended by Blomquist and Gelbard.74 
The outgoing energy E and angle µ are rejected according to the form factors.

For next event estimators such as detectors and DXTRAN, the probability density for scattering 
toward the detector point must be calculated:
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.

where  and σ1(Z, α) and  are looked up in the data library.

The new energy, E', of the photon accounts for the effects of a bound electron. The electron binding 
effect on the scattered photon’s energy distribution appears as a broadening of the energy spectrum 
due to the precollision momentum of the electron. This effect on the energy distribution of the 
incoherently scattered photon is called Doppler broadening.

The Hartree-Fock Compton profiles, J(pz), are used to account for the effects of a bound electron 
on the energy distribution of the scattered photon. These Compton profiles are a collection of 
orbital and total atom data tabulated as a function of the projected precollision momentum of the 
electron. Values of the Compton profiles for the elements are published in tabular form by Biggs, 
et al.37 as a function of pz.

The scattered energy of a Doppler broadened photon can be calculated by selecting an orbital shell, 
sampling the projected momentum from the Compton profile, and calculating the scattered photon 
energy, E', from:

The Compton profiles are related to the incoherent scattering function, I(Z,v) by:

where k refers to the particular electron subshell, is the Compton profile of the kth shell 
for a given element, and is the maximum momentum transferred and is calculated using 
E'=E-Ebinding.

b. Coherent (Thomson) Scattering: Thomson scattering involves no energy loss, and thus 
is the only photon process that cannot produce electrons for further transport and that cannot use 
the TTB approximation.  Only the scattering angle θ is computed, and then the transport of the 
photon continues.

The differential cross section is σ2(Z, α, µ)dµ = C2(Z, v)T(µ)dµ, where C(Z, v) is a form factor 
modifying the energy-independent Thomson cross section .

The general effect of C2(Z, v)/Z2 is to decrease the Thomson cross section more extremely for 
backward scattering, for high E, and low Z. This effect is opposite in these respects to the effect of 
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I(Z,v)/Z on K(α,µ) in incoherent (Compton) scattering. For a given Z, C(Z,v) decreases from 
 to . For example, C(Z, v) is a rapidly decreasing function of µ as µ 

varies from +1 to −1, and therefore the coherent cross section is peaked in the forward direction. 
At high energies of the incoming photon, coherent scattering is strongly forward and can be 
ignored. The parameter v is the inverse length , where 

. The maximum value of v is 
 at µ = −1. The square of the maximum value is 

. The qualitative features of C(Z,v) are shown in Figure 2-6.

For next event estimators, one must evaluate the probability density function 
 for given µ.  Here σ2 (Z,α) is the integrated coherent 

cross section. The value of  at  must be interpolated in the original C2(Z,vi) 
tables separately stored on the cross-section library for this purpose.

Note that at high energies, coherent scattering is virtually straight ahead with no energy loss; thus, 
it appears from a transport viewpoint that no scattering took place. For a point detector to sample 
this scattering, the point must lie on the original track , which is seldom the case. Thus, 
photon point detector variances generally will be much greater with detailed photon physics than 
with simple physics unless coherent scattering is turned off with NOCOH = 1 on the PHYS:P card, 
as explained on page 2–64.

c. Photoelectric effect: The photoelectric effect consists of the absorption of the incident 
photon of energy E, with the consequent emission of several fluorescent photons and the ejection 
(or excitation) of an orbital electron of binding energy e < E, giving the electron a kinetic energy 
of E − e. Zero, one, or two fluorescent photons are emitted. These three cases are now described.

C Z 0,( ) Z= C Z ∞,( ) 0=

υ θ 2⁄( ) λ⁄sin κα 1 µ–= =
κ 10 8– moc h 2( )⁄ 29.1445cm 1–= =
υmax κα 2 41.2166α= =
υmax

2 1698.8038α2=

Figure 2-6
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(1) Zero photons greater than 1 keV are emitted. In this event, the cascade of electrons 
that fills up the orbital vacancy left by the photoelectric ejection produces electrons and low-energy 
photons (Auger effect). These particles can be followed in Mode P E problems, or be treated with 
the TTB approximation, or be assumed to deposit energy locally. Because no photons are emitted 
by fluorescence (some may be produced by electron transport or the TTB model), the photon track 
is terminated. This photoelectric “capture” of the photon is scored like analog capture in the 
summary table of the output file. Implicit capture is not possible.

(2) One fluorescent photon of energy greater than 1 keV is emitted. The photon energy 
 is the difference in incident photon energy E, less the ejected electron kinetic energy E−e, less 

a residual excitation energy  that is ultimately dissipated by further Auger processes. This 
dissipation leads to additional electrons or photons of still lower energy. The ejected electron and 
any Auger electrons can be transported or treated with the TTB approximation. In general,

.

These primary transactions are taken to have the full fluorescent yield from all possible upper 
levels , but are apportioned among the x−ray lines Kα1, , 
(mean ); and , (mean ).

(3) Two fluorescence photons can occur if the residual excitation  of process (2) 
exceeds 1 keV. An electron of binding energy  can fill the orbit of binding energy , emitting 
a second fluorescent photon of energy . As before, the residual excitation  is 
dissipated by further Auger events and electron production that can be modeled with electron 
transport in Mode P E calculations, approximated with the TTB model, or assumed to deposit all 
energy locally. These secondary transitions come from all upper shells and go to L shells.  Thus the 
primary transitions must be Kα1 or Kα2 to leave an L shell vacancy.

Each fluorescent photon born as discussed above is assumed to be emitted isotropically and can be 
transported, provided that , . The binding energies e, , and  are very nearly the 
x−ray absorption edges because the x−ray absorption cross section takes an abrupt jump as it 
becomes energetically possible to eject (or excite) the electron of energy first , then , then 
e, etc. The jump can be as much as a factor of 20 (for example, K-carbon).

A photoelectric event is terminal for elements Z < 12 because the possible fluorescence energy is 
below 1 keV. The event is only a single fluorescence of energy above 1 keV for , but 
double fluorescence (each above 1 keV) is possible for . For , primary lines Kα1, 
Kα2, and  are possible and, in addition, for , the line is possible. 

In all photoelectric cases where the photon track is terminated because either no fluorescent 
photons are emitted or the ones emitted are below the energy cutoff, the termination is considered 
to be caused by analog capture in the output file summary table (and not energy cutoff).

d. Pair Production: This process is considered only in the field of a nucleus. The threshold 
is  MeV, where M is the nuclear mass and m is the mass of the electron. 
There are three cases:

E′
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(1) In the case of electron transport (Mode P E), the electron and positron are created 
and banked and the photon track terminates.

(2) For Mode P problems with the TTB approximation, both an electron and positron 
are produced but not transported. Both particles can make TTB approximation photons. The 
positron is then considered to be annihilated locally and a photon pair is created as in case (3).

(3) For Mode P problems when positrons are not created by the TTB approximation, 
the incident photon of energy E vanishes. The kinetic energy of the created positron/electron pair, 
assumed to be E − 2mc2, is deposited locally at the collision point. The positron is considered to be 
annihilated with an electron at the point of collision, resulting in a pair of photons, each with the 
incoming photon weight, and each with an energy of mc2 = 0.511 MeV. The first photon is emitted 
isotropically, and the second is emitted in the opposite direction. The very rare single-annihilation 
photon of 1.022 MeV is ignored.

e. Caution for detectors and coherent scattering: The use of the detailed photon physics 
treatment is not recommended for photon next event estimators (such as point detectors and ring 
detectors) nor for DXTRAN, unless coherent scatter is turned off with the NOCOH = 1 option on 
the PHYS:P card.  Alternatively, the simple physics treatment (EMCPF < .001 on the PHYS:P 
card) can be used. Turning off coherent scattering can improve the figure of merit (see page 2–116) 
by more than a factor of 10 for tallies with small relative errors because coherent scattering is 
highly peaked in the forward direction.  Consequently, coherent scattering becomes undersampled 
because the photon must be traveling directly at the detector point and undergo a coherent 
scattering event. When the photon is traveling nearly in the direction of the point detector or the 
chosen point on a ring detector or DXTRAN sphere, the PSC term, p(µ), of the point detector 
(see page 2–91) becomes very large, causing a huge score for the event and severely affecting the 
tally. Remember that p(µ) is not a probability (that can be no larger than unity); it is a probability 
density function (the derivative of the probability) and can approach infinity for highly forward-
peaked scattering.  Thus the undersampled coherent scattering event is characterized by many low 
scores to the detector when the photon trajectory is away from the detector (p(µ) = small) and a 
very few, very large scores (p(µ) = huge) when the trajectory is nearly aimed at the detector. Such 
undersampled events cause a sudden increase in both the tally and the variance, a sudden drop in 
the figure of merit, and a failure to pass the statistical checks for the tally as described on 
page 2–129.

3. Photonuclear Physics Treatment

New in MCNP5, photonuclear physics may be included when handling a photon collision. A 
photonuclear interaction begins with the absorption of a photon by a nucleus. There are several 
mechanisms by which this can occur. The nuclear data files currently available focus on the energy 
range up to 150 MeV incident photon energy. The value of 150 MeV was chosen as this energy is 
just below the threshold for the production of pions and the subsequent need for much more 
complicated nuclear modeling. Below 150 MeV, the primary mechanisms for photoabsorption are 
the excitation of either the giant dipole resonance or a quasi-deuteron nucleon pair.

The giant dipole resonance (GDR) absorption mechanism can be conceptualized as the 
electromagnetic wave, the photon, interacting with the dipole moment of the nucleus as a whole. 
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This results in a collective excitation of the nucleus. It is the most likely process (that is, the largest 
cross section) by which photons interact with the nucleus. (Expected peak cross sections of 6-10 
millibarns are seen for the light isotopes and 600-800 millibarns are not uncommon for the heavy 
elements. Thus, photonuclear collisions may account for a theoretical maximum of 5-6% of the 
photon collisions.) The GDR occurs with highest probability when the wavelength of the photon 
is comparable to the size of the nucleus. This typically occurs for photon energies in the range of 
5-20 MeV and has a resonance width of a few MeV. For deformed nuclei, a double peak is seen 
due to the variation of the nuclear radius. Outside of this resonance region, the cross section for a 
GDR reaction becomes negligible. A more complete description of this process can be found in the 
text by Bohr and Mottelson.61

The quasi-deuteron (QD) absorption mechanism can be conceptualized as the electromagnetic 
wave interacting with the dipole moment of a correlated neutron-proton pair. In this case, the 
neutron-proton pair can be thought of as a QD having a dipole moment with which the photon can 
interact. This mechanism is not as intense as the GDR but it provides a significant background 
cross section for all incident photon energies above the relevant particle separation threshold. The 
seminal work describing this process was published by Levinger.62,63 Recent efforts to model this 
process include the work of Chadwick et al.64

Once the photon has been absorbed by the nucleus, one or more secondary particle emissions can 
occur. For the energy range in question (that is, below 150 MeV) these reactions may produce a 
combination of gamma-rays, neutrons, protons, deuterons, tritons, helium-3 particles, alphas, and 
fission fragments. The threshold for the production of a given secondary particle is governed by 
the separation energy of that particle, typically a few MeV to as much as a few 10s of MeV. Most 
of the these particles are emitted via pre-equilibrium and equilibrium mechanisms though it is 
possible, but rare, to have a direct emission.

Pre-equilibrium emission can be conceptualized as a particle within the nucleus that receives a 
large amount of energy from the absorption mechanism and escapes the binding force of the 
nucleus after at least one but very few interactions with other nuclei. (This is in contrast to a direct 
emission where the emission particle escapes the nucleus without any interactions.) Typically this 
occurs from QD absorption of the photon where the incident energy is initially split between the 
neutron-proton pair. Particles emitted by this process tend to be characterized by higher emission 
energies and forward-peaked angular distributions.

Equilibrium emission can be conceptualized as particle evaporation. This process typically occurs 
after the available energy has been generally distributed among the nucleons. In the classical sense, 
particles boil out of the nucleus as they penetrate the nuclear potential barrier. The barrier may 
contain contributions from coulomb potential (for charged particles) and effects of angular 
momentum conservation. It should be noted that for heavy elements, evaporation neutrons are 
emitted preferentially as they are not subject to the coulomb barrier. Particles emitted by this 
process tend to be characterized by isotropic angular emission and evaporation energy spectra. 
Several references are available on the general emission process after photoabsorption.65,66,67

For all of the emission reactions discussed thus far, the nucleus will most probably be left in an 
excited state. It will subsequently relax to the ground state by the emission of one or more gamma-
rays. The gamma-ray energies follow the well known patterns for relaxation. The only reactions 
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that do not produce gamma-rays are direct reactions where the photon is absorbed and all available 
energy is transferred to a single emission particle leaving the nucleus in the ground state.

Reactions at higher energies (above the pion production threshold) require more complete 
descriptions of the underlying nuclear physics. The delta resonance and other absorption 
mechanisms become significant and the amount of energy involved in the reaction presents the 
opportunity for the production of more fundamental particles. While beyond the scope of this 
current work, descriptions of the relevant physics may be found in the paper by Fasso et al.68

New photonuclear data tables are used to extend the traditional photon collision routines. Because 
of the sparsity of photonuclear data, the user is allowed to toggle photonuclear physics on or off 
(with the fourth entry on the PHYS:p card) and the code defaults to off. Once turned on, the total 
photon cross section, photoatomic plus photonuclear (i.e. the photonuclear cross section is absent 
from this calculation when photonuclear physics is off), is used to determine the distance to the 
next photon collision. For simple physics, this implies the sum of the photoelectric, pair 
production, incoherent and photonuclear cross sections. Detailed physics includes the additional 
coherent cross section in this sum.

The toggle for turning on and off photonuclear physics is also used to select biased or unbiased 
photonuclear collisions. For the unbiased option, the type of collision is sampled as either 
photonuclear or photoatomic based on the ratio of the partial cross sections. The biased option is 
similar to forced collisions. At the collision site, the particle is split into two parts, one forced to 
undergo photoatomic interaction and the other photonuclear. The weight of each particle is 
adjusted by the ratio of their actual collision probability. The photoatomic sampling routines 
(as described in sections 1 and 2 above) are used to sample the emission characteristics for 
secondary electrons and photons from a photoatomic collision. The emission characteristics for 
secondary particles from photonuclear collisions are handled independently.

Once it has been determined that a photon will undergo a photonuclear collision, the emission 
particles are sampled as follows. First, the appropriate collision isotope is selected based on the 
ratio of the total photonuclear cross section from each relevant table. Note that photoatomic 
collisions are sampled from a set of elemental tables whereas photonuclear collisions are sampled 
from a set of isotopic tables. Next, the code computes the ratio of the production cross section to 
the total cross section for each secondary particle undergoing transport. Based on this ratio, an 
integer number of emission particles are sampled. If weight games (i.e. weight cut-offs or weight 
windows) are being used, these secondary particles are subjected to splitting or roulette to ensure 
that the sampled particles will be of an appropriate weight. The emission parameters for each 
secondary particle are then sampled independently from the reaction laws provided in the data. 
Last, tallies and summary information are appropriately updated, applicable variance reduction 
games are performed, and the emitted particle is banked for further transport.

Note that photonuclear physics was implemented in the traditional Monte Carlo style as a purely 
statistical based process. This means that photons undergoing a photonuclear interaction produce 
an average number of emission particles. For multiple particle emission, the particles may not be 
sampled from the same reaction; for example, if two neutrons are sampled, one may be from the 
(g,2n) distributions and the second from the (g,np) distributions. (Note that the photonuclear data 
use the same energy/angle distributions that have been used for neutrons and the same internal 
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coding for sampling. See “Nonfission Inelastic Scattering and Emission Laws” on page 2–41) This 
generalized particle production method is statistically correct for large sampling populations and 
lends itself to uncomplicated biasing schemes. It is (obviously) not microscopically correct. (It is 
not possible to perform microscopically correct sampling given the current set of data tables.)

Because of the low probability of a photon undergoing a photonuclear interaction, the use of biased 
photonuclear collisions may be necessary. However, caution should be exercised when using this 
option as it can lead to large variations in particle weights. It is important to check the summary 
tables to determine if appropriate weight cutoff or weight windows have been set. That is, check to 
see if weight cutoffs or weight windows are causing more particle  creation and destruction than 
expected. It is almost always necessary to adjust the default neutron weight cutoff (when using only 
weight cutoffs with photonuclear biasing) as it will roulette a large fraction of the attempts to create 
secondary photoneutrons.

More information about the photonuclear physics included in MCNP can be found in White.69,70 

E. Electron Interactions

The transport of electrons and other charged particles is fundamentally different from that of 
neutrons and photons.  The interaction of neutral particles is characterized by relatively infrequent 
isolated collisions, with simple free flight between collisions. By contrast, the transport of electrons 
is dominated by the long-range Coulomb force, resulting in large numbers of small interactions. As 
an example, a neutron in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 
30 collisions, while a photon in the same circumstances will experience fewer than ten. An electron 
accomplishing the same energy loss will undergo about 105 individual interactions. This great 
increase in computational complexity makes a single-collision Monte Carlo approach to electron 
transport unfeasible for most situations of practical interest.

Considerable theoretical work has been done to develop a variety of analytic and semi-analytic 
multiple-scattering theories for the transport of charged particles. These theories attempt to use the 
fundamental cross sections and the statistical nature of the transport process to predict probability 
distributions for significant quantities, such as energy loss and angular deflection. The most 
important of these theories for the algorithms in MCNP are the Goudsmit-Saunderson76 theory for 
angular deflections, the Landau77 theory of energy-loss fluctuations, and the Blunck-Leisegang78 
enhancements of the Landau theory. These theories rely on a variety of approximations that restrict 
their applicability, so that they cannot solve the entire transport problem. In particular, it is assumed 
that the energy loss is small compared to the kinetic energy of the electron.

In order to follow an electron through a significant energy loss, it is necessary to break the 
electron's path into many steps. These steps are chosen to be long enough to encompass many 
collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss 
in any one step is small (so that the approximations necessary for the multiple-scattering theories 
are satisfied). The energy loss and angular deflection of the electron during each of the steps can 
then be sampled from probability distributions based on the appropriate multiple-scattering 
theories. This accumulation of the effects of many individual collisions into single steps that are 
sampled probabilistically constitutes the “condensed history” Monte Carlo method.
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The most influential reference for the condensed history method is the 1963 paper by Martin J. 
Berger.79 Based on the techniques described in that work, Berger and Stephen M. Seltzer developed 
the ETRAN series of electron/photon transport codes.80 These codes have been maintained and 
enhanced for many years at the National Bureau of Standards (now the National Institute of 
Standards and Technology). The ETRAN codes are also the basis for the Integrated TIGER 
Series,81 a system of general-purpose, application-oriented electron/photon transport codes 
developed and maintained by John A. Halbleib and his collaborators at Sandia National 
Laboratories in Albuquerque, New Mexico.  The electron physics in MCNP is essentially that of 
the Integrated TIGER Series, Version 3.0.  The ITS radiative and collisional stopping power and 
bremsstrahlung production models were integrated into MCNP 4C.

1. Electron Steps and Substeps

The condensed random walk for electrons can be considered in terms of a sequence of sets of 
values

(0,E0,t0,u0,r0), (s1,E1,t1,u1,r1), (s2,E2,t2,u2,r2), ...

where sn, En, tn, un, and rn are the total path length, energy, time, direction, and position of the 
electron at the end of n steps. On the average, the energy and path length are related by

, (2.6)

where −dE/ds is the total stopping power in energy per unit length. This quantity depends on energy 
and on the material in which the electron is moving. ETRAN-based codes customarily choose the 
sequence of path lengths {sn} such that

, (2.7)

for a constant k. The most commonly used value is k = 2−1/8, which results in an average energy 
loss per step of 8.3%.

Electron steps with (energy-dependent) path lengths s = sn − sn-1 determined by Eqs. 2.3-2.4 are 
called major steps or energy steps. The condensed random walk for electrons is structured in terms 
of these energy steps. For example, all precalculated and tabulated data for electrons are stored on 
an energy grid whose consecutive energy values obey the ratio in Eq. 2.4.  In addition, the Landau 
and Blunck-Leisegang theories for energy straggling are applied once per energy step. (But see 
page 2–74 below for a more detailed option.) For a single step, the angular scattering could also be 
calculated with satisfactory accuracy, since the Goudsmit-Saunderson theory is valid for arbitrary 
angular deflections. However, the representation of the electron's trajectory as the result of many 
small steps will be more accurate if the angular deflections are also required to be small. Therefore, 
the ETRAN codes and MCNP further break the electron steps into smaller substeps. A major step 
of path length s is divided into m substeps, each of path length s/m. Angular deflections and the 
production of secondary particles are sampled at the level of these substeps. The integer m depends 

En 1– En–
sn 1–

sn

∫–= dE
ds
-------ds

En
En 1–
------------ k=
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only on material (average atomic number Z). Appropriate values for m have been determined 
empirically, and range from m = 2 for Z < 6 to m = 15 for Z > 91.

In some circumstances, it may be desirable to increase the value of m for a given material.  In 
particular, a very small material region  may not accommodate enough substeps for an accurate 
simulation of the electron's trajectory. In such cases, the user can increase the value of m with the 
ESTEP option on the material card. The user can gain some insight into the selection of m by 
consulting Print Table 85 in the MCNP output. Among other information, this table presents a 
quantity called DRANGE as a function of energy. DRANGE is the size of an energy step in 
g/cm2. Therefore, DRANGE/m is the size of a substep in the same units, and if ρ is the material 
density in g/cm3, then DRANGE/(mρ) is the length of a substep in cm. This quantity can be 
compared with the smallest dimension of a material region. A reasonable rule of thumb is that an 
electron should make at least ten substeps in any material of importance to the transport problem.

2. Condensed Random Walk

In the initiation phase of a transport calculation involving electrons, all relevant data are either 
precalculated or read from the electron data file and processed. These data include the electron 
energy grid, stopping powers, electron ranges, energy step ranges, substep lengths, and probability 
distributions for angular deflections and the production of secondary particles. Although the 
energy grid and electron steps are selected according to Eqs. 2.3-2.4, energy straggling, the analog 
production of bremsstrahlung, and the intervention of geometric boundaries and the problem time 
cutoff will cause the electron’s energy to depart from a simple sequence sn satisfying Eq. 2.4. 
Therefore, the necessary parameters for sampling the random walk will be interpolated from the 
points on the energy grid.

At the beginning of each major step, the collisional energy loss rate is sampled (unless the logic 
described on page 2–74 is being used).  In the absence of energy straggling, this will be a simple 
average value based on the nonradiative stopping power described in the next section. In general, 
however, fluctuations in the energy loss rate will occur. The number of substeps m per energy step 
will have been preset, either from the empirically-determined default values, or by the user, based 
on geometric considerations.  At most m substeps will be taken in the current major step with the 
current value for the energy loss rate. The number of substeps may be reduced if the electron's 
energy falls below the boundary of the current major step, or if the electron reaches a geometric 
boundary. In these circumstances, or upon the completion of m substeps, a new major step is begun, 
and the energy loss rate is resampled.

With the possible exception of the energy loss and straggling calculations, the detailed simulation 
of the electron history takes place in the sampling of the substeps. The Goudsmit-Saunderson76 
theory is used to sample from the distribution of angular deflections, so that the direction of the 
electron can change at the end of each substep. Based on the current energy loss rate and the 
substep length, the projected energy for the electron at the end of the substep is calculated. Finally, 
appropriate probability distributions are sampled for the production of secondary particles. These 
include electron-induced fluorescent X−rays, “knock-on” electrons (from electron-impact 
ionization), and bremsstrahlung photons.
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Note that the length of the substep ultimately derives from the total stopping power used in Eq. 2.3, 
but the projected energy loss for the substep is based on the nonradiative stopping power. The 
reason for this difference is that the sampling of bremsstrahlung photons is treated as an essentially 
analog process. When a bremsstrahlung photon is generated during a substep, the photon energy is 
subtracted from the projected electron energy at the end of the substep.  Thus the radiative energy 
loss is explicitly taken into account, in contrast to the collisional (nonradiative) energy loss, which 
is treated probabilistically and is not correlated with the energetics of the substep. Two biasing 
techniques are available to modify the sampling of bremsstrahlung photons for subsequent 
transport. However, these biasing methods do not alter the linkage between the analog 
bremsstrahlung energy and the energetics of the substep.

MCNP uses identical physics for the transport of electrons and positrons, but distinguishes between 
them for tallying purposes, and for terminal processing. Electron and positron tracks are subject to 
the usual collection of terminal conditions, including escape (entering a region of zero importance), 
loss to time cutoff, loss to a variety of variance-reduction processes, and loss to energy cutoff. The 
case of energy cutoff requires special processing for positrons, which will annihilate at rest to 
produce two photons, each with energy m c2 = 0.511008 MeV.

3. Stopping Power

a. Collisional Stopping Power

Berger79 gives the restricted electron collisional stopping power, i.e., the energy loss per unit path 
length to collisions resulting in fractional energy transfers ε less than an arbitrary maximum value 
εm, in the form

, (2.8)

where

 (2.9)

+ .

Here ε and εm represent energy transfers as fractions of the electron kinetic energy E; I is the mean 
ionization potential in the same units as E; β is v/c; τ is the electron kinetic energy in units of the 
electron rest mass; δ is the density effect correction (related to the polarization of the medium); 
Z is the average atomic number of the medium; N is the atom density of the medium in cm−3; and 
the coefficient C is given by

, (2.10)
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where m, e, and v are the rest mass, charge, and speed of the electron, respectively. The density 
effect correction δ is calculated using the prescriptions of Sternheimer, Berger and Seltzer82 when 
using data from the el03 library and using the method of Sternheimer and Peierls83 when using data 
from the el library. 

The ETRAN codes and MCNP do not make use of restricted stopping powers, but rather treat all 
collisional events in an uncorrelated, probabilistic way. Thus, only the total energy loss to 
collisions is needed, and Eqs. 2.5−2.6 can be evaluated for the special value εm = 1/2. The reason 
for the 1/2 is the indistinguishability of the two outgoing electrons.  The electron with the larger 
energy is, by definition, the primary. Therefore, only the range ε< 1/2 is of interest. With εm = 1/2, 
Eq. 2.6 becomes

. (2.11)

On the right side of Eq. 2.5, we can express both E and I in units of the electron rest mass. Then E 
can be replaced by τ on the right side of the equation. We also introduce supplementary constants

(2.12)

so that Eq. 2.5 becomes

(2.13)

This is the collisional energy loss rate in MeV/cm in a particular medium. In MCNP, we are 
actually interested in the energy loss rate in units of MeV barns (so that different cells containing 
the same material need not have the same density). Therefore, we divide Eq. 2.10 by N and 
multiply by the conversion factor 1024 barns/cm2. We also use the definition of the fine structure 
constant

,

where h is Planck's constant, to eliminate the electronic charge e from Eq. 2.10. The result is as 
follows:

(2.14)
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This is the form actually used in MCNP to preset the collisional stopping powers at the energy 
boundaries of the major energy steps.

The mean ionization potential and density effect correction depend upon the state of the material, 
either gas or solid. In the fit of Sternheimer and Peierls83 the physical state of the material also 
modifies the density effect calculation. In the Sternheimer, Berger and Seltzer82 treatment, the 
calculation of the density effect uses the conduction state of the material to determine the 
contribution of the outermost conduction electron to the ionization potential. The occupation 
numbers and atomic binding energies used in the calculation are from Carlson.84

b. Radiative Stopping Power

The radiative stopping power is 

where  is the scaled electron-nucleus radiative energy-loss cross section based upon 
evaluations by Berger and Seltzer for data from either the el or the el03 library (details of the 
numerical values of the data on the el03 library can be found in Refs. 85, 86, and 87;  is a 
parameter to account for the effect of electron-electron bremsstrahlung (it is unity when using data 
from the el library and, when using data from the el03 library, it is based upon the work of S. Seltzer 
and M. Berger85,86,87 and can be different from unity); α is the fine structure constant; mc2 is the 
mass energy of an electron; and re is the classical electron radius. The dimensions of the radiative 
stopping power are the same as the collisional stopping power.

4. Energy Straggling

Because an energy step represents the cumulative effect of many individual random collisions, 
fluctuations in the energy loss rate will occur. Thus the energy loss will not be a simple average ; 
rather there will be a probability distribution f(s,∆) d∆ from which the energy loss ∆ for the step of 
length s can be sampled. Landau77 studied this situation under the simplifying assumptions that the 
mean energy loss for a step is small compared with the electron’s energy, that the energy parameter 
ξ defined below is large compared with the mean excitation energy of the medium, that the energy 
loss can be adequately computed from the Rutherford88 cross section, and that the formal upper 
limit of energy loss can be extended to infinity. With these simplifications, Landau found that the 
energy loss distribution can be expressed as

in terms of , a universal function of a single scaled variable
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Here m and v are the mass and speed of the electron, δ is the density effect correction, β is v/c, 
I is the mean excitation energy of the medium, and γ is Euler’s constant . The 
parameter ξ is defined by

where e is the charge of the electron and N Z is the number density of atomic electrons, and the 
universal function is

where x is a positive real number specifying the line of integration.

For purposes of sampling,  is negligible for , so that this range is ignored. B rsch - 
Supan89 originally tabulated  in the range , and derived for the range  
the asymptotic form

in terms of the auxiliary variable w, where

.

Recent extensions90 of B rsch-Supan's tabulation have provided a representation of the function 
in the range  in the form of five thousand equally probable bins in λ. In MCNP, the 
boundaries of these bins are saved in the array eqlm(mlam), where mlam = 5001.  Sampling from this 
tabular distribution accounts for approximately 98.96% of the cumulative probability for . 
For the remaining large-λ tail of the distribution, MCNP uses the approximate form , 
which is easier to sample than (w2 + π 2 )−1, but is still quite accurate for λ > 100.

Blunck and Leisegang78 have extended Landau’s result to include the second moment of the 
expansion of the cross section. Their result can be expressed as a convolution of Landau's 
distribution with a Gaussian distribution:

.

Blunck and Westphal91 provided a simple form for the variance of the Gaussian:

.
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Subsequently, Chechin and Ermilova92 investigated the Landau/Blunck-Leisegang theory, and 
derived an estimate for the relative error

caused by the neglect of higher-order moments. Based on this work, Seltzer93 describes and 
recommends a correction to the Blunck-Westphal variance:

.

This value for the variance of the Gaussian is used in MCNP.

Examination of the asymptotic form for  shows that unrestricted sampling of λ will not result 
in a finite mean energy loss. Therefore, a material− and energy−dependent cutoff λc is imposed on 
the sampling of λ. In the initiation phase of an MCNP calculation, the code makes use of two preset 
arrays, flam(mlanc) and avlm(mlanc), with mlanc = 1591. The array flam contains candidate values for 
λc in the range ; the array avlm contains the corresponding expected mean values 
for the sampling of λ. For each material and electron energy, the code uses the known mean 
collisional energy loss , interpolating in this tabular function to select a suitable value for λc, 
which is then stored in the dynamically-allocated array flc. During the transport phase of the 
calculation, the value of flc applicable to the current material and electron energy is used as an 
upper limit, and any sampled value of λ greater than the limit is rejected. In this way, the correct 
mean energy loss is preserved.

5. Logic for Sampling Energy Straggling

The Landau theory described in the previous section provides an energy-loss distribution 
determined by the energy E of the electron, the path-length s to be traversed, and the properties of 
the material. Let us symbolize a sampling of this distribution as an application of a straggling 
operator  that provides a sampled value of the energy loss . In versions of MCNP 
earlier than MCNP5, release 1.40, all parameters needed for sampling straggling were 
precomputed and associated with the standard energy boundaries En and the corresponding ranges 
sn. In effect the code was restricted to calculations based on discrete arguments of the operator 

. As a result, the proper assignment of an electron transport step to an energy group 
n required a rather subtle logic. Eventually, two algorithms for apportioning straggled energy loss 
to electron substeps were made available. With release 1.40, a third algorithm is provided, as 
discussed below.

a. MCNP Energy Indexing Algorithm

The first energy indexing algorithm (also called the "bin-centered" treatment) developed for 
MCNP is arguably the less successful of the two existing algorithms, but for historical reasons 
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remains the default option.  It was an attempt to keep the electron substeps aligned as closely as 
possible with the energy groups that were used for their straggling samples.  A simplified 
description of the MCNP algorithm is as follows.  An electron of energy E is assigned to the group 
n such that .  A straggled energy loss   is sampled from .  The 
electron attempts to traverse m substeps, each of which is assigned the energy loss /m. If m 
substeps are completed, the process starts over with the assignment of a new energy group.  
However, if the electron crosses a cell boundary, or if the electron energy falls below the current 
group, the loop over m is abandoned, even if fewer than m substeps have been completed, and the 
energy group is reassigned.

Since the straggling parameters are pre-computed at the midpoints of the energy groups, this 
algorithm does succeed in assigning to each substep a straggled energy loss based on parameters 
that are as close as possible to the beginning energy of the substep.  However, there are two 
problems with the current MCNP approach.  First, there is a high probability that the electron will 
not actually complete the expected range sn for which the energy loss was sampled, in which case 
the energy loss relies on a linear interpolation in a theory that is clearly nonlinear.  Second, the final 
substep of each sequence using the sampled energy loss from will frequently fall 
partially in the next-lower energy group n + 1, but no substep using the sample from 

will ever be partially in the higher group .  This results in a small, but 
potentially significant systematic error.  (See for example the investigations of Schaart et al. 94 and 
references therein.)

b. ITS Energy Indexing Algorithm

Developed for the ITS codes earlier than the MCNP algorithm, this method (also called the 
"nearest-group-boundary" treatment) was added to the MCNP code in order to explore some of the 
energy-dependent artifacts of the condensed history approach, and in order to offer more 
consistency with the TIGER Series codes.  This algorithm differs from the default treatment in two 
ways.  First, the electron is initially assigned to a group n such that

 .  

In other words, the electron is assigned to the group whose upper limit is closest to the electron’s 
energy.  Second, although the electron will be reassigned when it enters a new geometric cell, it 
will not be reassigned merely for falling out of the current energy group.  These differences serve 
to reduce the number of times that unwanted imposition of linear interpolation on partial steps 
occurs, and to allow more equal numbers of excursions above and below the energy group from 
which the Landau sampling was made.  As Ref. 94 shows, these advantages make the ITS 
algorithm a more accurate representation of the energy loss process, as indicated in comparisons 
with reference calculations and experiments.  Nevertheless, although the reliance on linear 
interpolation and the systematic errors are reduced, neither is completely eliminated.  It is 
straightforward to create example calculations that show unphysical artifacts in the ITS algorithm 
as well as in the MCNP logic.
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The "nearest-group-boundary" treatment is selected by setting the 18th entry of the DBCN card 
to 1.  For example, the card "DBCN  17J  1" selects this straggling logic without affecting any of 
the other DBCN options.

c. New Energy- and Step-Specific Method

It is easy to express what we would like to see in the straggling logic. For an electron with energy 
E about to traverse a step of length s, we would like to sample the straggling from the operator      

without regard to the prearranged energy boundaries En. In the MCNP5 RSICC release 
1.40, we have now brought this situation about. A new Fortran 90 module has been installed to deal 
with straggling data. Those parameters that are separate from the individual straggling events are 
still precomputed, but each electron transport step can now sample its energy loss separately from 
adjacent steps, and specifically for its current energy and planned step length. Using this approach, 
we largely eliminate the linear interpolations and energy misalignments of the earlier algorithms 
and obviate the need for a choice of energy group. At the time of the MCNP5 1.40 release, the new 
straggling logic is included in the code, but is still being tested. Preliminary results95 indicate that 
a more accurate and stable estimate of the straggling is obtained, and a variety of unphysical 
artifacts are eliminated.

The new logic is selected by setting the 18th entry of the DBCN card to 2, for example with the 
card "DBCN  17J  2".

6. Angular Deflections

The ETRAN codes and MCNP rely on the Goudsmit-Saunderson76 theory for the probability 
distribution of angular deflections. The angular deflection of the electron is sampled once per 
substep according to the distribution

,

where s is the length of the substep,  is the angular deflection from the direction at the 
beginning of the substep, Pl(µ) is the lth Legendre polynomial, and Gl is

,

in terms of the microscopic cross section , and the atom density N of the medium. 

For electrons with energies below 0.256 MeV, the microscopic cross section is taken from 
numerical tabulations developed from the work of Riley.96 For higher-energy electrons, the 
microscopic cross section is approximated as a combination of the Mott97 and Rutherford88 cross 
sections, with a screening correction.  Seltzer80 presents this “factored cross section” in the form
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,

where e, p, and v are the charge, momentum, and speed of the electron, respectively. The screening 
correction  was originally given by Molière98 as

,

where α is the fine structure constant, m is the rest mass of the electron, and β = v/c. MCNP now 
follows the recommendation of Seltzer,80 and the implementation in the Integrated TIGER Series, 
by using the slightly modified form

,

where τ is the electron energy in units of electron rest mass. The multiplicative factor in the final 
term is an empirical correction which improves the agreement at low energies between the factored 
cross section and the more accurate partial-wave cross sections of Riley.

7. Bremsstrahlung

When using data from the el library, for the sampling of bremsstrahlung photons, MCNP relies 
primarily on the Bethe-Heitler99 Born-approximation results that have been used until rather 
recently85 in ETRAN. A comprehensive review of bremsstrahlung formulas and approximations 
relevant to the present level of the theory in MCNP can be found in the paper of Koch and Motz.100 
Particular prescriptions appropriate to Monte Carlo calculations have been developed by Berger 
and Seltzer.101 For the ETRAN-based codes, this body of data has been converted to tables 
including bremsstrahlung production probabilities, photon energy distributions, and photon 
angular distributions.

For data tables on the el03 library, the production cross section for bremsstrahlung photons and 
energy spectra are from the evaluation by Seltzer and Berger.85,86,87 We summarize the salient 
features of the evaluation below; more details can be found in the evaluators’ documentation. The 
evaluation uses detailed calculations of the electron-nucleus bremsstrahlung cross section for 
electrons with energies below 2 MeV and above 50 MeV. The evaluation below 2 MeV uses the 
results of Pratt, Tseng, and collaborators, based on numerical phase-shift calculations.102,103,104 
For 50 MeV and above, the analytical theory of Davies, Bethe, Maximom, and Olsen105 is used 
and is supplemented by the Elwert Coulomb106 correction factor and the theory of the high-
frequency limit or tip region given by Jabbur and Pratt.107 Screening effects are accounted for by 
the use of Hartree-Fock atomic form factors.108 The values between these firmly grounded 
theoretical limits are found by a cubic-spline interpolation as described in Refs. 85 and 86. Seltzer 
reports good agreement between interpolated values and those calculated by Tseng and Pratt109 for 
5 and 10 MeV electrons in aluminum and uranium. Electron-electron bremsstrahlung is also 
included in the cross-section evaluation based on the theory of Haug110 with screening corrections 
derived from Hartree-Fock incoherent scattering factors.108 The energy spectra for the 
bremsstrahlung photons are provided in the evaluation. No major changes were made to the tabular 
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angular distributions, which are internally calculated when using the el library, except to make finer 
energy bins over which the distribution is calculated.

MCNP addresses the sampling of bremsstrahlung photons at each electron substep. The tables of 
production probabilities are used to determine whether a bremsstrahlung photon will be created. 
For data from the el03 library, the bremsstrahlung production is sampled according to a Poisson 
distribution along the step so that none, one or more photons could be produced; the el library 
allows for either none or one bremsstrahlung photon in a substep. If a photon is produced, the new 
photon energy is sampled from the energy distribution tables. By default, the angular deflection of 
the photon from the direction of the electron is also sampled from the tabular data. The direction 
of the electron is unaffected by the generation of the photon because the angular deflection of the 
electron is controlled by the multiple scattering theory.  However, the energy of the electron at the 
end of the substep is reduced by the energy of the sampled photon because the treatment of electron 
energy loss, with or without straggling, is based only on nonradiative processes.

There is an alternative to the use of tabular data for the angular distribution of bremsstrahlung 
photons. If the fourth entry on the PHYS:E card is 1, then the simple, material-independent 
probability distribution

, (2.15)

where  and β = v/c, will be used to sample for the angle of the photon relative to the 
direction of the electron according to the formula

,

where ξ is a random number. This sampling method is of interest only in the context of detectors 
and DXTRAN spheres. A set of source contribution probabilities p(µ) consistent with the tabular 
data is not available. Therefore, detector and DXTRAN source contributions are made using 
Eq. 2.12. Specifying that the generation of bremsstrahlung photons rely on Eq. 2.12 allows the user 
to force the actual transport to be consistent with the source contributions to detectors and 
DXTRAN.

8. K-shell Electron Impact Ionization and Auger Transitions

Date tables on the el03 library use the same K-shell impact ionization calculation (based upon 
ITS1.0) as data tables on the el library, except for how the emission of relaxation photons is treated; 
the el03 evaluation model has been modified to be consistent with the photo-ionization relaxation 
model. In the el evaluation, a K-shell impact ionization event generated a photon with the average 
K-shell energy. The el03 evaluation generates photons with energies given by Everett and 
Cashwell.34 Both el03 and el treatments only take into account the highest Z component of a 
material. Thus inclusion of trace high Z impurities could mask K-shell impact ionization from 
other dominant components.

Auger transitions are handled the same for data tables from the el03 and el libraries. If an atom has 
undergone an ionizing transition and can undergo a relaxation, if it does not emit a photon it will 
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emit an Auger electron. The difference between el and el03 is the energy with which an Auger 
electron is emitted, given by  or  for el or el03, respectively. The 
el value is that of the highest energy Auger electron while the el03 value is the energy of the most 
probable Auger electron. It should be noted that both models are somewhat crude.

9. Knock-On Electrons

The Møller cross section111 for scattering of an electron by an electron is

, (2.16)

where , τ, E, and C have the same meanings as in Eqs. 2.5-2.7. When calculating stopping 
powers, one is interested in all possible energy transfers. However, for the sampling of 
transportable secondary particles, one wants the probability of energy transfers greater than some 
εc representing an energy cutoff, below which secondary particles will not be followed. This 
probability can be written

.

The reason for the upper limit of 1/2 is the same as in the discussion of Eq. 2.8.  Explicit integration 
of Eq. 2.13 leads to

.

Then the normalized probability distribution for the generation of secondary electrons with ε > εc 
is given by

. (2.17)

At each electron substep, MCNP uses σ(εc) to determine randomly whether knock-on electrons 
will be generated. If so, the distribution of Eq. 2.14 is used to sample the energy of each secondary 
electron. Once an energy has been sampled, the angle between the primary direction and the 
direction of the newly generated secondary particle is determined by momentum conservation. 
This angular deflection is used for the subsequent transport of the secondary electron. However, 
neither the energy nor the direction of the primary electron is altered by the sampling of the 
secondary particle. On the average, both the energy loss and the angular deflection of the primary 
electron have been taken into account by the multiple scattering theories.

10. Multigroup Boltzmann−Fokker−Planck Electron Transport

The electron physics described above can be implemented into a multigroup form using a hybrid 
multigroup/continuous-energy method for solving the Boltzmann−Fokker−Planck equation as 

EA E
K

= EA E
K

2E
L

–=

εd
dσ C

E
---- 1

ε2
----- 1

1 ε–( )2
------------------ τ

τ 1+
------------⎝ ⎠

⎛ ⎞ 2 2τ 1+
τ 1+( )2

------------------- 1
ε 1 ε–( )
-------------------–+ +

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

ε

σ εc( )
εd

dσ εd
εc

1 2⁄

∫=

σ εc( ) C
E
---- 1

εc
---- 1

1 εc–
-------------– τ

τ 1+
------------⎝ ⎠

⎛ ⎞ 2 1
2
--- εc–⎝ ⎠

⎛ ⎞ 2τ 1+
τ 1+( )2

-------------------
1 εc–

εc
-------------ln–+

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

g ε εc,( )dε 1
σ εc( )
-------------

εd
dσ εd=
10/3/05 2-79



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
TALLIES
described by Morel.44 The multigroup formalism for performing charged particle transport was 
pioneered by Morel and Lorence47 for use in deterministic transport codes. With a first order 
treatment for the continuous slowing down approximation (CSDA) operator, this formalism is 
equally applicable to a standard Monte Carlo multigroup transport code as discussed by Sloan.112 
Unfortunately, a first order treatment is not adequate for many applications. Morel, et al. have 
addressed this difficulty by developing a hybrid multigroup/continuous energy algorithm for 
charged particles that retains the standard multigroup treatment for large-angle scattering, but treats 
exactly the CSDA operator. As with standard multigroup algorithms, adjoint calculations are 
performed readily with the hybrid scheme.

The process for performing an MCNP/MGBFP calculation for electron/photon transport problems 
involves executing three codes.  First the CEPXS47 code is used to generate coupled electron−
photon multigroup cross sections. Next the CRSRD code casts these cross sections into a form 
suitable for use in MCNP by adjusting the discrete ordinate moments into a Radau quadrature form 
that can be used by a Monte Carlo code. CRSRD also generates a set of multigroup response 
functions for dose or charge deposition that can be used for response estimates for a forward 
calculation or for sources in an adjoint calculation. Finally, MCNP is executed using these adjusted 
multigroup cross sections. Some applications of this capability for electron/photon transport have 
been presented in Ref. 113.

V. TALLIES

MCNP automatically creates standard summary information that gives the user a better insight into 
the physics of the problem and the adequacy of the Monte Carlo simulation including:  a complete 
accounting of the creation and loss of all tracks and their energy; the number of tracks entering and 
reentering a cell plus the track population in the cell; the number of collisions in a cell; the average 
weight, mean free path, and energy of tracks in a cell; the activity of each nuclide in a cell (that is, 
how particles interacted with each nuclide, not the radioactivity); and a complete weight balance 
for each cell.

MCNP also provides seven standard tally types.  These include seven standard neutron tallies, six 
standard photon tallies, and four standard electron tallies. These basic tallies can be modified by 
the user in many ways. All tallies are normalized to be per starting particle except in KCODE 
criticality problems, which are normalized to be per fission neutron generation. The MCNP tally 
plotter provides graphical displays of the results (see Appendix B).

Tally Mnemonic  Description
F1:N or F1:P or F1:E Surface current
F2:N or F2:P or F2:E Surface flux
F4:N or F4:P or F4:E Track length estimate of cell flux
F5a:N or F5a:P Flux at a point or ring detector
F6:N or F6:P or F6:N,P Track length estimate of energy deposition
F7:N Track length estimate of fission energy deposition
F8:N or F8:P or F8:E Pulse height tally

or F8:P,E
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The above seven tally categories represent the basic MCNP tally types.  To have many tallies of a 
given type, add multiples of 10 to the tally number.  For example, F1, F11, F21,…,F981, F991 are 
all type F1 tallies.  Particle type is specified by appending a colon and the particle designator.  For 
example, F11:N and F96:N are neutron tallies and F2:P and F25:P are photon tallies.  F6 tallies can 
be for both neutrons and photons – for example, F16:N,P.  All F8 tallies (except F8:N) are for both 
photons and electrons; that is, F8:P, F8:E, and F8:P,E are all identical.  It should be noted that 
although F8:N is also allowed, it is not advised, because MCNP neutron transport does not 
currently sample joint collision exit densities in an analog (for example, energy conserving) way.

The units of each tally are derived from the units of the source.  If the source has units of particles 
per unit time, current tallies are particles per unit time and flux tallies are particles per unit time per 
unit area.  When the source has units of particles, current tallies have units of particles and flux 
tallies actually represent fluences with units of particles per unit area.  A steady-state flux solution 
can be obtained by having a source with units of particles per unit time and integrating the tally 
over all time (that is, omitting the Tn card).  The average flux in a time bin can be obtained from 
the fluence tally for a time-dependent source by dividing the tally by the time bin width in shakes.  
These tallies can all be made per unit energy by dividing each energy bin by the energy bin width.

Extensive statistical analysis of tally convergence is applied to the tally fluctuation bin of each tally 
(see page 3–107).  Ten statistical checks are made, including the variance of the variance and the 
Pareto slope of the history score probability density function.  These checks are described in detail 
in Section VI beginning on page 2–108 .  

The tally quantities actually scored in MCNP before the final normalization per starting particle 
are presented in Table 2.2.  The table also gives the physical quantity that corresponds to each tally, 
and it defines much of the notation used in the remainder of this section.

Table 2.2
Tally Quantities Scored

Tally Score Physical Quantity Units

 put in bin pulses pulses

F1 W J E t A Ω Ω̂ n̂⋅  ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫= particles

F2 W
µ A
---------- φS

1
A
--- E t A Ω ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫= particles/cm2

F4 W
Tl
V
---- φV

1
V
--- E t V Ω ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫= particles/cm2

F5 W p Ω̂P( )e λ–⋅

R2
--------------------------------- φP E t Ω ψ r P, Ω̂ E t, ,( )d∫d∫d∫= particles/cm2

F6 WTlσt E( )H E( )
ρa
m
----- Ht

ρa
m
----- E t V Ω σt E( )H E( )ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫= MeV/g

F7 WTlσf E( )Q
ρa
m
----- Hf

ρa
m
-----Q E t V Ω σf E( )ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫= MeV/g

F8 WC ED
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= particle weight

= collective weight from a history for pulse height tally; see subsection D,
page 2–89.

= particle position vector (cm), direction vector, energy (MeV), and time (sh; 
1sh = 10-8 s)

= , cosine of angle between surface normal and particle trajectory 

= surface area (cm2) and volume (cm3) (calculated by the code or input by 
the user)

= track length (cm) = event transit time × particle velocity

= probability density function for scattering (or starting) in the direction 
towards the point detector (Azimuthal symmetry is assumed)

= total number of mean free paths from particle location to detector

= distance to detector from a source or collision event

= microscopic total cross section (barns)

= microscopic fission cross section (barns)

= heating number (MeV/collision)

= total energy deposited by a history in a detector; see subsection D,
page 2–89

= atom density (atoms/barn-cm)

= mass density (g/cm3) (not used in Table 2.1 but used later in this chapter)

= cell mass (g)

= fission heating Q-value (MeV)

= angular flux familiar from nuclear reactor theory;114,115 
, where n is the particle density (particles/

cm3/MeV/steradian) and v is velocity in cm/sh.  Thus, the units of  are 
particles/cm2/sh/MeV/steradian.

= total (not net) current crossing a surface

= average flux on a surface

= average flux in a cell (volume)

= flux at a point

= point at which is estimated (location of point detector)

= total energy deposition in a cell (MeV/g)

= total fission energy deposition in a cell (MeV/g).

W
WC

r Ω̂ E t, , ,

µ Ω n̂⋅ n̂ Ω

A V,

Tl

p Ω̂P( )
ΩP

λ

R
σt E( )

σf E( )

H E( )
ED

ρa

ρg

m
Q

ψ
ψ r Ω̂ E t, , ,( ) vn r Ω̂ E t, , ,( )=

ψ

J

φS

φV

φP

r P
φP

Ht

Hf
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Adding an asterisk (*Fn) changes the units into an energy tally and multiplies each tally as 
indicated in Table 2.3.  For an F8 pulse height tally, the asterisk changes the tally from deposition 
of pulses to an energy deposition tally and a plus changes the tally to a charge deposition tally.

In addition to the standard tallies, MCNP has one special tally type, the superimposed mesh tally.  
This feature allows the user to tally particles on a mesh independent of the problem geometry.  
Currently only track-length (type 4) mesh tallies have been implemented.  Other track-length 
quantities such as heating and energy deposition can be calculated with the use of a tally multiplier 
(FM) card.  Mesh tallies are invoked by using the FMESH card. As in the F card, a unique number 
is assigned to each mesh tally. Since only track-length mesh tallies are available, the mesh tally 
number must end with a 4, and it must not be identical to any number that is used to identify an F4 
tally.  The track length is computed over the mesh tally cells, and is normalized to be per starting 
particle, except in KCODE criticality calculations.

Not all features of the standard tallies have been implemented in the mesh tallies.  For example, no 
tally fluctuation statistics are given for mesh tallies; the only error information provided is the 
relative error for each mesh cell.  Features that can be used with the mesh tallies are multiplying 
the result by the particle energy (*FMESH format), dose functions, and tally multipliers.  Time 
binning is not a feature of the mesh tallies.

The definitions of the current and flux in the sections that follow come from nuclear reactor 
theory114,115 but are related to similar quantities in radiative transfer theory.  The MCNP angular 

Table 2.3
Tallies Modified with an Asterisk or Plus

Tally Score Units

*F1 WE MeV

*F2 WE
µ A
---------- MeV/cm2

*F4
WTlE

V
-------------- MeV/cm2

*F5 W p Ω̂D( )e λ– E⋅

R2
------------------------------------- MeV/cm2

*F6 1.60219x10 22– jerks
MeV
------------WTlσt E( )H E( )

ρa
m
----- jerks/g

*F7 1.60219x10 22– jerks
MeV
------------WTlσf E( )Q

ρa
m
----- jerks/g

*F8 ED WC×  put in bin ED MeV

F8+ WC±  put in bin ED charge
10/3/05 2-83



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
TALLIES
flux multiplied by the particle energy is the same as the intensity in radiative transfer theory.  The 
MCNP total flux at energy E multiplied by the particle energy E equals the integrated energy 
density times the speed of light in radiative transfer theory.  The MCNP current multiplied by the 
particle energy is analogous to the radiative flux crossing an area in radiative transfer theory.  The 
MCNP particle fluence multiplied by the particle energy is the same as the fluence in radiative 
transfer theory.

Nuclear reactor theory has given the terms flux and current quite different meanings114,115 than they 
have in other branches of physics; terminology from other fields should not be confused with that 
used in this manual.

Rigorous mathematical derivations of the basic tallies are given in Ref. 116. Somewhat heuristic 
derivations follow.  Note that the surface current is a total but the cell and surface fluxes are 
averages.

A. Surface Current Tally

The F1 tally is a simple count of the number of particles, represented by the Monte Carlo weight, 
crossing a surface in specified bins.  The number of particles at time t, in a volume element , 
with directions within , and energies within is . Let the volume 
element  contain the surface element dA (with surface normal ) and along  for a distance 

, as depicted in Figure 2-7.  Then the differential volume element is . All 
the particles within this volume element (with directions within and energies within ) will 
cross surface in time . Thus, the number of particles crossing surface in time is 

. The number of particles crossing surface in energy bin , time 
bin , and angle bin is thus

The range of integration over energy, time, and angle (cosine) is controlled by E, T, and C cards.  
If the range of integration is over all angles (no C card), then the F1 tally is a count of the number 
of particles with any trajectory crossing the surface (in each energy and time bin) and thus has no 
direction associated with it.

Figure 2-7. Diagram for description of the surface current tally.

d r
dΩ̂ dE n r Ω̂ E t, , ,( )d r dΩ̂dE

d r n̂ Ω̂
vdt d r vdt Ω̂ n̂⋅ dA=

dΩ̂ dE
dA dt dA dt

Ω̂ n̂⋅ vn r Ω̂ E t, , ,( )dΩ̂dEdtdA A i
j k

E t Ω̂ A Ω̂ n̂⋅  vn r Ω̂ E t, , ,( )  d∫d
Ω̂k

∫dtj∫dEi∫

 
 
 
 
 
 
 
 
 
 
 
 
 

Ω̂
n̂

v dt 

dA 

nΩ ˆˆ ⋅dtv  

dAdtvd nΩr ˆˆ ⋅=
r
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Note that the MCNP current J of Table 2.2 is the total current, not the net current.  (It is the total 
number of particles crossing a surface.)  Frequently, the net current, rather than the total current, is 
desired.  Defining the partial currents crossing in the positive and negative directions (“right” and 
“left” or “up” and “down”) as115

the net current across the surface is . (The total current of Table 2.2 is 
.) The partial currents across a surface can be calculated in MCNP using an F1 

tally with two cosine bins, one each for and .

The units of the F1 tally are those of the source.  If the source has units of particles per unit time, 
the tally has units of particles per unit time.  When the source has units of particles, the tally has 
units of particles.  The SD card can be used to input a constant that divides the tally.  In other words, 
if is input on the SD card, the tally will be divided by .

B. Flux Tallies

Defining the scalar flux    [  is the total scalar flux 
in volume element about and energy element about ] and, introducing energy and time 
bins, the integrals of Table 2.2 for the F2, F4, and F5 tallies can be recast as

The range of integration over energy and time can be tailored by E and T cards.  If no E card is 
present, the integration limits are the same as the limits for the corresponding cross sections used. 
The F4 cell flux and F2 surface flux tallies are discussed in this section.  The F5 detector flux tally 
is discussed on page 2–89.

1. Track Length Estimate of Cell Flux (F4)

J± E t A Ω̂ Ω̂ n̂⋅ ψ r Ω̂ E t, , ,( ) ,d
Ω̂ n̂ 0>⋅
Ω̂ n̂ 0<⋅

∫d∫d∫d∫=

Jnet J+ J––=
J J+ J+ –= J±

1 µ 0<≤– 0 µ 1≤<

x x

φ r E t, ,( ) Ωψ r Ω̂ E t, , ,( )d∫= φ r E t, ,( )d r dE
d r r dE E

F2 1
A
--- E t A φ r E t, ,( ),d∫d

tj
∫d

Ei
∫=

F4 1
V
--- E t V φ r E t, ,( )  andd∫d

tj
∫d

Ei
∫=

F5 E t φ r P E t, ,( )  .d
tj

∫d
Ei

∫=
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The average particle flux in a cell (from Table 2.2) can be written

where is the density of particles, regardless of their trajectories, at 
a point.  Defining to be the differential unit of track length and noting that  yields

.

The quantity may be thought of as a track length density; thus, the average flux can 
be estimated by summing track lengths.  MCNP estimates  by summing for all particle 
tracks in the cell.  Time- and energy-dependent subdivisions of  are made by binning the track 
lengths in appropriate time and energy bins. The track length estimator is generally quite reliable 
because there are frequently many tracks in a cell (compared to the number of collisions), leading 
to many contributions to this tally.

The SD card can be used to input a new volume that divides the tally.  In other words, if is input 
on the SD card, the tally will be divided by instead of . There are cases where MCNP cannot 
calculate the volume of a taller region.  In these cases, the user must input an entry on an SD card 
corresponding to the taller cell.

2. Surface Flux (F2)

The average particle scalar flux on a surface (  of Table 2.2) is estimated using a surface crossing 
estimator that may be thought of as the limiting case of the cell flux or track length estimator when 
the cell becomes infinitely thin, as illustrated in Figure 2-8.

Figure 2-8. Diagram for description of the surface flux tally.

As the cell thickness approaches zero, the cell volume approaches and the track length 
through the cell approaches  Thus, 

φV
1
V
--- E t V Ω ψ r Ω̂ E t, , ,( )d∫d∫d∫d∫=

1
V
--- E V Ω t vn r Ω̂ E t, , ,( )d∫d∫d∫d∫=

1
V
--- E V t vN r E t, ,( ),d∫d∫d∫=

N r E t, ,( ) Ω nd∫= r Ω̂ E t, , ,( )
ds ds vdt=

φV
1
V
--- E V s N r E t, ,( )d∫d∫d∫=

N r E t, ,( )ds
φV WTl V⁄

φV

V′
V′ V

φS

 
 
 
 
 
 
 
 
 
 

Ω̂

n̂

δ Tl

Tally surface of area A 

δ Aδ
δ/ Ω̂ n̂⋅ .
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A more formal derivation of the surface flux estimator may be found in Ref. 116.

For particles grazing the surface, is very large and MCNP approximates the surface flux 
estimator in order to satisfy the requirement of one central limit theorem.  An unmodified surface 
flux estimator has an infinite variance, and thus confidence intervals could not be formed via the 
central limit theorem, because the central limit theorem requires a finite variance.  For this reason, 
MCNP sets when ; because of this approximation, the F2 tally is not an exact 
estimate of the surface flux.

The SD card can be used to input a new area that divides the tally.  In other words, if is input on 
the SD card, the tally will be divided by instead of . 

The F2 tally is essential for stochastic calculation of surface areas when the normal analytic 
procedure fails (see page 2–187).

C. Track Length Cell Energy Deposition Tallies

The F6 and F7 cell heating and energy deposition tallies are track length flux tallies modified to 
tally a reaction rate convolved with an energy-dependent heating function [ from 
Table 2.2] instead of a flux.  The derivation of such modified track length estimators along the lines 
of the derivation of the track length flux estimator in subsection B.1 on page 2–85 is 
straightforward.  The heating tallies are merely flux tallies (F4) multiplied by an energy-dependent 
multiplier (FM card); the equivalence is shown in this section.

The units of the heating tally are MeV/g.  An asterisk (*F6 and *F7) changes the units to 
jerks/g (1 MeV = 1.6021910-22 jerks) (the asterisk causes the tally to be multiplied by a constant 
rather than by energy as in the other tallies).  The SD card can be used to input a new mass that 
divides the tally.  In other words, if is input on the SD card, the tally will be divided by 

instead of m.

As with the F4 tally, there are cases where MCNP cannot calculate the area of a tally surface.  In 
such cases, the user must input an entry on an SD card corresponding to the surface tally.

Energy deposition for photons and electrons can be computed with the *F8 tally.  See page 2–89. 
However, this is not a track length estimator.

φS φV
δ 0→
lim=

WTl
V

----------
δ 0→
lim=

 W   δ
Aδ Ω̂ n̂⋅
----------------------

δ 0→
lim=

W
A µ
----------  .=

1 µ⁄

µ 0.05= µ 0.10<

A′
A′ A

H or Q( )σρaφ

m′
m′
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The F7 tally includes the gamma-ray heating because the fission photons are deposited locally.  The 
F6:N tally deposits the photons elsewhere, so it does not include gamma-ray heating.  Thus, for 
fissionable materials, the F7:N result will be greater than the F6:N result even though F7:N 
includes only fission and F6 includes all reactions.  The true heating is found by summing the 
neutron and photon F6 tallies in a coupled neutron/photon calculation.  In a neutron-only problem, 
F6 will give the right heating of light materials only if, in the physical experiment, all photons 
escape the geometry.  F7 will give about the right heating of fissionable materials only if, in the 
physical experiment, no photons come from elsewhere, all fission photons are immediately 
captured, and nonfission reactions can be ignored.  By definition, the F7 tally cannot be used for 
photons.  Examples of the mnemonic used to combine neutron and photon F6 tallies are F6:N,P 
and F516:P,N.

MCNP computes heating as specified in Table 2.2, with a heating function [H(E) or Q] modifying 
a track length reaction rate tally.  In other words, the average energy deposited for all reactions at 
the incident particle energy is used in the tally, regardless of the actual reaction that might be 
sampled at the next collision.  The heating functions are tabulated in the nuclear data by incident 
energy (except for fission Q-values).  Great care should be taken to understand exactly what the 
heating functions include and how they were computed.  The functions H(E) and Q from Table 2.2 
are generally defined and computed for tabulation in the data tables as follows: 

1. F6 Neutrons

The heating number is , where

2. F6 Photons

The heating number is , where 

=  = probability of reaction i at neutron incident energy 
E

= average exiting neutron energy for reaction i at neutron incident 
energy E

= Q-value of reaction i

= average exiting gamma energy for reaction i at neutron incident 
energy E

incoherent (Compton) scattering with form factors

pair production; MeV ( is the 
rest-mass energy of an electron)

photoelectric absorption; 

= probability of reaction i at gamma incident energy E

= average exiting gamma energy for reaction i at neutron incident 
energy E.

H E( ) E pi E( ) Ei out, E( ) Qi– Ei γ, E( )+[ ]
i

∑–=

pi E( ) σi E( )/σT E( )

Ei out, E( )

Qi

Ei γ, E( )

H E( ) E pi E( ) Ei out, E( )[ ]
i 1=

3

∑–=

i 1= →

i 2= → Ei out, E( ) 2m0c2 1.022016== m0c2

i 3= → Ei out, E( ) 0=

pi E( )

Ei out, E( )
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All energy transferred to electrons is assumed to be deposited locally.

3. F7 Neutrons

The heating number is Q, the fission Q-value.  The Q-values in MCNP represent the total prompt 
energy release per fission and are printed in Print Table 98.  The total fission cross section is 
(n,f) + (n,nf) + L.

Although photonuclear tables may now include fission cross sections (that is, in some 
circumstances, MCNP can model photofission), the F7 tally is still illegal for photons.

4. Equivalence of F4, F6, and F7 Tallies

The F6 and F7 heating tallies are special cases of the F4 track length estimate of cell flux with 
energy-dependent multipliers.  The following F4 and FM4 combinations give exactly the same 
results as the F6 and F7 tallies listed.  In this example, material 9 in cell 1 is 235U with an atom 
density of 0.02 atoms/barn-cm and a mass density of 7.80612 g/cm3 for an atom/gram 
ratio of 0.0025621.  (Note that using will give the same result as using and is a better 
choice if perturbations are used.) See Perturbations on page 2–192.

For the photon results to be identical, both electron transport and the thick-target bremsstrahlung 
approximation (PHYS:P  j  1) must be turned off .  In the F6:P tally, if a photon produces an electron 
that produces a photon, the second photon is not counted again.  It is already tallied in the first 
photon heating.  In the F4:P tally, the second photon track is counted, so the F4 tally will slightly 
overpredict the tally.

The photon heating tally also can be checked against the *F8 energy deposition tally by dividing 
the F6 tally by a unit mass with the SD card.  Results will only be statistically identical because the 
tallies are totally independent and use different estimators.

The FM card can also be used to make the surface flux tally (F2) and point and ring detector tallies 
(F5) calculate heating, on a surface or at a point, respectively.

D. Pulse Height Tallies

The pulse height tally provides the energy distribution of pulses created in a cell that models a 
physical detector. It also can provide the energy deposition in a cell. Although the entries on the F8 
card are cells, this is not a track length cell tally. F8 tallies are made at source points and at surface 
crossings.

F4:N
FM4

1
0.0025621 9 1 -4 gives the same result as F6:N 1

F14:N
FM14

1
0.0025621 9 -6 -8 gives the same result as F17:N 1

F24:P
FM24

1
0.0025621 9 -5 -6 gives the same result as F26:P 1

ρa( ) ρg( )
1/ρg– ρa ρg⁄
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The pulse height tally is analogous to a physical detector. The F8 energy bins correspond to the 
total energy deposited in a detector in the specified channels by each physical particle (history). All 
the other MCNP tallies record the energy of a scoring track in the energy bin.

In an experimental configuration, suppose a source emits 100 photons at 10 MeV, and ten of these 
get to the detector cell. Further, suppose that the first photon (and any of its progeny created in the 
cell) deposits 1 keV in the detector before escaping, the second deposits 2 keV, and so on up to the 
tenth photon which deposits 10 keV. Then the pulse height measurement at the detector would be 
one pulse in the 1 keV energy bin, 1 pulse in the 2 keV energy bin, and so on up to 1 pulse in the 
10 keV bin.

In the analogous MCNP pulse height tally, the source cell is credited with the energy times the 
weight of the source particle. When a particle crosses a surface, the energy times the weight of the 
particle is subtracted from the account of the cell that it is leaving and is added to the account of 
the cell that it is entering. The energy is the kinetic energy of the particle plus 2moc2 = 1.022016 if 
the particle is a positron. At the end of the history, the account in each tally cell is divided by the 
source weight. The resulting energy determines which energy bin the score is put in. The value of 
the score is the source weight for an F8 tally and the source weight times the energy in the account 
for a ∗F8 tally. The value of the score is zero if no track entered the cell during the history.

The pulse height tally depends on sampling the joint density of all particles exiting a collision 
event. MCNP does not currently sample this joint density for neutron collisions. MCNP neutron 
physics is nonanalog (in the joint density sampling), particularly in the way that multiple neutrons 
exiting a collision are totally uncorrelated and do not even conserve energy except in an average 
sense over many neutron histories. Thus, neutron F8 tallies must be done with extreme caution 
when more than one neutron can exit a collision.  

Another aspect of the pulse height tally that is different from other MCNP tallies is that F8:P, F8:E 
and F8:P,E are all equivalent. All the energy from both photons and electrons, if present, will be 
deposited in the cell, no matter which tally is specified.

When the pulse height tally is used with energy bins, care must be taken because of negative scores 
from nonanalog processes and zero scores caused by particles passing through the pulse height cell 
without depositing energy. In some codes, like the Integrated TIGER Series, these events cause 
large contributions to the lowest energy bin pulse height score. In other codes no contribution is 
made. MCNP compromises by counting these events in a zero bin and an epsilon bin so that these 
scores can be segregated out. It is recommended that your energy binning for an F8 tally be 
something like

E8  0  1.e-5  1.  2. 3.  4.  5.  

Knock−on electrons in MCNP are nonanalog in that the energy loss is included in the multiple 
scattering energy loss rate rather than subtracted out at each knock−on event. Thus knock-ons can 
cause negative energy pulse height scores. These scores will be caught in the 0 energy bin. If they 
are a large fraction of the total F8 tally, then the tally is invalid because of nonanalog events. 
Another situation is differentiating zero contributions from particles not entering the cell and 
particles entering the cell but not depositing any energy. These are differentiated in MCNP by 

…
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causing an arbitrary 1.e-12 energy loss for particles just passing through the cell. These will appear 
in the 0-epsilon bin.

E. Flux at a Detector

The neutral particle flux can be estimated at a point (or ring) using the point (or ring) detector next-
event estimator. Neutral particle flux images using an array of point detectors−one detector for 
each pixel−can also be estimated. Detectors can yield anomalous statistics and must be used with 
caution. Detectors also have special variance reduction features, such as a highly advantageous DD 
card Russian roulette game. Whenever a user-supplied source is specified, a user-supplied source 
angle probability density function must also be provided.

1. Point Detector

A point detector is a deterministic estimate (from the current event point) of the flux at a point in 
space. Contributions to the point detector tally are made at source and collision events throughout 
the random walk. The point detector tally (F5) may be considered a limiting case of a surface flux 
tally (F2), as will be shown below. 

Consider the point detector to be a sphere whose radius is shrinking to zero. Figure 2-9 shows the 
details. 

Figure 2-9

Let p be in the direction to the center of the sphere, i.e., in the direction rp−r . Let p be the 
solid angle subtended by the sphere from r, and let dA be defined by the intersection of an arbitrary 
plane (passing through the detector point) and the collapsing cone. 

dΩp

*
r = source or collision point

.

dA

           n̂

Ωp

R

r

rp

rp = detector  point

Ω dΩ
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In order to contribute to a flux tally upon crossing dA, the particle has to do two things. First, the 
particle must scatter toward dA (i.e. into solid angle p); this occurs with probability

  .

Second, the particle must have a collisionless free-flight for the distance  (along  p) 
to the sphere; this occurs with probability

   ,

where  is the total macroscopic cross section at a distance s (along p) from the source or 
collision point. The probability that these two events both occur is

   .

Define  to be the cosine of the angle between the particle direction and the unit normal to area 
dA:

   .

If a particle of weight w reaches dA, it will contribute to the flux (compare F2 tally on 
page 2–86).

As the sphere shrinks to a point, the solid angle subtended by dA is . (The sides 
of the cone in the figure become parallel and the cone resembles a cylinder near the shrinking 
sphere.) Thus the tally becomes

or

   .

In all the scattering distributions and in the standard sources, MCNP assumes azimuthal symmetry. 
This provides some simplification. The angle p can be expressed in polar coordinates with the 
incoming particle direction being the polar axis. The azimuthal angle is  and the cosine of the 
polar angle is . The probability density of scattering into p can then be written in terms of a 
probability density in .  That is, 

   .

Defining the PDF for scattering at  as 

dΩ

p Ωp( )dΩp

R rp r–= Ω

e
  Σt s( )– sd

O

 R

∫–

Σt s( ) Ω

p Ωp( )dΩp   e
  Σt s( )– sd

O

 R

∫–

η n̂( )

η Ωp n̂⋅=

w/( η dA )

dΩp η= dA/R2

F5 p Ωp( )dΩp   e
  Σt s( )– sd

O

 R

∫–
  w

η dA
------------- wp Ωp( )=  η dA

R2
------------- 1

η dA
-------------  e

  Σt s( )– sd
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and, recalling that  is independent of , yields

   .

Substituting this into the last expression for the F5 tally yields

   .

A point detector tally is known as a “next-event estimator” because it is a tally of the flux at a point 
as if the "next event" were a particle trajectory directly to the detector point without further 
collision.

A contribution to the point detector is made at every source or collision event. The e−λ term 
accounts for attenuation between the present event and the detector point. The 1/2π R2 term 
accounts for the solid angle effect. The p(µ) term accounts for the probability of scattering toward 
the detector instead of the direction selected in the random walk. For an isotropic source or scatter, 
p(µ) = 0.5 and the solid angle terms reduce to the expected 1/4π R2. (Note that p(µ) can be larger 
than unity because it is the value of a density function and not a probability.) Each contribution to 
the detector can be thought of as the transport of a pseudoparticle to the detector.

The R2 term in the denominator of the point detector causes a singularity that makes the theoretical 
variance of this estimator infinite. That is, if a source or collision event occurs near the detector 
point, R approaches zero and the flux approaches infinity. The technique is still valid and unbiased, 
but convergence is slower and often impractical. If the detector is not in a source or scattering 
medium, a source or collision close to the detector is impossible. For problems where there are 
many scattering events near the detector, a cell or surface estimator should be used instead of a 
point detector tally. If there are so few scattering events near the detector that cell and surface tallies 
are impossible, a point detector can still be used with a specified average flux region close to the 
detector. This region is defined by a fictitious sphere of radius Ro surrounding the point detector. 
Ro can be specified either in centimeters or in mean free paths. If Ro is specified in centimeters and 
if R < Ro, the point detector estimation inside Ro is assumed to be the average flux uniformly 
distributed in volume.

.
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If Σt = 0, the detector is not in a scattering medium, no collision can occur, and

.

If the fictitious sphere radius is specified in mean free paths , then  = Σt Ro and

.

The choice of Ro may require some experimentation. For a detector in a void region or a region 
with very few collisions (such as air), Ro can be set to zero. For a typical problem, setting Ro to a 
mean free path or some fraction thereof is usually adequate. If Ro is in centimeters, it should 
correspond to the mean free path for some average energy in the sphere. Be certain when defining 
Ro that the sphere it defines does not encompass more than one material unless you understand the 
consequences. This is especially true when defining Ro in terms of mean free path because Ro 
becomes a function of energy and can vary widely. In particular, if Ro is defined in terms of mean 
free paths and if a detector is on a surface that bounds a void on one side and a material on the other, 
the contribution to the detector from the direction of the void will be zero even though the 
importance of the void is nonzero. The reason is simply that the volume of the artificial sphere is 
infinite in a void. Contributions to the detector from the other direction (that is, across the material) 
will be accounted for.

Detectors differing only in Ro are coincident detectors (see page 2–103), and there is little cost 
incurred by experimenting with several detectors that differ only by Ro in a single problem.

2. Ring Detector

A ring detector117 tally is a point detector tally in which the point detector location is not fixed but 
rather sampled from some location on a ring. Most of the previous section on point detectors 
applies to ring detectors as well. In MCNP three ring detector tallies, FX, FY, and FZ, correspond 
to rings located rotationally symmetric about the x, y, and z coordinate axes. A ring detector usually 
enhances the efficiency of point detectors for problems that are rotationally symmetric about a 
coordinate axis. Ring detectors also can be used for problems where the user is interested in the 
average flux at a point on a ring about a coordinate axis.

Although the ring detector is based on the point detector that has a 1/R2 singularity and an 
unbounded variance, the ring detector has a finite variance and only a 1/Rmin singularity, where 
Rmin is the minimum distance between the contributing point and the detector ring.118

In a cylindrically symmetric system, the flux is constant on a ring about the axis of symmetry. 
Hence, one can sample uniformly for positions on the ring to determine the flux at any point on the 
ring. The ring detector efficiency is improved by biasing the selection of point detector locations 
to favor those near the contributing collision or source point. This bias results in the same total 
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number of detector contributions, but the large contributions are sampled more frequently, 
reducing the relative error.

For isotropic scattering in the lab system, experience has shown that a good biasing function is 
proportional to e−PR−2, where P is the number of mean free paths and R is the distance from the 
collision point to the detector point. For most practical applications, using a biasing function 
involving P presents prohibitive computational complexity except for homogeneous medium 
problems. For air transport problems, a biasing function resembling e−P has been used with good 
results. A biasing function was desired that would be applicable to problems involving dissimilar 
scattering media and would be effective in reducing variance. The function R−2 meets these 
requirements.

In Figure 2-10, consider a collision point, (xo,yo,zo) at a distance R from a point detector location 
(x,y,z). The point (x,y,z) is to be selected from points on a ring of radius r that is symmetric about 
the y-axis in this case.

Figure 2-10

To sample a position (x,y,z) on the ring with a 1/R2 bias, we pick  from the density function 
, where C is a normalization constant. To pick  from , let ξ be a random 

number on the unit interval. Then
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,

where

a =
b = −2rxo
c = −2rzo

C =  (a2 − b2 − c2)1/2.

The above expression is valid if a2 > b2 + c2, which is true except for collisions exactly on the ring.

Solving for tan ,

.

Letting ,

then x = r cos 
y = y (fixed)
z = r sin .

For ring detectors, the 1/R2 biasing has been supplemented when it is weak to include a biasing 
based on angle to select the point on the ring. This angle is in the plane of the ring and is relative 
to the shortest line from the collision point to the detector ring. The angle that would most likely 
be selected would pick the same point on the ring as a straight line through the axis of the problem, 
the collision point, and the ring. The angle least likely to be picked would choose the point on the 
opposite side of the ring. This approach will thus make scores with smaller attenuations more often. 
This supplemental biasing is achieved by requiring that  in the above 
equation.

If the radius of the ring is very large compared to the dimensions of the scattering media (such that 
the detector sees essentially a point source in a vacuum), the ring detector is still more efficient than 
a point detector. The reason for this unexpected behavior is that the individual scores to the ring 
detector for a specific history have a mean closer to the true mean than to the regular point detector 
contributions. That is, the point detector contributions from one history will tend to cluster about 
the wrong mean because the history will not have collisions uniformly in volume throughout the 
problem, whereas the ring detector will sample many paths through the problem geometry to get 
to different points on the ring.
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3. Flux Image Detectors

Flux image detector tallies are an array of point detectors close enough to one another to generate 
an image based on the point detector fluxes.  Each detector point represents one pixel of the flux 
image.  The source need not be embedded in the object.  The particle creating the image does not 
have to be the source particle type. Three types of neutral particle flux image tallies can be 
made:119,120  

• Flux Image Radiograph (FIR), a flux image radiograph on a planar image surface;

• Flux Image on a Cylinder (FIC), a flux image on a cylindrical image surface; and

• Flux Image by Pinhole (FIP), a flux image by pinhole on a planar image surface.

When these flux image tallies are used with FSn and Cn cards to construct a virtual image grid, 
millions of point detectors can be created−one detector for each pixel−to produce a flux image.  
The FSn card is used to define the image pixels along the s-axis.  The Cn card defines the pixels 
along the t-axis.  The relationship of the s-axis, t-axis, and reference direction for the planar image 
grid is defined by the right-hand rule. Since the orientation of the s-axis and the t-axis is dependent 
on the reference direction in the geometry coordinate system, the MCNP tally output should be 
examined to see the direction cosines of these two planar image grid axes.  The image grid 
SHOULD NOT be in a scattering material because the point detector average flux neighborhood 
is not used for flux image tallies.

a. Radiograph Image Tallies FIR and FIC

Both the FIR and FIC tallies act like film for an x-ray type image (that is, a transmitted image for 
neutrons or photons).  The diagram in Figure 2-11 shows how the FIR planar rectangular grid 
image is defined for a source particle passing through an object and scattering in an object.  An FIC 
cylindrical surface grid generates an image on a cylinder as shown in Figure 2-12 for the particles 
generated inside the object.

Figure 2-11
Diagram of an FIR (Flux Image Radiograph) tally for a source external to the object. 
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Figure 2-12
Diagram of an FIC (Flux Image on a Cylinder) tally for a source internal to the object. 

In both cases, a ray-trace point-detector flux contribution is made to every image grid bin (pixel) 
from each source and scatter event.  Allowing each event to contribute to all pixels reduces 
statistical fluctuations across the grid that would occur if the grid location for the contribution were 
selected randomly.  For each source and scatter event, the direction cosines to a pixel detector point 
are determined.  The option exists to select a random position in the pixel.  The same relative 
random offset is used for all pixels for a source or scatter event.  The random detector location in 
a pixel changes from event to event. The option also exists to select the point detector location at 
the center of each pixel when the center flux is desired.

A standard point detector attenuated ray-trace flux contribution to the image pixel is then made.  
A new direction cosine is determined for each pixel followed by the new ray-trace flux calculation. 
These tallies automatically create a source-only contribution and a total for each pixel.  Standard 
point detector tally modifications can be made to the image tally, for example, by using the FM, 
PD, and FT cards.

b. Pinhole Image Tally FIP

The Flux Image by Pinhole (FIP) tally uses a pinhole (as in a pinhole camera) to create a neutron 
or photon image onto a planar rectangular grid that acts much like photographic film.  
Figure 2-13 is a diagram of the FIP image tally.  Each source and scatter event contributes to one 
point detector on the image grid pixel intersected by the particle trajectory through the pinhole.
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Figure 2-13
Diagram of an FIP (Flux Image by Pinhole) tally for a source internal to the object.  

The particle event point and the virtual pinhole point (sampled uniformly in area if a radius is 
specified) are used to define the direction cosines of the contribution to be made from the source 
or scatter location through the pinhole to one image grid element (pixel).  Once this direction is 
established, a ray-trace point detector flux contribution is made to the intersected pixel including 
attenuation by any material along that path.  No source or scattering events on the image grid side 
of the pinhole will contribute to the image.

The pinhole and associated grid will image both direct source contributions and the direct plus any 
scattered contributions. Standard tally modifications can be made to the image tally, for example, 
by using the FM, PD, and FT cards.

The magnitude of the flux contribution through the pinhole to a pixel is calculated as follows.  The 
flux at a pinhole point P is , where  is the direction that intersects the pinhole at point P.  
Define  to be the cosine of the angle between the detector trajectory and the reference direction, 
which is perpendicular to the plane of the pinhole.  The particle weight per unit pinhole area (or the 
particle current per unit pinhole area) is .  The weight in a small area dA in the pinhole is 

.  The total particle weight W integrated over the pinhole area AP is:

   .

The FIP tally selects one particle trajectory to carry this weight.  This trajectory should be sampled 
in dA from

   .
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Instead, the pinhole point P sampling is biased to be uniform in the pinhole area AP; that is,

   .

To account for this biased sampling, the weight W of the sample must be multiplied by

   .

Thus, an unbiased estimate of the sampled weight going through dA at the pinhole is 
 or

   .

Now that an unbiased estimate of the weight through dA is obtained, an unbiased estimate of the 
weight arriving on the image plane can also be obtained.  If  is the optical path along  from 
the sampled pinhole point to the image plane, then the weight Wpixel arriving at the pixel in the 
image plane is

   .

The surface flux at the image plane is estimated by the Wpixel divided by  (note that the 
pinhole plane and image plane are parallel) divided by pixel area Apixel.  Therefore, the surface flux 
at the intersected pixel is 

   .

Thus, the flux at the pixel is just the  attenuated flux at the pinhole scaled by the ratio of 
(where the weight W passes through) to the (the pixel where the flux  is 

scored).  If a perfect pinhole with no pinhole area is used, then AP is defined to be unity.

4. General Considerations of Point Detector Estimators

a. Pseudoparticles and detector reliability: Point and ring detectors are Monte Carlo 
methods wherein the simulation of particle transport from one place to another is deterministically 
short-circuited. Transport from the source or collision point to the detector is replaced by a 
deterministic estimate of the potential contribution to the detector. This transport between the 
source or collision point and the detector can be thought of as being via “pseudoparticles.” 
Pseudoparticles undergo no further collisions. These particles do not reduce the weight or 
otherwise affect the random walk of the particles that produced them. They are merely estimates 
of a potential contribution. The only resemblance to Monte Carlo particles is that the quantity they 
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estimate requires an attenuation term that must be summed over the trajectory from the source or 
collision to the detector. Thus most of the machinery for transporting particles can also be used for 
the pseudoparticles. No records (for example, tracks entering) are kept about pseudoparticle 
passage.

Because detectors rely on pseudoparticles rather than particle simulation by random walk, they 
should be considered only as a very useful last resort. Detectors are unbiased estimators, but their 
use can be tricky, misleading, and occasionally unreliable. Consider the problem illustrated in 
Figure 2-14.  

The monoenergetic isotropic point source always will make the same contribution to the point 
detector, so the variance of that contribution will be zero. If no particles have yet collided in the 
scattering region, the detector tally will be converged to the source contribution, which is wrong 
and misleading. But as soon as a particle collides in the scattering region, the detector tally and its 
variance will jump. Then the detector tally and variance will steadily decrease until the next 
particle collides in the scattering region, at which time there will be another jump.

These jumps in the detector score and variance are characteristic of undersampling important 
regions. Next event estimators are prone to undersampling as already described on page 2–64 for 
the p(µ) term of photon coherent scattering. The jump discussed here is from the sudden change in 
the R and possibly λ terms. Jumps in the tally caused by undersampling can be eliminated only by 
better sampling of the undersampled scattering region that caused them.

Biasing Monte Carlo particles toward the tally region would cause the scattering region to be 
sampled better, thus eliminating the jump problem. It is recommended that detectors be used with 
caution and with a complete understanding of the nature of next event estimators. When detectors 
are used, the tally fluctuation charts printed in the output file should be examined closely to see the 
degree of the fluctuations. Also the detector diagnostic print tables should be examined to see if 
any one pseudoparticle trajectory made an unusually large contribution to the tally. Detector results 
should be viewed suspiciously if the relative error is greater than 5%. Close attention should be 
paid to the tally statistical analysis and the ten statistical checks described on page 2–129.

b. Detectors and reflecting, white, or periodic surfaces: Detectors used with reflecting, 
white, or periodic surfaces give wrong answers because pseudoparticles travel only in straight 
lines. Consider Figure 2-15, with a point detector and eight source cells. The imaginary cells and 
point detector are also shown on the other side of the mirror. The solid line shows the source 
contribution from the indicated cell. MCNP does not allow for the dashed-line contribution on the 

Figure 2-14

Scattering
Region

Monoenergetic
isotropic source

Detector
10/3/05 2-101



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
TALLIES
other side of the reflecting surface. The result is that contributions to the detector will always be 
from the solid path instead of from a mixture of solid and dashed contributions. This same situation 
occurs at every collision. Therefore, the detector tally will be lower (with the same starting weight) 
than the correct answer and should not be used with reflecting, white, or periodic surfaces. The 
effect is even worse for problems with multiple reflecting, white, or periodic surfaces.

c. Variance reduction schemes for detectors: Pseudoparticles of point detectors are not 
subject to the variance reduction schemes applied to particles of the random walk. They do not split 
according to importances, weight windows, etc., although they are terminated by entering zero 
importance cells. However, two Russian roulette games are available specifically for detector 
pseudoparticles.

The PD card can be used to specify the pseudoparticle generation probability for each cell. The 
entry for each cell i is pi where . Pseudoparticles are created with probability pi and 
weight 1/pi. If pi = 1, which is the default, every source or collision event produces a 
pseudoparticle. If pi = 0, no pseudoparticle is produced. Setting pi = 0 in a cell that can actually 
contribute to a detector erroneously biases the detector tally by eliminating such contributions. 
Thus pi = 0 should be used only if the true probability of scoring is zero or if the score from cell i 
is unwanted for some legitimate reason such as problem diagnostics. Fractional entries of pi should 
be used with caution because the PD card applies equally to all pseudoparticles. The DD card can 
be used to Russian roulette just the unimportant pseudoparticles. However, the DD card roulette 
game often requires particles to travel some distance along their trajectory before being killed. 
When cells are many mean-free paths from the detector, the PD card may be preferable.

The DD card controls both the detector diagnostic printing and a Russian roulette game played on 
pseudoparticles in transit to detectors. The Russian roulette game is governed by the input 
parameter k that controls a comparison weight wc internal to MCNP, such that

wc = −k if k < 0;
wc = 0 if k = 0;

wc = 0 if k > 0 and ;

wc =  if k > 0 and N > 200,

where N = number of histories run so far,

Detector

Reflecting plane

Source cells

Figure 2-15
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2-102 10/3/05



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
TALLIES
I = number of pseudoparticles started so far,
= Wp(µ)e−λ/(2πR2),

I = contribution of the ith pseudoparticle to the detector tally.

When each pseudoparticle is generated, W, p(µ), and R are already known before the expensive 
tracking process is undertaken to determine λ. If Wp(µ)/(2πR2) < wc, the pseudoparticle 
contribution to the detector  will be less than the comparison weight. Playing Russian roulette 
on all pseudoparticles with  < wc avoids the expensive tracking of unimportant pseudoparticles. 
Most are never started. Some are started but are rouletted as soon as λ has increased to the point 
where Wp(µ)e−λ/(2/πR2) < wc. Rouletting pseudoparticles whose expected detector contribution is 
small also has the added benefit that those pseudoparticles surviving Russian roulette now have 
larger weights, so the disparity in particle weights reaching the detector is reduced. Typically, using 
the DD card will increase the efficiency of detector problems by a factor of ten. This Russian 
roulette is so powerful that it is one of two MCNP variance reduction options that is turned on by 
default. The default value of k is 0.1. The other default variance reduction option is implicit 
capture.

The DD card Russian roulette game is almost foolproof. Performance is relatively insensitive to 
the input value of k. For most applications the default value of k = 0.1 is adequate. Usually, choose 
k so that there are 1–5 transmissions (pseudoparticle contributions) per source history. If k is too 
large, too few pseudoparticles are sampled; thus  is a fatal error.

Because a random number is used for the Russian roulette game invoked by k > 0, the addition of 
a detector tally affects the random walk tracking processes. Detectors are the only tallies that affect 
results. If any other tally type is added to a problem, the original problem tallies remain unchanged. 
Because detectors use the default DD card Russian roulette game, and that game affects the random 
number sequence, the whole problem will track differently and the original tallies will agree only 
to within statistics. Because of this tracking difference, it is recommended that k < 0 be used once 
a good guess at wc can be made. This is especially important if a problem needs to be debugged by 
starting at some history past the first one. Also, k < 0 makes the first 200 histories run faster.

There are two cases when it is beneficial to turn off the DD card Russian roulette game by setting 
k = 0. First, when looking at the tail of a spectrum or some other low probability event, the DD 
card roulette game will preferentially eliminate small scores and thus eliminate the very 
phenomenon of interest. For example, if energy bias is used to preferentially produce high energy 
particles, these biased particles will have a lower weight and thus preferentially will be rouletted 
by the DD card game. Second, in very deep penetration problems, pseudoparticles will sometimes 
go a long way before being rouletted. In this rare case it is wasteful to roulette a pseudoparticle 
after a great deal of time has been spent following it and perhaps a fractional PD card should be 
used or, if possible, a cell or surface tally.

d. Coincident detectors: Because tracking pseudoparticles is very expensive, MCNP uses a 
single pseudoparticle for multiple detectors, known as coincident detectors, that must be identical 
in:

geometric location,
particle type (that is, neutron or photon),
upper time bin limit,

ϕi

ϕi
ϕi

k 1≥
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DD card Russian Roulette control parameter, k, and 
PD card entries, if any.

Energy bins, time bins, tally multipliers, response functions, fictitious sphere radii, user-supplied 
modifications (TALLYX), etc., can all be different. Coincident detectors require little additional 
computational effort because most detector time is spent in tracking a pseudoparticle. Multiple 
detectors using the same pseudoparticle are almost “free.”

e. Direct vs. total contribution: Unless specifically turned off by the user, MCNP 
automatically prints out both the direct and total detector contribution. Recall that pseudoparticles 
are generated at source and collision events. The direct contribution is that portion of the tally from 
pseudoparticles born at source events. The total contribution is the total tally from both source and 
collision events. For Mode N P problems with photon detectors, the direct contribution is from 
pseudophotons born in neutron collisions. The direct contributions for detailed photon physics will 
be smaller than the simple physics direct results because coherent scattering is included in the 
detailed physics total cross section and omitted in the simple physics treatment.

f. Angular distribution functions for point detectors: All detector estimates require 
knowledge of the p(µ) term, the value of the probability density function at an angle , where 
µ = cos . This quantity is available to MCNP for the standard source and for all kinds of 
collisions. For user-supplied source subroutines, MCNP assumes an isotropic distribution

.

Therefore, the variable PSC = p(µ) = 1/2. If the source distribution is not isotropic in a user-
supplied source subroutine, the user must also supply a subroutine SRCDX if there are any 
detectors or DXTRAN spheres in the problem. In subroutine SRCDX, the variable PSC must be 
set for each detector and DXTRAN sphere. An example of how this is done and also a description 
of several other source angular distribution functions is in Chapter 4.

g. Detectors and the S(α,β) thermal treatment: The S(α,β) thermal treatment poses special 
challenges to next event estimators because the probability density function for angle has discrete 
lines to model Bragg scattering and other molecular effects. Therefore, MCNP has an approximate 
model54 that, for the PSC calculation (not the transport calculation), replaces the discrete lines with 
finite histograms of width µ < .1.

This approximation has been demonstrated to accurately model the discrete line S(α,β) data. In 
cases where continuous data is approximated with discrete lines, the approximate scheme cancels 
the errors and models the scattering better than the random walk.55 Thus the S(α,β) thermal 
treatment can be used with confidence with next event estimators like detectors and DXTRAN.

F. Additional Tally Features

The standard MCNP tally types can be controlled, modified, and beautified by other tally cards.  
These cards are described in detail in Chapter 3; an overview is given here.
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1. Bin Limit Control

The integration limits of the various tally types can be controlled by E, T, C, and FS cards. The E 
card establishes energy bin ranges; the T card establishes time bin ranges; the C card establishes 
cosine bin ranges; and the FS card segments the surface or cell of a tally into subsurface or subcell 
bins.

2. Flagging

Cell and surface flagging cards, CF and SF, determine where the different portions of a tally 
originate.

Example: F4 1
CF4 2 3 4

The flux tally for cell 1 is output twice:  first, the total flux in cell 1; and second, the flagged tally, 
or that portion of the flux caused by particles having passed through cells 2, 3, or 4.

3. Multipliers and Modification

MCNP tallies can be modified in many different ways. The EM, TM, and CM cards multiply the 
quantities in each energy, time, or cosine bin by a different constant. This capability is useful for 
modeling response functions or changing units. For example, a surface current tally can have its 
units changed to per steradian by entering the inverse steradian bin sizes on the CM card.

The DE and DF cards allow modeling of an energy-dependent dose function that is a continuous 
function of energy from a table whose data points need not coincide with the tally energy bin 
structure (E card). An example of such a dose function is the flux-to-radiation dose conversion 
factor given in Appendix H.

The FM card multiplies the F1, F2, F4, and F5 tallies by any continuous-energy quantity available 
in the data libraries. For example, average heating numbers Havg(E) and total cross section σT(E) 
are stored on the MCNP data libraries. An F4 tally multiplied by σTHavg(E)ρa/ρg converts it to an 
F6 tally, or an F5 detector tally multiplied by the same quantity calculates heating at a point (see 
page 2–91). The FM card can modify any flux or current tally of the form  into 

, where R(E) is any combination of sums and products of energy-dependent 
quantities known to MCNP.

The FM card can also model attenuation. Here the tally is converted to , where 
x is the thickness of the attenuator, ρa is its atom density, and σt is its total cross section.  Double 
parentheses allow the calculation of . More complex expressions of 
σt(E)ρax are allowed so that many attenuators may be stacked. This is useful for calculating 
attenuation in line-of-sight pipes and through thin foils and detector coatings, particularly when 
done in conjunction with point and ring detector tallies. Beware, however, that attenuation assumes 

ϕ E( ) Ed∫
R E( )ϕ E( ) Ed∫

ϕ E( )e
σt E( )ρax–

Ed∫

ϕ E( )e
σt E( )ρax–

R E( ) Ed∫
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that the attenuated portion of the tally is lost from the system by capture or escape and cannot be 
scattered back in.

Two special FM card options are available. The first option sets R(E) = 1/ϕ(E) to score tracks or 
collisions. The second option sets R(E) = 1/velocity to score population or prompt removal 
lifetime.

4. Special Treatments

A number of special tally treatments are available using the FT tally card. A brief description of 
each one follows.

a. Change current tally reference vector: F1 current tallies measure bin angles relative to 
the surface normal. They can be binned relative to any arbitrary vector defined with the FRV 
option.

b. Gaussian energy broadening: The GEB option can be used to better simulate a physical 
radiation detector in which energy peaks exhibit Gaussian energy broadening. The tallied energy 
is broadened by sampling from the Gaussian:

,

where E = the broadened energy;
Eo = the unbroadened energy of the tally;
C = a normalization constant; and
A = the Gaussian width.

The Gaussian width is related to the full width half maximum (FWHM) by

= .60056120439322 ∗ FWHM

The desired FWHM is specified by the user–provided constants, a, b, and c, where

.

The FWHM is defined as  FWHM = 2(EFWHM – Eo),

where EFWHM is such that  f(EFWHM) =  f(Eo)

and f(Eo) is the maximum value of f(E).

c. Time convolution: Because the geometry and material compositions are independent of 
time, except in the case of time-dependent temperatures, the expected tally T(t,t + τ) at time t + τ 
from a source particle emitted at time t is identical to the expected tally T(0,τ) from a source particle 

f E( ) Ce
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emitted at time 0. Thus, if a calculation is performed with all source particles started at t = 0, one 
has an estimate of T(0,τ) and the tallies  from a number of time-distributed sources. Qi(t) can 
be calculated at time  as

,

by sampling t from Qi(t) and recording each particle’s tally (shifted by t), or after the calculation 
by integrating Qi(t) multiplied by the histogram estimate of . The latter method is used 
in MCNP to simulate a source as a square pulse starting at time a and ending at time b, where a 
and b are supplied by the TMC option.

d. Binning by the number of collisions: Tallies can be binned by the number of collisions 
that caused them with the INC option and an FU card. A current tally, for example, can be 
subdivided into the portions of the total current coming from particles that have undergone zero, 
one, two, three, ... collisions before crossing the surface. In a point detector tally, the user can 
determine what portion of the score came from particles having their 1st, 2nd, 3rd, ... collision. 
Collision binning is particularly useful with the exponential transform because the transform 
reduces variance by reducing the number of collisions. If particles undergoing many collisions are 
the major contributor to a tally, then the exponential transform is ill-advised. When the exponential 
transform is used, the portion of the tally coming from particles having undergone many collisions 
should be small.

e. Binning by detector cell: The ICD option with an FU card is used to determine what 
portion of a detector tally comes from what cells. This information is similar to the detector 
diagnostics print, but the FT card can be combined with energy and other binning cards. The 
contribution to the normalized rather than unnormalized tally is printed.

f. Binning by source distribution: The SCX and SCD options are used to bin a tally score 
according to what source distribution caused it.

g. Binning by multigroup particle type: The PTT option with an FU card is used to bin 
multigroup tallies by particle type. The MCNP multigroup treatment is available for neutron, 
coupled neutron/photon, and photon problems. However, charged particles or any other 
combinations of particles can be run with the various particles masquerading as neutrons and are 
printed out in the OUTP file as if they were neutrons.  With the PTT option, the tallies can be 
segregated into particle types by entering atomic weights in units of MeV on the FU card.  The 
FU atomic weights must be specified to within 0.1% of the true atomic weight in MeV units; thus 
FU .511 specifies an electron, but .510 is not recognized.

h. Binning by particle charge: The ELC option allows binning F1 current tallies by particle 
charge. There are three ELC options:

1. Cause negative electrons to make negative scores and positrons to make positive scores. 
Note that by tallying positive and negative numbers the relative error is unbounded and 
this tally may be difficult to converge.

TQi
η

TQi
η( ) Qi t( )T t η,( ) td

a

b

∫ Qi t( )T 0 η t–,( ) td
a

b

∫= =

T 0 η t–,( )
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2. Segregate electrons and positrons into separate bins plus a total bin. There will be three 
bins (positron, electron, and total) all with positive scores. The total bin will be the same 
as the single tally bin without the ELC option.

3. Segregate electrons and positrons into separate bins plus a total bin, with the electron bin 
scores being all negative to reflect their charge. The bins will be for positrons (positive 
scores), electrons (negative scores), and total. The total bin will be the same as the single 
bin with the first ELC option above (usually with negative scores because there are more 
electrons than positrons).

5. User Modification

If the above capabilities do not provide exactly what is desired, tallies can be modified by a user-
supplied TALLYX subroutine (FU card). As with a user-supplied SOURCE subroutine, which lets 
the users provide their own specialized source, the TALLYX subroutine lets the user modify any 
tally, with all the programming changes conveniently located in a single subroutine.

6. Tally Output Format

Not only can users change the contents of MCNP tallies, the output format can be modified as well. 
Any desired descriptive comment can be added to the tally title by the tally comment (FC) card. 
The printing order can be changed (FQ card) so that instead of, for instance, getting the default 
output blocks in terms of time vs. energy, they could be printed in blocks of segment vs. cosine. 
The tally bin that is monitored for the tally fluctuation chart printed at the problem end and used in 
the statistical analysis of the tally can be selected (TF card). Detector tally diagnostic prints are 
controlled with the DD card. Finally, the PRINT card controls what optional tables are displayed 
in the output file.

VI. ESTIMATION OF THE MONTE CARLO PRECISION

Monte Carlo results represent an average of the contributions from many histories sampled during 
the course of the problem. An important quantity equal in stature to the Monte Carlo answer (or 
tally) itself is the statistical error or uncertainty associated with the result. The importance of this 
error and its behavior versus the number of histories cannot be overemphasized because the user 
not only gains insight into the quality of the result, but also can determine if a tally appears 
statistically well behaved. If a tally is not well behaved, the estimated error associated with the 
result generally will not reflect the true confidence interval of the result and, thus, the answer could 
be completely erroneous.  MCNP contains several quantities that aid the user in assessing the 
quality of the confidence interval.121

The purpose of this section is to educate MCNP users about the proper interpretation of the MCNP 
estimated mean, relative error, variance of the variance, and history score probability density 
function.  Carefully check tally results and the associated tables in the tally fluctuation charts to 
ensure a well-behaved and properly converged tally.
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A. Monte Carlo Means, Variances, and Standard Deviations

Monte Carlo results are obtained by sampling possible random walks and assigning a score xi 
(for example, xi = energy deposited by the ith random walk) to each random walk. Random walks 
typically will produce a range of scores depending on the tally selected and the variance reduction 
chosen.

Suppose f(x) is the history score probability density function for selecting a random walk that 
scores x to the tally being estimated. The true answer (or mean) is the expected value of x, E(x), 
where

 = true mean.

The function f(x) is seldom explicitly known; thus, f(x) is implicitly sampled by the Monte Carlo 
random walk process. The true mean then is estimated by the sample mean  where

, (2.18)

where xi is the value of x selected from f(x) for the ith history and N is the number of histories 
calculated in the problem. The Monte Carlo mean  is the average value of the scores xi for all the 
histories calculated in the problem. The relationship between E(x) and  is given by the Strong 
Law of Large Numbers1 that states that if E(x) is finite,  tends to the limit E(x) as N approaches 
infinity.

The variance of the population of x values is a measure of the spread in these values and is given 
by1

.

The square root of the variance is σ, which is called the standard deviation of the population of 
scores. As with E(x), σ is seldom known but can be estimated by Monte Carlo as S, given by 
(for large N)

(2.19a)

and

. (2.19b)
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The quantity S is the estimated standard deviation of the population of x based on the values of xi 
that were actually sampled.

The estimated variance of  is given by

. (2.20)

These formulas do not depend on any restriction on the distribution of x or  (such as normality) 
beyond requiring that E(x) and σ2 exist and are finite. The estimated standard deviation of the mean 

 is given by .

It is important to note that  is proportional to 1/ , which is the inherent drawback to the Monte 
Carlo method. To halve , four times the original number of histories must be calculated, a 
calculation that can be computationally expensive. The quantity  can also be reduced for a 
specified N by making S smaller, reducing the inherent spread of the tally results.  This can be 
accomplished by using variance reduction techniques such as those discussed in Section VII of this 
chapter beginning on page 2–134.

B. Precision and Accuracy

There is an extremely important difference between precision and accuracy of a Monte Carlo 
calculation. As illustrated in Figure 2-16, precision is the uncertainty in  caused by the statistical 

fluctuations of the xi’s for the portion of physical phase space sampled by the Monte Carlo process. 
Important portions of physical phase space might not be sampled because of problem cutoffs in 
time or energy, inappropriate use of variance reduction techniques, or an insufficient sampling of 
important low-probability events. Accuracy is a measure of how close the expected value of , 
E(x), is to the true physical quantity being estimated. The difference between this true value and 
E(x) is called the systematic error, which is seldom known. Error or uncertainty estimates for the 
results of Monte Carlo calculations refer only to the precision of the result and not to the accuracy. 
It is quite possible to calculate a highly precise result that is far from the physical truth because 
nature has not been modeled faithfully.
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1. Factors Affecting Problem Accuracy

Three factors affect the accuracy of a Monte Carlo result: (1) the code, (2) problem modeling, and 
(3) the user. Code factors encompass:  the physics features included in a calculation as well as the 
mathematical models used; uncertainties in the data, such as the transport and reaction cross 
sections, Avogadro's number, atomic weights, etc.; the quality of the representation of the 
differential cross sections in energy and angle; and coding errors (bugs). All of the applicable 
physics must be included in a calculation to produce accurate results. Even though the evaluations 
are not perfect, more faithful representation of the evaluator's data should produce more accurate 
results.  The descending order of preference for Monte Carlo data for calculations is continuous 
energy, thinned continuous energy, discrete reaction, and multigroup.  Coding errors can always be 
a problem because no large code is bug-free.  MCNP, however, is a very mature, heavily used 
production code. With steadily increasing use over the years, the likelihood of a serious coding 
error continues to diminish.

The second area, problem-modeling factors, can quite often contribute to a decrease in the accuracy 
of a calculation. Many calculations produce seemingly poor results because the model of the 
energy and angular distribution of the radiation source is not adequate. Two other problem-
modeling factors affecting accuracy are the geometrical description and the physical characteristics 
of the materials in the problem.

The third general area affecting calculational accuracy involves user errors in the problem input or 
in user-supplied subroutines and patches to MCNP. The user can also abuse variance reduction 
techniques such that portions of the physical phase space are not allowed to contribute to the 
results. Checking the input and output carefully can help alleviate these difficulties. A last item that 
is often overlooked is a user's thorough understanding of the relationship of the Monte Carlo tallies 
to any measured quantities being calculated. Factors such as detector efficiencies, data reduction 
and interpretation, etc., must be completely understood and included in the calculation, or the 
comparison is not meaningful.

2. Factors Affecting Problem Precision

The precision of a Monte Carlo result is affected by four user-controlled choices: (1) forward vs. 
adjoint calculation, (2) tally type, (3) variance reduction techniques, and (4) number of histories 
run.

The choice of a forward vs. adjoint calculation depends mostly on the relative sizes of the source 
and detector regions. Starting particles from a small region is easy to do, whereas transporting 
particles to a small region is generally hard to do. Because forward calculations transport particles 
from source to detector regions, forward calculations are preferable when the detector (or tally) 
region is large and the source region is small. Conversely, because adjoint calculations transport 
particles backward from the detector region to the source region, adjoint calculations are preferable 
when the source (or tally) region is large and the detector region is small. MCNP can be run in 
multigroup adjoint mode. There is no continuous-energy adjoint capability.

As alluded to above, the smaller the tally region, the harder it becomes to get good tally estimates. 
An efficient tally will average over as large a region of phase space as practical. In this connection, 
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tally dimensionality is extremely important. A one-dimensional tally is typically 10 to 100 times 
easier to estimate than a two-dimensional tally, which is 10 to 100 times easier than a three-
dimensional tally. This fact is illustrated in Figure 2-22 later in this section.

Variance reduction techniques can be used to improve the precision of a given tally by increasing 
the nonzero tallying efficiency and by decreasing the spread of the nonzero history scores. These 
two components are depicted in a hypothetical f(x) shown in Figure 2-17. See page 2–122 for

more discussion about the empirical f(x) for each tally fluctuation chart bin. A calculation will be 
more precise when the history-scoring efficiency is high and the variance of the nonzero scores is 
low.  The user should strive for these conditions in difficult Monte Carlo calculations. Examples of 
these two components of precision are given on page 2–118.

More histories can be run to improve precision (see subsection C below). Because the precision is 
proportional to 1/ , running more particles is often costly in computer time and therefore is 
viewed as the method of last resort for difficult problems.

C. The Central Limit Theorem and Monte Carlo Confidence Intervals

To define confidence intervals for the precision of a Monte Carlo result, the Central Limit 
Theorem1 of probability theory is used, stating that

,

where α and β can be any arbitrary values and Pr[Z] means the probability of Z.  In terms of the 
estimated standard deviation of , , this may be rewritten in the following approximation for 
large N:

.

This crucial theorem states that for large values of N (that is, as N tends to infinity) and identically 
distributed independent random variables xi with finite means and variances, the distribution of the 

’s approaches a normal distribution. Therefore, for any distribution of tallies (an example is 

Figure 2-17
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shown in Figure 2-17), the distribution of resulting ’s will be approximately normally distributed, 
as shown in Figure 2-16, with a mean of E(x). If S is approximately equal to σ, which is valid for 
a statistically significant sampling of a tally (that is, N has tended to infinity), then

 ~ 68% of the time and (2.21a)

, ~ 95% of the time (2.21b)

from standard tables for the normal distribution function.  Eq. (2.18a) is a 68% confidence interval 
and Eq. (2.18b) is a 95% confidence interval.

The key point about the validity of these confidence intervals is that the physical phase space must 
be adequately sampled by the Monte Carlo process. If an important path in the geometry or a 
window in the cross sections, for example, has not been well sampled, both  and  will be 
unknowingly incorrect and the results will be wrong, usually tending to be too small. The user must 
take great care to be certain that adequate sampling of the source, transport, and any tally response 
functions have indeed taken place. Additional statistical quantities to aid in the assessment of 
proper confidence intervals are described in later portions of this section beginning on page 2–127.

D. Estimated Relative Errors in MCNP

All standard MCNP tallies are normalized to be per starting particle history (except for some 
criticality calculations) and are printed in the output with a second number, which is the estimated 
relative error defined as

(2.22a)

The relative error is a convenient number because it represents statistical precision as a fractional 
result with respect to the estimated mean. 

Combining Eqs. (2.15), (2.16), and (2.17), R can be written (for large N) as

. (2.22b)

Several important observations about the relative error can be made from Eq. (2.19b). First, if all 
the xi’s are nonzero and equal, R is zero. Thus, low-variance solutions should strive to reduce the 
spread in the xi’s.  If the xi’s are all zero, R is defined to be zero. If only one nonzero score is made, 
R approaches unity as N becomes large. Therefore, for xi’s of the same sign,  can never be greater 
than  because R never exceeds unity. For positive and negative xi’s, R can exceed unity.  The 
range of R values for xi’s of the same sign is therefore between zero and unity.
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To determine what values of R lead to results that can be stated with confidence using Eqs. (2.6), 
consider Eq. (2.19b) for a difficult problem in which nonzero scores occur very infrequently. In this 
case,

 . (2.23a)

For clarity, assume that there are n out of  nonzero scores that are identical and equal to 
x.  With these two assumptions, R for “difficult problems” becomes

RD.P. 
~
 . (2.23b)

This result is expected because the limiting form of a binomial distribution with infrequent nonzero 
scores and large N is the Poisson distribution, which is the form in Eq. (2.20b) used in detector 
“counting statistics.” 

Through use of Eq. (2.20), a table of R values versus the number of tallies or “counts” can be 
generated as shown in Table 2.4. A relative error of 0.5 is the equivalent of four counts, which is 
hardly adequate for a statistically significant answer. Sixteen counts is an improvement, reducing 
R to 0.25, but still is not a large number of tallies. The same is true for n equals 25. When n is 100, 
R is 0.10, so the results should be much improved. With 400 tallies, an R of 0.05 should be quite 
good indeed.

Based on this qualitative analysis and the experience of Monte Carlo practitioners, Table 2.5 
presents the recommended interpretation of the estimated 1σ confidence interval  for 
various values of R associated with an MCNP tally. These guidelines were determined empirically, 
based on years of experience using MCNP on a wide variety of problems.  Just before the tally 
fluctuation charts, a “Status of Statistical Checks” table prints how many tally bins of each tally 
have values of R exceeding these recommended guidelines.

Table 2.4
Estimated Relative Error R vs. Number of Identical Tallies n for Large N

n 1 4 16 25 100 400

R 1.0 0.5 0.25 0.20 0.10 0.05
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Point detector tallies generally require a smaller value of R for valid confidence interval statements 
because some contributions, such as those near the detector point, are usually extremely important 
and may be difficult to sample well. Experience has shown that for R less than 0.05, point detector 
results are generally reliable. For an R of 0.10, point detector tallies may only be known within a 
factor of a few and sometimes not that well (see the pathological example on page 2–131.)

MCNP calculates the relative error for each tally bin in the problem using Eq. (2.19b). Each xi is 
defined as the total contribution from the ith starting particle and all resulting progeny. This 
definition is important in many variance reduction methods, multiplying physical processes such 
as fission or (n,xn) neutron reactions that create additional neutrons, and coupled neutron/photon/
electron problems. The ith source particle and its offspring may thus contribute many times to a 
tally and all of these contributions are correlated because they are from the same source particle.

Figure 2-18 represents the MCNP process of calculating the first and second moments of each tally 
bin and relevant totals using three tally storage blocks of equal length for each tally bin. The 
hypothetical grid of tally bins in the bottom half of Figure 2-18 has 24 tally bins including the time 
and energy totals. During the course of the ith history, sums are performed in the first MCNP tally 
storage block. Some of the tally bins receive no contributions and others receive one or more 
contributions. At the conclusion of the ith history, the sums are added to the second MCNP tally 
storage block. The sums in the first MCNP tally storage block are squared and added to the third 
tally storage block. The first tally storage block is then filled with zeros and history i + 1 begins.  
After the last history N, the estimated tally means are computed using the second MCNP tally 
storage block and Eq. (2.15). The estimated relative errors are calculated using the second and third 
MCNP tally storage blocks and Eq. (2.19b). This method of estimating the statistical uncertainty 
of the result produces the best estimate because the batch size is one, which minimizes the variance 
of the variance.122,123

Note that there is no guarantee that the estimated relative error will decrease inversely proportional 
to the  as required by the Central Limit Theorem because of the statistical nature of the tallies.  
Early in the problem, R will generally have large statistical fluctuations. Later, infrequent large 

Table 2.5
Guidelines for Interpreting the Relative Error Ra

a  and represents the estimated statistical relative error at the 1σ level. 
These interpretations of R assume that all portions of the problem phase space have 
been well sampled by the Monte Carlo process. Please use statistical checks for 
detailed information.

Range of R Quality of the Tally

    0.5 to 1 Garbage

    0.2 to 0.5 Factor of a few

    0.1 to 0.2 Questionable

    < 0.10 Generally reliable except for point detector

    < 0.05 Generally reliable for point detector

R Sx x⁄=

N
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contributions may cause fluctuations in  and to a lesser extent in  and therefore in R. MCNP 
calculates a FOM for one bin of each numbered tally to aid the user in determining the statistical 
behavior as a function of N and the efficiency of the tally.

Figure 2-18

E. MCNP Figure of Merit

The estimated relative error squared, R2 , should be proportional to 1/N, as shown by Eq. (2.19b).  
The computer time T used in an MCNP problem should be directly proportional to N; therefore, 
R2T should be approximately a constant within any one Monte Carlo run. It is convenient to define 
a figure of merit (FOM) of a tally to be

. (2.24a)

MCNP prints the FOM for one bin of each numbered tally as a function of N, where the unit of 
computer time T is minutes. The table is printed in particle increments of 1000 up to 20,000 
histories. Between 20,000 and 40,000 histories, the increment is doubled to 2000. This trend 
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continues, producing a table of up to 20 entries. The default increment can be changed by the 5th 
entry on the PRDMP card.

The FOM is a very important statistic about a tally bin and should be studied by the user. It is a 
tally reliability indicator in the sense that if the tally is well behaved, the FOM should be 
approximately a constant with the possible exception of statistical fluctuations very early in the 
problem. An order-of-magnitude estimate of the expected fractional statistical fluctuations in the 
FOM is 2R. This result assumes that both the relative statistical uncertainty in the relative error is 
of the order of the relative error itself and the relative error is small compared to unity. The user 
should always examine the tally fluctuation charts at the end of the problem to check that the FOMs 
are approximately constant as a function of the number of histories for each tally.

The numerical value of the FOM can be better appreciated by considering the relation

 (2.24b)

Table 2.6 shows the expected value of R that would be produced in a one-minute problem (T = 1) 
as a function of the value of the FOM. It is clearly advantageous to have a large FOM for a problem 
because the computer time required to reach a desired level of precision is proportionally reduced. 
Examination of Eq. (2.21b) shows that doubling the FOM for a problem will reduce the computer 
time required to achieve the same R by a factor of two.

Another interpretation for the FOM involves defining the problem’s particle computation rate t as

    (2.24c)

where t is the number of particles per minute for a problem on a specific computer and N is the 
number of particles run in the problem. Substituting Eq. (2.21c) into Eq. (2.21a) and using Eqs. 
(2.16a), (2.17), and (2.19a), the FOM becomes

       (2.24d)

where S is the estimated standard deviation of the sampled population (not the mean). The squared 
quantity is a ratio of the desired result divided by a measure of the spread in the sampled values. 
This ratio is called the tally signal-to-noise ratio:

       (2.24e)

Table 2.6
R Values as a Function of the FOM for T = 1 Minute

FOM 1 10 100 1000 10000
R  1.0  0.32  0.10 0.032 0.010

R 1 FOM T⁄= ∗

t N/T=

FOM t x S⁄( )2⋅=

signal-to-noise ratio x S⁄=
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The quantity approaches the expected value of the signal-to-noise ratio for a problem tally bin 
as N becomes large. Using Eq. (2.21e), the FOM becomes

(2.24f)

The FOM is directly proportional to the particles per minute t (as would be expected) and the tally 
bin signal-to-noise ratio squared. The tally bin signal-to-noise ratio is dependent on the shape of 
the underlying history score probability density function f(x) for the tally bin (see page 2–122). To 
increase the FOM, t and/or the signal-to-noise ratio can be increased. Since  should be the same 
for the problems with different variance reduction, increasing the FOM is equivalent to increasing 
t/S2 (decreasing S with variance reduction techniques often decreases t). It is usually worthwhile to 
optimize the tally efficiency by intelligently running various variance reduction methods and using 
the largest FOM consistent with good phase-space sampling (good sampling can often be inferred 
by examining the cell particle activity in Print Table 126). MCNP prints both the empirical f(x) and 
signal-to-noise ratio for the tally fluctuation chart bin of each tally in Print Table 161.

In summary, the FOM has three uses. One important use is as a tally reliability indicator.  If the 
FOM is not approximately a constant (except for statistical fluctuations early in the problem), the 
confidence intervals may not overlap the expected score value, E(x), the expected fraction of the 
time (see page 2–109). A second use for the FOM is to optimize the efficiency of the Monte Carlo 
calculation by making several short test runs with different variance reduction parameters and then 
selecting the problem with the largest FOM. Remember that the statistical behavior of the FOM 
(that is, R) for a small number of histories may cloud the selection of techniques competing at the 
same level of efficiency. A third use for the FOM is to estimate the computer time required to reach 
a desired value of R by using T ~ 1/(R2FOM).

F. Separation of Relative Error into Two Components

Three factors that affect the efficiency of a Monte Carlo problem are (1) history-scoring efficiency, 
(2) dispersions in nonzero history scores, and (3) computer time per history. All three factors are 
included in the FOM. The first two factors control the value of R; the third is T.

The relative error can be separated into two components: the nonzero history-scoring efficiency 
component  and the intrinsic spread of the nonzero xi scores . Defining q to be the fraction 
of histories producing nonzero xi’s, Eq. 2.19b can be rewritten as

. (2.25a)

Note by Eq. 2.19b that the first two terms are the relative error of the qN nonzero scores. Thus 
defining,

x S⁄

FOM t signal-to-noise ratio( )2=

x
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2 Rint

2

R
Σi 1=

N xi
2

Σi 1=
N xi( )

2
------------------------ 1

N
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Σxi 0≠ x2
i

Σxi 0≠ xi( )2
------------------------- 1

N
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Σxi 0≠ x2
i
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qN
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and (2.25b)

yields (2.25c)

. (2.25d)

For identical nonzero xi’s,  is zero and for a 100% scoring efficiency,  is zero. It is usually 
possible to increase q for most problems using one or more of the MCNP variance reduction 
techniques. These techniques alter the random walk sampling to favor those particles that produce 
a nonzero tally. The particle weights are then adjusted appropriately so that the expected tally is 
preserved. This topic is described in Section VII (Variance Reduction) beginning on page 2–134 . 
The sum of the two terms of Eq. (2.22d) produces the same result as Eq. (2.19b).  Both  and 

 are printed for the tally fluctuation chart bin of each tally so that the dominant component of 
R can be identified as an aid to making the calculation more efficient.

These equations can be used to better understand the effects of scoring inefficiency; that is, those 
histories that do not contribute to a tally. Table 2.7 shows the expected values of  as a function 
of q and the number of histories N. This table is appropriate for identical nonzero scores and 
represents the theoretical minimum relative error possible for a specified q and N. It is no surprise 
that small values of q require a compensatingly large number of particles to produce precise results.

A practical example of scoring inefficiency is the case of infrequent high-energy particles in a 
down-scattering-only problem. If only a small fraction of all source particles has an energy in the 
highest energy tally bin, the dominant component of the relative error will probably be the scoring 
efficiency because only the high-energy source particles have a nonzero probability of contributing 
to the highest energy bin. For problems of this kind, it is often useful to run a separate problem 
starting only high-energy particles from the source and to raise the energy cutoff. The much-
improved scoring efficiency will result in a much larger FOM for the high-energy tally bins.

To further illustrate the components of the relative error, consider the five examples of selected 
discrete probability density functions shown in Figure 2-19. Cases I and II have no dispersion in 
the nonzero scores, cases III and IV have 100% scoring efficiency, and case V contains both 

Table 2.7
Expected Values of Reff as a Function of q and N

q
N 0.001 0.01 0.1 0.5

103 0.999 0.315 0.095 0.032

104 0.316 0.099 0.030 0.010

105 0.100 0.031 0.009 0.003

106 0.032 0.010 0.003 0.001

Rint
2 Σxi 0≠ x2

i

Σxi 0≠ xi( )2
--------------------------- 1

qN
-------–=

Reff
2 1 q–( ) qN( )⁄=

R2 Reff
2 Rint
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elements contributing to R. The most efficient problem is case III. Note that the scoring 
inefficiency contributes 75% to R in case V, the second worst case of the five.

G. Variance of the Variance

Previous sections have discussed the relative error R and figure of merit FOM as measures of the 
quality of the mean. A quantity called the relative variance of the variance (VOV) is another useful 
tool that can assist the user in establishing more reliable confidence intervals. The VOV is the 
estimated relative variance of the estimated R. The VOV involves the estimated third and fourth 
moments of the empirical history score PDF f(x) and is much more sensitive to large history score 
fluctuations than is R. The magnitude and NPS behavior of the VOV are indicators of tally 
fluctuation chart (TFC) bin convergence. Early work was done by Estes and Cashwell122 and 
Pederson124 later reinvestigated this statistic to determine its usefulness.

The VOV is a quantity that is analogous to the square of the R of the mean, except it is for R instead 
of the mean. The estimated relative VOV of the mean is defined as

V f
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where  is the estimated variance of  and  is the estimated variance in . The VOV is 
a measure of the relative statistical uncertainty in the estimated R and is important because S must 
be a good approximation of σ to use the Central Limit Theorem to form confidence intervals.

The VOV for a tally bin124 is

 . (2.26)

This is the fourth central moment minus the second central moment squared, normed by the 
product of N and the second central moment squared.

When Eq. (2.23) is expanded in terms of sums of powers of xi, it becomes

or

(2.27)

Now consider the truncated Cauchy formula for the following analysis. The truncated Cauchy is 
similar in shape to some difficult Monte Carlo tallies. After numerous statistical experiments on 
sampling a truncated positive Cauchy distribution

, (2.28)

it is concluded that the VOV should be below 0.1 to improve the probability of forming a reliable 
confidence interval. The quantity 0.1 is a convenient value and is why the VOV is used for the 
statistical check and not the square root of the VOV (R of the R). Multiplying numerator and 
denominator of Eq. (2.24) by 1/N converts the terms into , averages, and shows that the VOV is 
expected to decrease as 1/N.

It is interesting to examine the VOV for the n identical history scores x  that were used to 
analyze R in Table 2.4, page 2–114. The VOV behaves as 1/n in this limit. Therefore, ten identical 
history scores would be enough to satisfy the VOV criterion, a factor of at least ten less than the R 
criterion. There are two reasons for this phenomenon: 1) it is more important to know R well than 
the VOV in forming confidence intervals; and 2) the history scores will ordinarily not be identical 
and thus the fourth moment terms in the VOV will increase rapidly over the second moment terms 
in R.

The behavior of the VOV as a function of N for the TFC bin is printed in the OUTP file. Because 
the VOV involves third and fourth moments, the VOV is a much more sensitive indicator to large 
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history scores than the R, which is based on first and second moments. The desired VOV behavior 
is to decrease inversely with N. This criterion is deemed to be a necessary, but not sufficient, 
condition for a statistically well-behaved tally result. A tally with a VOV that matches this criteria 
is NOT guaranteed to produce a high quality confidence interval because undersampling of high 
scores will also underestimate the higher score moments.

To calculate the VOV of every tally bin, put a nonzero 15th entry on the DBCN card. This option 
creates two additional history score moment tables each of length MXF in the TAL array to sum 

 and  (see Figure 2-18). This option is not the default because the amount of tally storage will 
increase by 2/5, which could be prohibitive for a problem with many tally bins. The magnitude of 
the VOV in each tally bin is reported in the “Status of Statistical Checks” table. History–dependent 
checks of the VOV of all tally bins can be done by printing the tallies to the output file at some 
frequency using the PRDMP card.

H. Empirical History Score Probability Density Function f(x)

1. Introduction

This section discusses another statistic that is useful in assessing the quality of confidence intervals 
from Monte Carlo calculations. Consider a generic Monte Carlo problem with difficult to sample, 
but extremely important, large history scores.  This type of problem produces three possible 
scenarios.121

The first, and obviously desired, case is a correctly converged result that produces a statistically 
correct confidence interval. The second case is the sampling of an infrequent, but very large, 
history score that causes the mean and R to increase and the FOM to decrease significantly. This 
case is easily detectable by observing the behavior of the FOM and the R in the TFCs.

The third and most troublesome case yields an answer that appears statistically converged based 
on the accepted guidelines described previously, but in fact may be substantially smaller than the 
correct result because the large history tallies were not well sampled. This situation of too few large 
history tallies is difficult to detect. The following sections discuss the use of the empirical history 
score PDF f(x) to gain insight into the TFC bin result. A pathological example to illustrate the third 
case follows.

2. The History Score Probability Density Function f(x)

A history score posted to a tally bin can be thought of as having been sampled from an underlying 
and generally unknown history score PDF f(x), where the random variable x is the score from one 
complete particle history to a tally bin. The history score can be either positive or negative. The 
quantity f(x)dx is the probability of selecting a history score between x and x + dx for the tally bin. 
Each tally bin will have its own f(x).

The most general form for expressing f(x) mathematically is

xi
3 xi

4
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,

where fc(x) is the continuous nonzero part and  represents the n different discrete 
components occurring at xi with probability pi. An f(x) could be composed of either or both parts 
of the distribution. A history score of zero is included in f(x) as the discrete component δ(x − 0).

By the definition of a PDF,

. 

As discussed on page 2–109, f(x) is used to estimate the mean, variance, and higher moment 
quantities such as the VOV.

3. The Central Limit Theorem and f(x)

As discussed on page 2–112, the Central Limit Theorem (CLT) states that the estimated mean will 
appear to be sampled from a normal distribution with a known standard deviation  when 
N approaches infinity. In practice, σ is NOT known and must be approximated by the estimated 
standard deviation S. The major difficulty in applying the CLT correctly to a Monte Carlo result to 
form a confidence interval is knowing when N has approached infinity.

The CLT requires the first two moments of f(x) to exist. Nearly all MCNP tally estimators (except 
point detectors with zero neighborhoods in a scattering material and some exponential transform 
problems) satisfy this requirement. Therefore, the history score PDF f(x) also exists. One can also 
examine the behavior of f(x) for large history scores to assess if f(x) appears to have been 
“completely” sampled. If “complete” sampling has occurred, the largest values of the sampled x’s 
should have reached the upper bound (if such a bound exists) or should decrease faster than 1/x3 so 
that  exists (σ is assumed to be finite in the CLT). Otherwise, N is assumed 
not to have approached infinity in the sense of the CLT. This is the basis for the use of the empirical 
f(x) to assess Monte Carlo tally convergence.

The argument should be made that since S must be a good estimate of σ, the expected value of the 
fourth history score moment  should exist. It will be assumed that only the 
second moment needs to exist so that the f(x) convergence criterion will be relaxed somewhat. 
Nevertheless, this point should be kept in mind.

4. Analytic Study of f(x) for Two-State Monte Carlo Problems

Booth125,126 examined the distribution of history scores analytically for both an analog two-state 
splitting problem and two exponential transform problems. This work provided the theoretical 
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foundation for statistical studies127 on relevant analytic functions to increase understanding of 
confidence interval coverage rates for Monte Carlo calculations.

It was found that the two–state splitting problem f(x) decreases geometrically as the score increases 
by a constant increment. This is equivalent to a negative exponential behavior for a continuous f(x). 
The f(x) for the exponential transform problem decreases geometrically with geometrically 
increasing x. Therefore, the splitting problem produces a linearly decreasing f(x) for the history 
score on a lin-log plot of the score probability versus score. The exponential transform problem 
generates a linearly decreasing score behavior (with high score negative exponential roll off) on a 
log-log plot of the score probability versus score plot. In general, the exponential transform 
problem is the more difficult to sample because of the larger impact of the low-probability high 
scores.

The analytic shapes were compared with a comparable problem calculated with a modified version 
of MCNP. These shapes of the analytic and empirical f(x)s were in excellent agreement.127

5. Proposed Uses for the Empirical f(x) in Each TFC Bin

Few papers discuss the underlying or empirical f(x) for Monte Carlo transport problems.128,121 
MCNP provides a visual inspection and analysis of the empirical f(x) for the TFC bin of each tally. 
This analysis helps to determine if there are any unsampled regions (holes) or spikes in the 
empirical history score PDF f(x) at the largest history scores.

The most important use for the empirical f(x) is to help determine if N has approached infinity in 
the sense of the CLT so that valid confidence intervals can be formed. It is assumed that the 
underlying f(x) satisfies the CLT requirements; therefore, so should the empirical f(x). Unless there 
is a largest possible history score, the empirical f(x) must eventually decrease more steeply than 

x−3 for the second moment  to exist. It is postulated129 that if such decreasing 

behavior in the empirical f(x) with no upper bound has not been observed, then N is not large 
enough to satisfy the CLT because f(x) has not been completely sampled. Therefore, a larger N is 
required before a confidence interval can be formed. It is important to note that this convergence 
criterion is NOT affected by any correlations that may exist between the estimated mean and the 
estimated R. In principle, this lack of correlation should make the f(x) diagnostic robust in 
assessing “complete” sampling.

Both the analytic and empirical history score distributions suggest that large score fill-in and one 
or more extrapolation schemes for the high score tail of the f(x) could provide an estimate of scores 
not yet sampled to help assess the impact of the unsampled tail on the mean. The magnitude of the 
unsampled tail will surely affect the quality of the tally confidence interval.

6. Creation of f(x) for TFC Bins

The creation of the empirical f(x) in MCNP automatically covers nearly all TFC bin tallies that a 
user might reasonably be expected to make, including the effect of large and small tally multipliers. 
A logarithmically spaced grid is used for accumulating the empirical f(x) because the tail behavior 
is assumed to be of the form 1/xn, n > 3 (unless an upper bound for the history scores exists). This 
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grid produces an equal width histogram straight line for f(x) on a log-log plot that decreases n 
decades in f(x) per decade increase in x.

Ten bins per x decade are used and cover the unnormalized tally range from 10−30 to 1030. The term 
“unnormalized” indicates that normalizations that are not performed until the end of the problem, 
such as cell volume or surface area, are not included in f(x). The user can multiply this range at the 
start of the problem by the 16th entry on the DBCN card when the range is not sufficient. Both 
history score number and history score for the TFC bin are tallied in the x grid.

With this x grid in place, the average empirical  between xi and xi+1 is defined to be

 = (number of history scores in ith score bin)/N(xi+1 − xi) ,

where xi+1 = 1.2589 xi. The quantity 1.2589 is 100.1 and comes from 10 equally spaced log bins per 
decade. The calculated s are available on printed plots or by using the “z” plot option 
(MCPLOT) with the TFC command mnemonics. Any history scores that are outside the x grid are 
counted as either above or below to provide this information to the user.

Negative history scores can occur for some electron charge deposition tallies. The MCNP default 
is that any negative history score will be lumped into one bin below the lowest history score in the 
built-in grid (the default is ). If DBCN(16) is negative, f(−x) will be created from the 
negative scores and the absolute DBCN(16) value will be used as the score grid multiplier. Positive 
history scores then will be lumped into the lowest bin because of the sign change.

Figure 2-20 and Figure 2-21 show two simple examples of empirical f(x)s from MCNP for 10 
million histories each. Figure 2-20 is from an energy leakage tally directly from a source that is 
uniform in energy from 0 to 10 MeV. The analytic f(x) is a constant 0.1 between 0 and 10 MeV. The 
empirical f(x) shows the sampling, which is 0.1 with statistical noise at the lower x bins where 
fewer samples are made in the smaller bins.

f xi( )

f xi( )

f xi( )

1 10 30–×

Figure 2-20
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Figure 2-21 shows the sampled distance to first collision in a material that has a macroscopic cross 
section of about 0.1 cm−1. This analytic function is a negative exponential given by 
f(x) = Σ exp−Σ x (see page 2–27) with a mean of 10. The empirical f(x) transitions from a constant 
0.1 at values of x less than unity to the expected negative exponential behavior.

7. Pareto Fit to the Largest History Scores for the TFC Bin

The slope n in 1/xn of the largest history tallies x must be estimated to determine if and when the 
largest history scores decrease faster than 1/x3. The 201 largest history scores for each TFC bin are 
continuously updated and saved during the calculation. A generalized Pareto function130

Pareto f(x) = a−1(1 + kx/a)−(1/k)−1

is used to fit the largest x’s. This function fits a number of extreme value distributions including 
1/xn, exponential (k = 0), and constant (k = −1). The large history score tail fitting technique uses 
the robust “simplex” algorithm,131 which finds the values of a and k that best fit the largest history 
scores by maximum likelihood estimation.

The number of history score tail points used for the Pareto fit is a maximum of 201 points because 
this provides about 10% precision130 in the slope estimator at n = 3. The precision increases for 
smaller values of n and vice versa. The number of points actually used in the fit is the lesser of 5% 
of the nonzero history scores or 201. The minimum number of points used for a Pareto fit is 25 with 
at least two different values, which requires 500 nonzero history scores with the 5% criterion. If 
less than 500 history scores are made in the TFC bin, no Pareto fit is made.

From the Pareto fit, the slope of f(xlarge) is defined to be

. 

Figure 2-21
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A SLOPE value of zero is defined to indicate that not enough f(xlarge) tail information exists for a 
SLOPE estimate. The SLOPE is not allowed to exceed a value of 10 (a “perfect score”), which 
would indicate an essentially negative exponential decrease. If the 100 largest history scores all 
have values with a spread of less than 1%, an upper limit is assumed to have been reached and the 
SLOPE is set to 10. The SLOPE should be greater than 3 to satisfy the second moment existence 
requirement of the CLT. Then, f(x) will appear to be “completely” sampled and hence N will appear 
to have approached infinity.

A printed plot of f(x) is automatically generated in the OUTP file if the SLOPE is less than 3 (or if 
any of the other statistical checks described in the next section do not pass). If 0 < SLOPE < 10, 
several “S’s” appear on the printed plot to indicate the Pareto fit, allowing the quality of the fit to 
the largest history scores to be assessed visually. If the largest scores are not Pareto in shape, the 
SLOPE value may not reflect the best estimate of the largest history score decrease. A new SLOPE 
can be estimated graphically. A blank or 162 on the PRINT card also will cause printed plots of the 
first two cumulative moments of the empirical f(x) to be made. Graphical plots of various f(x) 
quantities can be made using the “z” plot option (MCPLOT) with the TFC plot command. These 
plots should be examined for unusual behavior in the empirical f(x), including holes or spikes in 
the tail.  MCNP tries to assess both conditions and prints a message if either condition is found.

I. Forming Statistically Valid Confidence Intervals

The ultimate goal of a Monte Carlo calculation is to produce a valid confidence interval for each 
tally bin. Section VI has described different statistical quantities and the recommended criteria to 
form a valid confidence interval. Detailed descriptions of the information available in the output 
for all tally bins and the TFC bins are now discussed.

1. Information Available for Forming Statistically Valid Confidence

The R is calculated for every user-specified tally bin in the problem. The VOV and the shifted 
confidence interval center, discussed below, can be obtained for all bins with a nonzero entry for 
the 15th entry on the DBCN card at problem initiation.

a. R Magnitude Comparisons With MCNP Guidelines: The quality of MCNP Monte Carlo 
tallies historically has been associated with two statistical checks that have been the responsibility 
of the user: 1) for all tally bins, the estimated relative error magnitude rules–of–thumb that are 
shown in Figure 2-5 (that is, R< 0.1 for nonpoint detector tallies and R< 0.05 for point detector 
tallies); and 2) a statistically constant FOM in the user-selectable (TFn card) TFC bin so that the 
estimated R is decreasing by  as required by the CLT.

In an attempt to make the user more aware of the seriousness of checking these criteria, MCNP 
provides checks of the R magnitude for all tally bins. A summary of the checks is printed in the 
“Status of Statistical Checks” table. Messages are provided to the user giving the results of these 
checks.

b. Asymmetric Confidence Intervals: A correlation exists between the estimated mean and 
the estimated uncertainty in the mean.124 If the estimated mean is below the expected value, the 
estimated uncertainty in the mean  will most likely be below its expected value. This correlation 
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is also true for higher moment quantities such as the VOV. The worst situation for forming valid 
confidence intervals is when the estimated mean is much smaller than the expected value, resulting 
in smaller than predicted coverage rates. To correct for this correlation and improve coverage rates, 
one can estimate a statistic shift in the midpoint of the confidence interval to a higher value. The 
estimated mean is unchanged.

The shifted confidence interval midpoint is the estimated mean plus a term proportional to the third 
central moment. The term arises from an Edgeworth expansion124 to attempt to correct the 
confidence interval for non-normality effects in the estimate of the mean. The adjustment term is 
given by

.

Substituting for the estimated mean and expanding produces

.

The SHIFT should decrease as 1/N. This term is added to the estimated mean to produce the 
midpoint of the now asymmetric confidence interval about the mean. This value of the confidence 
interval midpoint can be used to form the confidence interval about the estimated mean to improve 
coverage rates of the true, but unknown, mean E(x). The estimated mean plus the SHIFT is printed 
automatically for the TFC bin for all tallies. A nonzero entry for the 15th DBCN card entry 
produces the shifted value for all tally bins.

This correction approaches zero as N approaches infinity, which is the condition required for the 
CLT to be valid. Kalos132 uses a slightly modified form of this correction to determine if the 
requirements of the CLT are “substantially satisfied.” His relation is

, 

which is equivalent to

. 

The user is responsible for applying this check.

c. Forming Valid Confidence Intervals for Non–TFC Bins: The amount of statistical 
information available for non–TFC bins is limited to the mean and R. The VOV and the center of 
the asymmetric confidence can be obtained for all tally bins with a nonzero 15th entry on the 
DBCN card in the initial problem. The magnitude criteria for R (and the VOV, if available) should 
be met before forming a confidence interval. If the shifted confidence interval center is available, 
it should be used to form asymmetric confidence intervals about the estimated mean.

History dependent information about R (and the VOV, if available) for non–TFC bins can be 
obtained by printing out the tallies periodically during a calculation using the PRDMP card.  The 
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N–dependent behavior of R can then be assessed. The complete statistical information available 
can be obtained by creating a new tally and selecting the desired tally bin with the TFn card.

2. Information Available for Forming Statistically Valid Confidence Intervals for TFC Bins

Additional information about the statistical behavior of each TFC bin result is available. A TFC 
bin table is produced by MCNP after each tally to provide the user with detailed information about 
the apparent quality of the TFC bin result. The contents of the table are discussed in the following 
subsections, along with recommendations for forming valid confidence intervals using this 
information.

a. TFC Bin Tally Information: The first part of the TFC bin table contains information 
about the TFC bin result including the mean, R, scoring efficiency, the zero and nonzero history 
score components of R (see page 2–118), and the shifted confidence interval center. The two 
components of R can be used to improve the problem efficiency by either improving the history 
scoring efficiency or reducing the range of nonzero history scores.

b. The Largest TFC Bin History Score Occurs on the Next History: There are occasions 
when the user needs to make a conservative estimate of a tally result. Conservative is defined so 
that the results will not be less than the expected result. One reasonable way to make such an 
estimate is to assume that the largest observed history score would occur again on the very next 
history, N + 1.

MCNP calculates new estimated values for the mean, R, VOV, FOM, and shifted confidence 
interval center for the TFC bin result for this assumption. The results of this proposed occurrence 
are summarized in the TFC bin information table. The user can assess the impact of this 
hypothetical happening and act accordingly.

c. Description of the 10 Statistical Checks for the TFC Bin: MCNP prints the results of ten 
statistical checks of the tally in the TFC bin at each print. In a “Status of Statistical Checks” table, 
the results of these ten checks are summarized at the end of the output for all TFC bin tallies. The 
quantities involved in these checks are the estimated mean, R, VOV, FOM, and the large history 
score behavior of f(x). Passing all of the checks should provide additional assurance that any 
confidence intervals formed for a TFC bin result will cover the expected result the correct fraction 
of the time. At a minimum, the results of these checks provide the user with more information about 
the statistical behavior of the result in the TFC bin of each tally.

The following 10 statistical checks are made on the TFCs printed at the end of the output for 
desirable statistical properties of Monte Carlo solutions:

MEAN

(1) a nonmonotonic behavior (no up or down trend) in the estimated mean as a function 
of the number histories N for the last half of the problem;
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R

(2) an acceptable magnitude of the estimated R of the estimated mean (< 0.05 for a 
point detector tally or < 0.10 for a non-point detector tally);

(3) a monotonically decreasing R as a function of the number histories N for the last 
half of the problem;

(4) a  decrease in the R as a function of N for the last half of the problem;

VOV

(5) the magnitude of the estimated VOV should be less than 0.10 for all types of tallies;
(6) a monotonically decreasing VOV as a function of N for the last half of the problem;
(7) a 1/N decrease in the VOV as a function of N for the last half of the problem;

FOM

(8) a statistically constant value of the FOM as a function of N for the last half of the 
problem;

(9) a nonmonotonic behavior in the FOM as a function of N for the last half of the 
problem; and

f(x)

(10) the SLOPE (see page 2–126) of the 25 to 201 largest positive (negative with a 
negative DBCN(16) entry) history scores x should be greater than 3.0 so that the 
second moment  will exist if the SLOPE is extrapolated to infinity.

The seven N-dependent checks for the TFC bin are for the last half of the problem. The last half of 
the problem should be well behaved in the sense of the CLT to form the most valid confidence 
intervals. “Monotonically decreasing” in checks 3 and 5 allows for some increases in both R and 
the VOV. Such increases in adjacent TFC entries are acceptable and usually do not, by themselves, 
cause poor confidence intervals. A TFC bin R that does not pass check 3, by definition in MCNP, 
does not pass check 4. Similarly, a TFC bin VOV that does not pass check 6, by definition, does 
not pass check 7.

A table is printed after each tally for the TFC bin result that summarizes the results and the pass or 
no-pass status of the checks. Both asymmetric and symmetric confidence intervals are printed for 
the one, two, and three σ levels when all of the statistical checks are passed. These intervals can be 
expected to be correct with improved probability over historical rules of thumb. This is NOT A 
GUARANTEE, however; there is always a possibility that some as–yet–unsampled portion of the 
problem would change the confidence interval if more histories were calculated. A WARNING is 
printed if one or more of these ten statistical checks is not passed, and one page of printed plot 
information about f(x) is produced for the user to examine.

An additional information-only check is made on the largest five f(x) score grid bins to determine 
if there are bins that have no samples or if there is a spike in an f(x) that does not appear to have an 
upper limit. The result of the check is included in the TFC summary table for the user to consider. 
This check is not a pass or no-pass test because a hole in the tail may be appropriate for a discrete 
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f(x) or an exceptional sample occurred with so little impact that none of the ten checks was affected. 
The empirical f(x) should be examined to assess the likelihood of “complete” sampling.

d. Forming Valid TFC Bin Confidence Intervals: For TFC bin results, the highest 
probability of creating a valid confidence interval occurs when all of the statistical checks are 
passed. Not passing several of the checks is an indication that the confidence interval is less likely 
to be correct. A monotonic trend in the mean for the last half of the problem is a strong indicator 
that the confidence interval is likely to produce incorrect coverage rates. The magnitudes of R and 
the VOV should be less than the recommended values to increase the likelihood of a valid 
confidence interval. Small jumps in the R, VOV, and/or the FOM as a function of N are not 
threatening to the quality of a result. The slope of f(x) is an especially strong indicator that N has 
not approached infinity in the sense of the CLT. If the slope appears too shallow (< 3), check the 
printed plot of f(x) to see that the estimated Pareto fit is adequate. The use of the shifted confidence 
interval is recommended, although it will be a small effect for a well–converged problem.

The last half of the problem is determined from the TFC. The more information available about the 
last half of the problem, the better the N-dependent checks will be. Therefore, a problem that has 
run 40,000 histories will have 20 TFC N entries, which is more N entries than a 50,000 history 
problem with 13 entries. It is possible that a problem that passes all tests at 40,000 may not pass all 
the tests at 40,001. As is always the case, the user is responsible for deciding when a confidence 
interval is valid. These statistical diagnostics are designed to aid in making this decision.

J. A Statistically Pathological Output Example

A statistically pathological test problem is discussed in this section. The problem calculates the 
surface neutron leakage flux above 12 MeV from an isotropic 14 MeV neutron point source of unit 
strength at the center of a 30-cm-thick concrete shell with an outer radius of 390 cm. Point and ring 
detectors were deliberately used to estimate the surface neutron leakage flux with highly 
inefficient, long-tailed f(x)s. The input is shown on page 5–49.

The variance reduction methods used were implicit capture with weight cutoff, low-score point 
detector Russian roulette, and a 0.5 mean free path (4 cm) neighborhood around the detectors to 
produce large, but finite, higher moments. Other tallies or variance reduction methods could be 
used to make this calculation much more efficient, but that is not the object of this example. A 
surface flux estimator would have been over a factor of 150 to 30,000 times more efficient than 
ring and point detectors, respectively.

Figure 2-22 shows MCNP plots of the estimated mean, R, VOV and slope of the history score PDF 
as a function of N values of 20,000 (left column) and 5 million (right column). The ring detector 
results are shown as the solid line and the point detector result is the dashed line.

Column 1 shows the results as a function of N for 20,000 histories. The point detector result at 
14,000 histories (not shown) was  (R=0.041). The FOM varied somewhat 
randomly between about 800 and 1160 for the last half of the problem. With no other information, 
this result could be accepted by even a careful Monte Carlo practitioner. However, the VOV never 
gets close to the required 0.1 value and the slope of the unbounded f(x) is less than 1.4. This slope 
could not continue indefinitely because even the mean of f(x) would not exist. Therefore, a 
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confidence interval should not be formed for this tally. At 20,000 histories, R increases 
substantially and the FOM crashes, indicating serious problems with the result.

The ring detector result is having problems of its own. The ring detector result for 14,000 histories 
was  (R=0.17, VOV = 0.35, slope=2.1, FOM=67). None of the plotted 
quantities satisfies the required convergence criteria.The correct detector result, obtained from a 
5 million history ring detector tally, is  (R=0.0169, VOV=0.023, slope=4.6, 
FOM=19). The apparently converged 14,000 history point detector result is a factor of four below 
the correct result!

If you were to run 200,000 histories, you would see the point detector result increasing to 
 (R=0.20, VOV=0.30, slope=1.6, FOM=1.8). The magnitudes of R and the 

VOV are much too large for the point detector result to be accepted. The slope of f(x) is slowly 
increasing, but has only reached a value of 1.6. This slope is still far too shallow compared to the 
required value of 3.0.

The ring detector result of  (R=0.0579, VOV=0.122, slope=2.8, FOM=22) at 
192,000 histories is interesting. All of these values are close to being acceptable, but just miss the 
requirements. The ring detector result is more than two estimated standard deviations below the 
correct result.

Column 2 shows the results as a function of N for 5 million histories. The ring detector result of 
 (R=0.0169, VOV=0.023, slope=4.6, FOM=19) now appears very well 

behaved in all categories. This tally passed all 10 statistical checks. There appears to be no reason 
to question the validity of this tally. The point detector result is  (R=0.11, 
VOV=0.28, slope=2.1, FOM=0.45). The result is clearly improving, but does not meet the 
acceptable criteria for convergence. This tally did not pass 3 out 10 statistical checks.
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When you compare the empirical point detector f(x)s for 14,000 and 200 million histories you see 
that the 14,000 history f(x) clearly has unsampled regions in the tail, indicating incomplete f(x) 
sampling.129 For the point detector, seven decades of x have been sampled by 200 million histories 

Figure 2-22
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compared to only three decades for 14,000 histories. The largest x’s occur from the extremely 
difficult to sample histories that have multiple small energy loss collisions close to the detector. 
The 200 million history point detector result is  (R=0.035, VOV=0.60, 
slope=2.4, FOM=0.060). The point detector f(x) slope is increasing, but still is not yet completely 
sampled. This tally did not pass 6 of 10 checks with 200 million histories. The result is about 1.5 
estimated standard deviations below the correct answer. It is important to note that calculating a 
large number of histories DOES NOT guarantee a precise result. The more compact empirical ring 
f(x) for 20 million histories appears to be completely sampled because of the large slope. The 
results for 1 billion histories are shown in Ref. 121. 

For difficult to sample problems such as this example, it is possible that an even larger history score 
could occur that would cause the VOV and possibly the slope to have unacceptable values. The 
mean and RE will be much less affected than the VOV. The additional running time required to 
reach acceptable values for the VOV and the slope could be prohibitive. The large history score 
should NEVER be discarded from the tally result. It is important that the cause for the large history 
score be completely understood. If the score was created by a poorly sampled region of phase 
space, the problem should be modified to provide improved phase space sampling. It is also 
possible that the large score was created by an extremely unlikely set of circumstances that 
occurred “early” in the calculation. In this situation, if the RE is within the guidelines, the empirical 
f(x) appears to be otherwise completely sampled, and the largest history score appears to be a once 
in a lifetime occurrence, a good confidence interval can still be formed. If a conservative (large) 
answer is required, the printed result that assumes the largest history score occurs on the very next 
history can be used.

Comparing several empirical f(x)s for the above problem with 200 million histories that have been 
normalized so that the mean of each f(x) is unity, you see that the point detector at 390 cm clearly 
is quite Cauchy–like (see Eq. (2.25) for many decades.128 The point detector at 4000 cm is a much 
easier tally (by a factor of 10,000) as exhibited by the much more compact empirical f(x). The 
large–score tail decreases in a manner similar to the negative exponential f(x). The surface flux 
estimator is the most compact f(x) of all. The blip on the high–score tail is caused by the average 
cosine approximation of 0.05 between cosines of 0 and 0.1 (see page 2–87). This tally is 30,000 
times more efficient than the point detector tally.

VII. VARIANCE REDUCTION

A. General Considerations

1. Variance Reduction and Accuracy

Variance-reducing techniques in Monte Carlo calculations reduce the computer time required to 
obtain results of sufficient precision. Note that precision is only one requirement for a good Monte 
Carlo calculation. Even a zero variance calculation cannot accurately predict natural behavior if 
other sources of error are not minimized. Factors affecting accuracy were discussed in Section VI 
beginning on page 2–108.

5.41 10 8–× n cm2 s⁄⁄
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2. Two Choices That Affect Efficiency

The efficiency of a Monte Carlo calculation is affected by two choices, tally type and random walk 
sampling. The tally choice (for example, point detector flux tally vs. surface crossing flux tally) 
amounts to trying to obtain the best results from the random walks sampled. The chosen random 
walk sampling amounts to preferentially sampling “important” random walks at the expense of 
“unimportant” random walks. (A random walk is important if it has a large affect on a tally.) These 
two choices usually affect the time per history and the history variance as described in the next 
section on page 2–136.  MCNP estimates tallies of the form

< T > 

by sampling particle histories that statistically produce the correct particle density .  The 
tally function  is zero except where a tally is required. For example, for a surface 
crossing tally (F1), T will be one on the surface and zero elsewhere. MCNP variance reduction 
techniques allow the user to try to produce better statistical estimates of N where T is large, usually 
at the expense of poorer estimates where T is zero or small.

There are many ways to statistically produce . Analog Monte Carlo simply samples the 
events according to their natural physical probabilities. In this way, an analog Monte Carlo 
calculation estimates the number of physical particles executing any given random walk.  
Nonanalog techniques do not directly simulate nature. Instead, nonanalog techniques are free to do 
anything if N, hence < T >, is preserved. This preservation is accomplished by adjusting the weight 
of the particles. The weight can be thought of as the number of physical particles represented by 
the MCNP particle (see page 2–25). Every time a decision is made, the nonanalog techniques 
require that the expected weight associated with each outcome be the same as in the analog game. 
In this way, the expected number of physical particles executing any given random walk is the same 
as in the analog game.

For example, if an outcome “A” is made q times as likely as in the analog game, when a particle 
chooses outcome “A,” its weight must be multiplied by q−1 to preserve the expected weight for 
outcome “A.” Let p be the analog probability for outcome “A”; then pq is the nonanalog 
probability for outcome “A.” If w0 is the current weight of the particle, then the expected weight 
for outcome “A” in the analog game is w0∗p and the expected weight for outcome “A” in the 
nonanalog game is (w0 /q)∗pq.

MCNP uses three basic types of nonanalog games: (1) splitting, (2) Russian roulette, and 
(3) sampling from nonanalog probability density functions. The previous paragraph discusses type 
3. Splitting refers to dividing the particle's weight among two or more daughter particles and 
following the daughter particles independently. Usually the weight is simply divided evenly among 
k identical daughter particles whose characteristics are identical to the parent except for a factor 
1/k in weight (for example, splitting in the weight window). In this case the expected weight is 
clearly conserved because the analog technique has one particle of weight w0 at , whereas 
the splitting results in k particles of weight w0 /k at .  In both cases the outcome is weight 
w0 at .

r v tN r v t, ,( )T r v t, ,( )d∫d∫d∫=

N r v t, ,( )
T r v t, ,( )

N r v t, ,( )

r v t, ,( )
r v t, ,( )

r v t, ,( )
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Other splitting techniques split the parent particle into k, typically two, differing daughter particles. 
The weight of the jth daughter represents the expected number of physical particles that would 
select outcome j from a set of k mutually exclusive outcomes. For example, the MCNP forced 
collision technique considers two outcomes: (1) the particle reaches a cell boundary before 
collision, or (2) the particle collides before reaching a cell boundary. The forced collision technique 
divides the parent particle representing w0 physical particles into two daughter particles, 
representing w1 physical particles that are uncollided and w2 physical particles that collide. The 
uncollided particle of weight w1 is then put on the cell boundary. The collision site of the collided 
particle of weight w2 is selected from a conditional distance-to-collision probability density, the 
condition being that the particle must collide in the cell. This technique preserves the expected 
weight colliding at any point in the cell as well as the expected weight not colliding. A little simple 
mathematics is required to demonstrate this technique.

Russian roulette takes a particle at  of weight w0 and turns it into a particle of weight 
w1 > w0 with probability w0/w1 and kills it (that is, weight=0) with probability (1 − (w0 /w1)). The 
expected weight at  is w1 ∗ (w0 /w1) + (1 − (w0 /w1)) ∗ 0 = w0, the same as in the analog 
game.

Some techniques use a combination of these basic games and DXTRAN uses all three.

3. Efficiency, Time per History, and History Variance

Recall from page 2–116 that the measure of efficiency for MCNP calculations is the 
FOM: , where

R2 = sample relative standard deviation of the mean and
T = computer time for the calculation (in minutes).

Recall from Eqns. 2.17 and 2.19a that , where

S2 = sample history variance,
N = number of particles, and

= sample mean.

Generally we are interested in obtaining the smallest R in a given time T. The equation above 
indicates that to decrease R it is desirable to: 1)  decrease S and 2) increase N; that is, decrease the 
time per particle history. Unfortunately, these two goals usually conflict. Decreasing S normally 
requires more time because better information is required. Increasing N normally increases S 
because there is less time per history to obtain information. However, the situation is not hopeless.  
It is often possible either to decrease S substantially without decreasing N too much or to increase 
N substantially without increasing S too much, so that R decreases.

Many variance reduction techniques in MCNP attempt to decrease R by either producing or 
destroying particles. Some techniques do both. In general, techniques that produce tracks work by 
decreasing S (we hope much faster than N decreases) and techniques that destroy tracks work by 
increasing N (we hope much faster than S increases).

r v t, ,( )

r v t, ,( )

FOM 1 R2T( )⁄≡

R S N⁄( ) x⁄=

x
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4. Strategy

Successful use of MCNP variance reduction techniques is often difficult, tending to be more art 
than science. The introduction of the weight window generator has improved things, but the user 
is still fundamentally responsible for the choice and proper use of variance reducing techniques.  
Each variance reduction technique has its own advantages, problems, and peculiarities.  However, 
there are some general principles to keep in mind while developing a variance reduction strategy.

Not surprisingly, the general principles all have to do with understanding both the physical problem 
and the variance reduction techniques available to solve the problem. If an analog calculation will 
not suffice to calculate the tally, there must be something special about the particles that tally. The 
user should understand the special nature of those particles that tally.  Perhaps, for example, only 
particles that scatter in particular directions can tally. After the user understands why the tallying 
particles are special, MCNP techniques can be selected (or developed by the user) that will increase 
the number of special particles followed.

After the MCNP techniques are selected the user typically has to supply appropriate parameters to 
the variance reduction techniques. This is probably more difficult than is the selection of 
techniques. The first guess at appropriate parameters typically comes either from experience with 
similar problems or from experience with an analog calculation of the current problem.  It is usually 
better to err on the conservative side; that is, too little biasing rather than too much biasing. After 
the user has supplied parameters for the variance reduction techniques, a short Monte Carlo run is 
done so that the effectiveness of the techniques and parameters can be monitored with the MCNP 
output.

The MCNP output contains much information to help the user understand the sampling.  This 
information should be examined to ensure that

(1) the variance reduction techniques are improving the sampling of the particles that 
tally;

(2) the variance reduction techniques are working cooperatively; that is, one is not 
destructively interfering with another;

(3) the FOM table is not erratic, which would indicate poor sampling; and
(4) there is nothing that looks obviously ridiculous.

Unfortunately, analyzing the output information requires considerable thought and experience. 
Reference 133 shows in detail strategies and analysis for a particular problem.

After ascertaining that the techniques are improving the calculation, the user makes a few more 
short runs to refine the parameters until the sampling no longer improves. The weight window 
generator can also be turned on to supply information about the importance function in different 
regions of the phase space. This rather complex subject is described on page 2–146.

5. Erratic Error Estimates

Erratic error estimates are sometimes observed in MCNP calculations. In fact, the primary reason 
for the Tally Fluctuation Chart (TFC) table in the MCNP output is to allow the user to monitor the 
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FOM and the relative error as a function of the number of histories. With few exceptions, such as 
an analog point detector embedded in a scattering medium with R0= 0 (a practice highly 
discouraged), MCNP tallies are finite variance tallies. For finite variance tallies the relative error 
should decrease roughly as  so the FOM should be roughly constant and the ten statistical 
checks of the tallies (see page 2–129) should all be passed. If the statistical checks are not passed, 
the error estimates should be considered erratic and unreliable, no matter how small the relative 
error estimate is.

Erratic error estimates occur typically because a high-weight particle tallies from an important 
region of phase space that has not been well sampled. A high-weight particle in a given region of 
phase space is a particle whose weight is some nontrivial fraction of all the weight that has tallied 
from that region because of all previous histories. A good example is a particle that collides very 
close to a point or ring detector. If not much particle weight has previously collided that close to 
the detector, the relative error estimate will exhibit a jump for that history. Another example is 
coherent photon scattering towards a point detector (see page 2–64).

To avoid high-weight particles in important regions, the user should try to ensure that these regions 
are well sampled by many particles and try to minimize the weight fluctuation among these 
particles. Thus the user should try to use biasing techniques that preferentially push particles into 
important regions without introducing large weight fluctuations in these regions.  The weight 
window can often be very useful in minimizing weight fluctuations caused by other variance 
reduction techniques.

If, despite a user's efforts, an erratic error estimate occurs, the user should obtain event logs for 
those particles causing the estimate to be erratic. The event logs should be studied to learn what is 
special about these particles. When the special nature of these particles is understood, the user can 
adjust the variance reduction techniques to sample these particles more often. Thus their weight 
will be smaller and they will not be as likely to cause erratic estimates. Under absolutely no 
circumstances should these particles be discarded or ignored! The fact that these particles 
contribute very heavily to the tally indicates that they are important to the calculation and the user 
should try to sample more of them.

6. Biasing Against Random Walks of Presumed Low Importance

It was mentioned earlier that one should be cautious and conservative when applying variance 
reduction techniques. Many more people get into trouble by overbiasing than by underbiasing.  
Note that preferentially sampling some random walks means that some walks will be sampled 
(for a given computer time) less frequently than they would have been in an analog calculation.  
Sometimes these random walks are so heavily biased against that very few, or even none, are ever 
sampled in an actual calculation because not enough particles are run.

Suppose that (on average) for every million histories only one track enters cell 23. Further suppose 
that a typical run is 100,000 histories. On any given run it is unlikely that a track enters cell 23.  
Now suppose that tracks entering cell 23 turn out to be much more important than a user thought. 
Maybe 10% of the answer should come from tracks entering cell 23. The user could run 100,000 
particles and get 90% of the true tally with an estimated error of 1%, with absolutely no indication 
that anything is amiss. However, suppose the biasing had been set such that (on average) for every 

N
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10,000 particles, one track entered cell 23, about 10 tracks total. The tally probably will be severely 
affected by at least one high weight particle and will hover closer to the true tally with a larger and 
perhaps erratic error estimate. The essential point is this:  following ten tracks into cell 23 does not 
cost much computer time and it helps ensure that the estimated error cannot be low when the tally 
is seriously in error. Always make sure that all regions of the problem are sampled enough to be 
certain that they are unimportant.

B. Variance Reduction Techniques

There are four classes of variance reduction techniques134 that range from the trivial to the esoteric.

Truncation Methods are the simplest of variance reduction methods. They speed up calculations by 
truncating parts of phase space that do not contribute significantly to the solution. The simplest 
example is geometry truncation in which unimportant parts of the geometry are simply not 
modeled. Specific truncation methods available in MCNP are energy cutoff and time cutoff.

Population Control Methods use particle splitting and Russian roulette to control the number of 
samples taken in various regions of phase space. In important regions many samples of low weight 
are tracked, while in unimportant regions few samples of high weight are tracked. A weight 
adjustment is made to ensure that the problem solution remains unbiased. Specific population 
control methods available in MCNP are geometry splitting and Russian roulette, energy splitting/
roulette, time splitting/roulette, weight cutoff, and weight windows.

Modified Sampling Methods alter the statistical sampling of a problem to increase the number of 
tallies per particle. For any Monte Carlo event it is possible to sample from any arbitrary 
distribution rather than the physical probability as long as the particle weights are then adjusted to 
compensate. Thus with modified sampling methods, sampling is done from distributions that send 
particles in desired directions or into other desired regions of phase space such as time or energy, 
or change the location or type of collisions.  Modified sampling methods in MCNP include the 
exponential transform, implicit capture, forced collisions, source biasing, and neutron-induced 
photon production biasing.

Partially-Deterministic Methods are the most complicated class of variance reduction methods.  
They circumvent the normal random walk process by using deterministic-like techniques, such as 
next event estimators, or by controlling the random number sequence.  In MCNP these methods 
include point detectors, DXTRAN, and correlated sampling.

The available MCNP variance reduction techniques are described below.

1. Energy Cutoff

The energy cutoff in MCNP is either a single user-supplied, problem-wide energy level or a cell-
dependent energy level. Particles are terminated when their energy falls below the energy cutoff.  
The energy cutoff terminates tracks and thus decreases the time per history.  The energy cutoff 
should be used only when it is known that low-energy particles are either of zero or almost zero 
importance. An energy cutoff is like a Russian roulette game with zero survival probability. A 
number of pitfalls exist.
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1. Remember that low-energy particles can often produce high-energy particles 
(for example, fission or low-energy neutrons inducing high-energy photons). Thus, even 
if a detector is not sensitive to low-energy particles, the low-energy particles may be 
important to the tally.

2. The CUT card energy cutoff is the same throughout the entire problem. Often low-
energy particles have zero importance in some regions and high importance in others, 
and so a cell-dependent energy cutoff is also available with the ELPT card.

3. The answer will be biased (low) if the energy cutoff is killing particles that might 
otherwise have contributed. Furthermore, as  the apparent error will go to zero 
and therefore mislead the unwary. Serious consideration should be given to two 
techniques discussed later, energy roulette and space-energy weight window, that are 
always unbiased.

The energy cutoff has one advantage not directly related to variance reduction. A lower energy 
cutoff requires more cross sections so that computer memory requirements go up and interactive 
computing with a timesharing system is degraded.

2. Time Cutoff

The time cutoff in MCNP is a single user-supplied, problem-wide time value. Particles are 
terminated when their time exceeds the time cutoff. The time cutoff terminates tracks and thus 
decreases the computer time per history. A time cutoff is like a Russian roulette game with zero 
survival probability. The time cutoff should only be used in time-dependent problems where the 
last time bin will be earlier than the cutoff.

Although the energy and time cutoffs are similar, more caution must be exercised with the energy 
cutoff because low energy particles can produce high energy particles, whereas a late time particle 
cannot produce an early time particle.

3. Geometry Splitting with Russian Roulette

Geometry splitting/Russian roulette is one of the oldest and most widely used variance-reducing 
techniques in Monte Carlo codes. When used judiciously, it can save substantial computer time.  
As particles migrate in an important direction, they are increased in number to provide better 
sampling, but if they head in an unimportant direction, they are killed in an unbiased manner to 
avoid wasting time on them. Oversplitting, however, can substantially waste computer time. 
Splitting generally decreases the history variance but increases the time per history, whereas 
Russian roulette generally increases the history variance but decreases the time per history.

Each cell in the problem geometry setup is assigned an importance I by the user on the IMP input 
card. The number I should be proportional to the estimated value that particles in the cell have for 
the quantity being scored. When a particle of weight W passes from a cell of importance I to one 
of higher importance , the particle is split into a number of identical particles of lower weight 
according to the following recipe.  If  is an integer , the particle is split into n identical 
particles, each weighing W/n. Weight is preserved in the integer splitting process. If  is not an 
integer but still greater than 1, splitting is done probabilistically so that the expected number of 
splits is equal to the importance ratio.  Denoting  to be the largest integer in , 
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 is defined. Then with probability p, n + 1 particles are used, and with probability 
1 − p, n particles are used. For example, if  is 2.75, 75% of the time split 3 for 1 and 25% of 
the time split 2 for 1. The weight assigned to each particle is , which is the expected 
weight, to minimize dispersion of weights.

On the other hand, if a particle of weight W passes from a cell of importance I to one of lower 
importance I', so that I'/I < 1, Russian roulette is played and the particle is killed with probability 
1−(I'/I), or followed further with probability I'/I and weight .

Geometry splitting with Russian roulette is very reliable. It can be shown that the weights of all 
particle tracks are the same in a cell no matter which geometrical path the tracks have taken to get 
to the cell, assuming that no other biasing techniques, e.g. implicit capture, are used. The variance 
of any tally is reduced when the possible contributors all have the same weight.

The assigned cell importances can have any value—they are not limited to integers. However, 
adjacent cells with greatly different importances place a greater burden on reliable sampling. Once 
a sample track population has deteriorated and lost some of its information, large splitting ratios 
(like 20 to 1) can build the population back up, but nothing can regain the lost information. It is 
generally better to keep the ratio of adjacent importances small (for example, a factor of a few) and 
have cells with optical thicknesses in the penetration direction less than about two mean free paths. 
MCNP prints a warning message if adjacent importances or weight windows have a ratio greater 
than 4. PRINT TABLE 120 in the OUTP file lists the affected cells and ratios.

Generally, in a deep penetration shielding problem the sample size (number of particles) 
diminishes to almost nothing in an analog simulation, but splitting helps keep the size built up.  
A good rule is to keep the population of tracks traveling in the desired direction more or less 
constant—that is, approximately equal to the number of particles started from the source. A good 
initial approach is to split the particles 2 for 1 wherever the track population drops by a factor of 2. 
Near-optimum splitting usually can be achieved with only a few iterations and additional iterations 
show strongly diminishing returns. Note that in a combined neutron/photon problem, importances 
will probably have to be set individually for neutrons and for photons.

MCNP never splits into a void, although Russian roulette can be played entering a void.  Splitting 
into a void accomplishes nothing except extra tracking because all the split particles must be 
tracked across the void and they all make it to the next surface. The split should be done according 
to the importance ratio of the last nonvoid cell departed and the first nonvoid cell entered. Note 
four more items:

1. Geometry splitting/Russian roulette works well only in problems that do not have 
extreme angular dependence. In the extreme case, splitting/Russian roulette can be 
useless if no particles ever enter an important cell where the particles can be split.

2. Geometry splitting/Russian roulette will preserve weight variations. The technique is 
“dumb” in that it never looks at the particle weight before deciding appropriate action.  
An example is geometry splitting/Russian roulette used with source biasing.

3. Geometry splitting/Russian roulette are turned on or off together.

p I′ I n–⁄=
I′ I⁄

W I I′⁄⋅

W I I′⁄⋅
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4. Particles are killed immediately upon entering a zero importance cell, acting as a 
geometry cutoff.

4. Energy Splitting/Roulette and Time Splitting/Roulette

a.  Energy Splitting/Roulette

Energy splitting and roulette typically are used together, but the user can specify only one if 
desired. Energy splitting/roulette is independent of spatial cell. If the problem has a space-energy 
dependence, the space-energy dependent weight window is normally a better choice.

1. Splitting: In some cases, particles are more important in some energy ranges than in 
others. For example, it may be difficult to calculate the number of 235U fissions because 
the thermal neutrons are also being captured and not enough thermal neutrons are 
available for a reliable sample. In this case, once a neutron falls below a certain energy 
level it can be split into several neutrons with an appropriate weight adjustment. A 
second example involves the effect of fluorescent emission after photoelectric 
absorption. With energy splitting, the low-energy photon track population can be built 
up rather than rapidly depleted, as would occur naturally with the high photoelectric 
absorption cross section. Particles can be split as they move up or down in energy at up 
to five different energy levels.

2. Russian roulette: In many cases the number of tracks increases with decreasing energy, 
especially neutrons near the thermal energy range. These tracks can have many collisions 
requiring appreciable computer time. They may be important to the problem and cannot 
be completely eliminated with an energy cutoff, but their number can be reduced by 
playing a Russian roulette game to reduce their number and computer time.
If a track's energy drops through a prescribed energy level, the roulette game is played, 
based on the input value of the survival probability. If the game is won, the track's history 
is continued, but its weight is increased by the reciprocal of the survival probability to 
conserve weight.

b.  Time Splitting/Roulette

Time splitting/roulette is similar to the energy splitting and roulette game just discussed, except a 
particle's time can only increase, in contrast with a particle's energy that may increase or decrease. 
Time splitting/roulette is independent of spatial cell. If the problem has a space-time dependence, 
the space-time dependent weight window is normally a better choice. 

1. Splitting: In some cases, particles are more important later in time. For example, if a 
detector responds primarily to late time particles, then it may be useful to split the 
particles as time increases. 

2. Russian roulette: In some cases there may be too many late time particles for optimal 
calculational efficiency, and the late time particles can be rouletted.
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5. Weight Cutoff

In weight cutoff, Russian roulette is played if a particle's weight drops below a user-specified 
weight cutoff. The particle is either killed or its weight is increased to a user-specified level. The 
weight cutoff was originally envisioned for use with geometry splitting/Russian roulette and 
implicit capture, see page 2–150. Because of this intent,

1. The weight cutoffs in cell j depend not only on WC1 and WC2 on the CUT card, but also 
on the cell importances.

2. Implicit capture is always turned on (except in detailed photon physics) whenever a 
nonzero WC1 is specified.

Referring to item 1 above, the weight cutoff is applied when the particle’s weight falls below 
Rj ∗ WC2, where Rj is the ratio of the source cell importance (IMP card) to cell j’s importance.  
With probability W/(WC1 ∗ Rj) the particle survives with new weight WC1 ∗ Rj; otherwise the 
particle is killed. When WC1 and WC2 on the CUT card are negative, the weight cutoff is scaled 
to the minimum source weight of a particle so that source particles are not immediately killed by 
falling below the cutoff.

As mentioned earlier, the weight cutoff game was originally envisioned for use with geometry 
splitting and implicit capture. To illustrate the need for a weight cutoff when using implicit capture, 
consider what can happen without a weight cutoff. Suppose a particle is in the interior of a very 
large medium and there are neither time nor energy cutoffs. The particle will go from collision to 
collision, losing a fraction of its weight at each collision. Without a weight cutoff, a particle's 
weight would eventually be too small to be representable in the computer, at which time an error 
would occur. If there are other loss mechanisms (for example, escape, time cutoff, or energy 
cutoff), the particle’s weight will not decrease indefinitely, but the particle may take an unduly long 
time to terminate.

Weight cutoff's dependence on the importance ratio can be easily understood if one remembers that 
the weight cutoff game was originally designed to solve the low-weight problem sometimes 
produced by implicit capture.  In a high-importance region, the weights are low by design, so it 
makes no sense to play the same weight cutoff game in high- and low-importance regions.

Comments: Many techniques in MCNP cause weight change. The weight cutoff was really 
designed with geometry splitting and implicit capture in mind. Care should be taken in the use of 
other techniques.

Weight cutoff games are unlike time and energy cutoffs. In time and energy cutoffs, the random 
walk is always terminated when the threshold is crossed. Potential bias may result if the particle's 
importance was not zero. A weight cutoff (weight roulette would be a better name) does not bias 
the game because the weight is increased for those particles that survive.

Setting the weight cutoff is not typically an easy task and requires thought and experimentation.  
Essentially the user must guess what weight is worth following and start experimenting with 
weight cutoffs in that vicinity.
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6. Weight Window

The weight window Figure 2-23 is a phase space splitting and Russian roulette technique. The 
phase space may be space-energy, space-time, or space.

For each phase space cell, the user supplies a lower weight bound. The upper weight bound is a 
user-specified multiple of the lower weight bound. These weight bounds define a window of 
acceptable weights. If a particle is below the lower weight bound, Russian roulette is played and 
the particle's weight is either increased to a value within the window or the particle is terminated. 
If a particle is above the upper weight bound, it is split so that all the split particles are within the 
window. No action is taken for particles within the window.

Figure 2-24 is a more detailed picture of the weight window. Three important weights define the 
weight window in a phase space cell.

1. WL, the lower weight bound,

2. WS, the survival weight for particles playing roulette, and
3. WU, the upper weight bound.

The user specifies WL for each phase space cell on WWN cards. WS and WU are calculated using 
two problem-wide constants, CS and CU (entries on the WWP card), as WS = CSWL and 
WU = CUWL. Thus all cells have an upper weight bound CU times the lower weight bound and a 
survival weight CS times the lower weight bound.
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Although the weight window can be effective when used alone, it was designed for use with other 
biasing techniques that introduce a large variation in particle weight. In particular, a particle may 
have several “unpreferred” samplings, each of which will cause the particle weight to be multiplied 
by a weight factor substantially larger than one. Any of these weight multiplications by itself is 
usually not serious, but the cumulative weight multiplications can seriously degrade calculational 
efficiency. Worse, the error estimates may be misleading until enough extremely high-weight 
particles have been sampled. Monte Carlo novices are prone to be misled because they do not have 
enough experience reading and interpreting the summary information on the sampling supplied by 
MCNP. Hence, a novice may put more faith in an answer than is justified.

Although it is impossible to eliminate all pathologies in Monte Carlo calculations, a properly 
specified weight window goes far toward eliminating the pathology referred to in the preceding 
paragraph. As soon as the weight gets above the weight window, the particle is split and subsequent 
weight multiplications will thus be multiplying only a fraction of the particle’s weight (before 
splitting). Thus, it is hard for the tally to be severely perturbed by a particle of extremely large 
weight.  In addition, low-weight particles are rouletted, so time is not wasted following particles of 
trivial weight.

One cannot ensure that every history contributes the same score (a zero variance solution), but by 
using a window inversely proportional to the importance, one can ensure that the mean score from 
any track in the problem is roughly constant. (A weight window generator exists to estimate these 
importance reciprocals; see page 2–146.)  In other words, the window is chosen so that the track 
weight times the mean score (for unit track weight) is approximately constant. Under these 
conditions, the variance is due mostly to the variation in the number of contributing tracks rather 
than the variation in track score.

Thus far, two things remain unspecified about the weight window:  the constant of inverse 
proportionality and the width of the window. It has been observed empirically that an upper weight 
bound five times the lower weight bound works well, but the results are reasonably insensitive to 
this choice anyway. The constant of inverse proportionality is chosen so that the lower weight 
bound in some reference cell is chosen appropriately.  In most instances the constant should be 
chosen so that the source particles start within the window.

1. Weight Window Compared to Geometry Splitting: Although both techniques use 
splitting and Russian roulette, there are some important differences.
a. The weight window is space-energy dependent or space-time dependent. Geometry 

splitting is only space dependent.

b. The weight window discriminates on particle weight before deciding appropriate 
action. Geometry splitting is done regardless of particle weight.

c. The weight window works with absolute weight bounds. Geometry splitting is done 
on the ratio of the importance across a surface. 

d. The weight window can be applied at surfaces, collision sites, or both. Geometry 
splitting is applied only at surfaces.
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e. The weight window can control weight fluctuations introduced by other biasing 
techniques by requiring all particles in a cell to have weight WL < W < WU. The 
geometry splitting will preserve any weight fluctuations because it is weight 
independent.

f. In the rare case where no other weight modification schemes are present, 
importances will cause all particles in a given cell to have the same weight. Weight 
windows will merely bound the weight.

g. The weight windows can be turned off for a given cell or energy regime by 
specifying a zero lower bound. This is useful in long or large regions where no 
single importance function applies. Care should be used because when the weight 
window is turned off at collisions, the weight cutoff game is turned on, sometimes 
causing too many particles to be killed.

h. For repeated structures, the geometry splitting uses the product of the importances 
at the different levels.  No product is used for the weight windows.

2. The Weight Window Generator: The generator is a method that automatically generates 
weight window importance functions.135 The task of choosing importances by guessing, 
intuition, experience, or trial and error is simplified and insight into the Monte Carlo 
calculation is provided.
Although the window generator has proved very useful, two caveats are appropriate. The 
generator is by no means a panacea for all importance sampling problems and certainly 
is not a substitute for thinking on the user's part. In fact, in most instances, the user will 
have to decide when the generator's results look reasonable and when they do not.  After 
these disclaimers, one might wonder what use to make of a generator that produces both 
good and bad results.  To use the generator effectively, it is necessary to remember that 
the generated parameters are only statistical estimates and that these estimates can be 
subject to considerable error. Nonetheless, practical experience indicates that a user can 
learn to use the generator effectively to solve some very difficult transport problems.

Examples of the weight window generator are given in Refs. 133 and 135 and should be 
examined before using the generator. Note that this importance estimation scheme works 
regardless of what other variance reduction techniques are used in a calculation.

3. Theory: The importance of a particle at a point P in phase space equals the expected 
score a unit weight particle will generate. Imagine dividing the phase space into a 
number of phase space “cells” or regions. The importance of a cell then can be defined 
as the expected score generated by a unit weight particle after entering the cell. Thus, 
with a little bookkeeping, the cell's importance can be estimated as

Importance
(expected score)

total score because of particles (and
their progeny) entering the cell

total weight entering the cell
=
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After the importances have been generated, MCNP assigns weight windows inversely 
proportional to the importances. Then MCNP supplies the weight windows in an output 
file suitable for use as an input file in a subsequent calculation. The spatial portion of the 
phase space is divided using either standard MCNP cells or a superimposed mesh grid, 
which can be either rectangular or cylindrical. The energy portion of the phase space is 
divided using the WWGE card. The time portion of the phase space can be divided also. 
The constant of proportionality is specified on the WWG card.

4. Limitations of the Weight-Window Generator: The principal problem encountered when 
using the generator is bad estimates of the importance function because of the statistical 
nature of the generator. In particular, unless a phase space region is sampled adequately, 
there will be either no generator importance estimate or an unreliable one. The generator 
often needs a very crude importance guess just to get any tally; that is, the generator 
needs an initial importance function to estimate a (we hope) better one for subsequent 
calculations.
Fortunately, in most problems the user can guess some crude importance function 
sufficient to get enough tallies for the generator to estimate a new set of weight windows. 
Because the weight windows are statistical, several iterations usually are required before 
the optimum importance function is found for a given tally. The first set of generated 
weight windows should be used in a subsequent calculation, which generates a better set 
of windows, etc.

In addition to iterating on the generated weight windows, the user must exercise some 
degree of judgment. Specifically, in a typical generator calculation, some generated 
windows will look suspicious and will have to be reset. In MCNP, this task is simplified 
by an algorithm that automatically scrutinizes cell-based importance functions, either 
input by the user or generated by a generator.  By flagging the generated windows that 
are more than a factor of 4 different from those in adjacent spatial regions, often it is easy 
to determine which generated weight windows are likely to be statistical flukes that 
should be revised before the next generator iteration. For example, suppose the lower 
weight bounds in adjacent cells were 0.5, 0.3, 0.9, 0.05, 0.03, 0.02, etc.; here the user 
would probably want to change the 0.9 to something like 0.1 to fit the pattern, reducing 
the 18:1 ratio between cells 3 and 4.

The weight window generator also will fail when phase space is not sufficiently 
subdivided and no single set of weight window bounds is representative of the whole 
region. It is necessary to turn off the weight windows (by setting a lower bound of zero) 
or to further subdivide the geometry or energy phase space. Use of a superimposed 
importance mesh grid for weight window generation is a good way to subdivide the 
spatial portion of the phase space without complicating the MCNP cell geometry.

On the other hand, the weight window generator will also fail if the phase space is too 
finely subdivided and subdivisions are not adequately sampled. Adequate sampling of 
the important regions of phase space is always key to accurate Monte Carlo calculations, 
and the weight window generator is a tool to help the user determine the important phase 
space regions. When using the mesh-based weight window generator, resist the 
temptation to create mesh cells that are too small.
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7. Exponential Transform

The exponential transform samples the distance to collision from a nonanalog probability density 
function. Although many impressive results are claimed for the exponential transform, it should be 
remembered that these results are usually obtained for one-dimensional geometries and quite often 
for energy-independent problems. A review article by Clark136 gives theoretical background and 
sample results for the exponential transform. Sarkar and Prasad137 have done a purely analytical 
analysis for the optimum transform parameter for an infinite slab and one energy group. The 
exponential transform allows particle walks to move in a preferred direction by artificially 
reducing the macroscopic cross section in the preferred direction and increasing the cross section 
in the opposite direction according to

,

where Σt*   =    fictitious transformed cross section,
Σt = true total cross section,
Σa = absorption cross section,
Σs = scattering cross section,
p = the exponential transform parameter used to vary the degree

of biasing |p| < 1 can be a constant or p = Σa/Σt, in which case 
Σt*= Σs, and

µ = cosine of the angle between the preferred direction and the
particle's direction. . The preferred direction can be 
specified on a VECT card.

At a collision a particle's weight is multiplied by a factor wc (derived below) so that the expected 
weight colliding at any point is preserved. The particle's weight is adjusted such that the weight 
multiplied by the probability that the next collision is in ds about s remains constant.

The probability of colliding in ds about s is

,

where Σ is either Σt or Σt*, so that preserving the expected collided weight requires

 , 

or

 .

If the particle reaches a cell surface, time cutoff, DXTRAN sphere, or tally segment instead of 
colliding, the particle's weight is adjusted so that the weight, multiplied by the probability that the 
particle travels a distance s to the surface, remains constant. The probability of traveling a distance 
s without collision is
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,

so that preserving the expected uncollided weight requires

, or

.

For one–dimensional deep penetration through highly absorbing media, the variance typically will 
decrease as p goes from zero to some p', and then increase as p goes from p' to one. For p < p', the 
solution is “underbiased” and for p > p', the solution is “overbiased.”

Choosing p' is usually a matter of experience, although some insight may be gleaned by 
understanding what happens in severely underbiased and severely overbiased calculations. For 
illustration, apply the variance analysis of page 2–118 to a deep penetration problem when the 
exponential transform is the only nonanalog technique used. In a severely underbiased calculation 

, very few particles will score, but those that do will all contribute unity.  Thus the variance 
in an underbiased system is caused by a low scoring efficiency rather than a large dispersion in the 
weights of the penetrating particles. In a severely overbiased system  particles will score, 
but there will be a large dispersion in the weights of the penetrating particles with a resulting 
increase in variance.

Comments: MCNP gives a warning message if the exponential transform is used without a weight 
window. There are numerous examples where an exponential transform without a weight window 
gives unreliable means and error estimates. However, with a good weight window both the means 
and errors are well behaved. The exponential transform works best on highly absorbing media and 
very poorly on highly scattering media. For neutron penetration of concrete or earth, experience 
indicates that a transform parameter p = 0.7 is about optimal. For photon penetration of high-Z 
material, even higher values such as p = 0.9 are justified.

The following explains what happens with an exponential transform without a weight window. For 
simplicity consider a slab of thickness T with constant Σt. Let the tally be a simple count (F1 tally) 
of the weight penetrating the slab and let the exponential transform be the only nonanalog 
technique used. Suppose for a given penetrating history that there are k flights, m that collide and 
n that do not collide. The penetrating weight is thus:

.

However, the particle's penetration of the slab means that
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and hence

.

The only variation in wp is because of the (1 − pµ)−1 factors that arise only from collisions. For a 
perfectly absorbing medium, every particle that penetrates scores exactly . If a particle has 
only a few collisions, the weight variation will be small compared to a particle that has many 
collisions. The weight window splits the particle whenever the weight gets too large, depriving the 
particle of getting a whole series of weight multiplications upon collision that are substantially 
greater than one.

By setting p = Σa/Σt and µ = 1 so that Σ* = Σs, we sample distance to scatter rather than distance to 
collision. It is preferable to sample distance to scatter in highly absorbing media — in fact, this is 
the standard procedure for astrophysics problems. Sampling distance to scatter is also equivalent 
to implicit capture along a flight path (see page 2–34). However, in such highly absorbing media 
there is usually a more optimal choice of transform parameter, p, and it is usually preferable to take 
advantage of the directional component by not fixing µ = 1. 

8. Implicit Capture

“Implicit capture,” “survival biasing,” and “absorption by weight reduction” are synonymous. 
Implicit capture is a variance reduction technique applied in MCNP after the collision nuclide has 
been selected. Let

σti = total microscopic cross section for nuclide i and
σai = microscopic absorption cross section for nuclide i.

When implicit capture is used rather than sampling for absorption with probability σai/σti, the 
particle always survives the collision and is followed with new weight: W ∗ (1 − σai/σti). Implicit 
capture is a splitting process where the particle is split into absorbed weight (which need not be 
followed further) and surviving weight.

Implicit capture can also be done along a flight path rather than at collisions when a special form 
of the exponential transform is used.  See page 2–34 for details.

Two advantages of implicit capture are

1. a particle that has finally, against considerable odds, reached the tally region and is not 
absorbed just before a tally is made, and
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2. the history variance, in general, decreases when the surviving weight (that is, 0 or W) is 
not sampled, but an expected surviving weight is used instead (see weight cutoff,
 page 2–143).

Two disadvantages are

1. a fluctuation in particle weight is introduced, and
2. the time per history is increased (see weight cutoff, page 2–143).

9. Forced Collisions

The forced collision method is a variance reduction scheme that increases sampling of collisions 
in specified cells. Because detector contributions and DXTRAN particles arise only from collisions 
and at the source, it is often useful in certain cells to increase the number of collisions that can 
produce large detector contributions or large weight DXTRAN particles.  Sometimes we want to 
sample collisions in a relatively thin cell (a fraction of a mean free path) to improve the estimate 
of quantities like a reaction rate or energy deposition or to cause collisions that are important to 
some other part of the problem.

The forced collision method splits particles into collided and uncollided parts. The collided part is 
forced to collide within the current cell. The uncollided part exits the current cell without collision 
and is stored in the bank until later when its track is continued at the cell boundary. Its weight is

,

where W0 = current particle weight before forced collision,
d = distance to cell surface in the particle's direction, and
Σt = macroscopic total cross section of the cell material.

That is, the uncollided part is the current particle weight multiplied by the probability of exiting the 
cell without collision.

The collided part has weight , which is the current particle weight multiplied 
by the probability of colliding in the cell. The uncollided part is always produced. The collided part 
may be produced only a fraction f of the time, in which case the collided weight is 

. This is useful when several forced collision cells are adjacent or when too much 
time is spent producing and following forced collision particles.

The collision distance is sampled as follows. If P(x) is the unconditional probability of colliding 
within a distance x, P(x)/P(d) is the conditional probability of colliding within a distance x given 
that a collision is known to occur within a distance d. Thus the position x of the collision must be 
sampled on the interval 0 < x < d within the cell according to ξ = P(x)/P(d), where 

 and ξ is a random number. Solving for x, one obtains

.
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Because a forced collision usually yields a collided particle having a relatively small weight, care 
must be taken with the weight-cutoff game (page 2–143), the weight-window game 
(page 2–144), and subsequent collisions of the particle within the cell. The weight window game 
is not played on the surface of a forced collision cell that the particle is entering. For collisions 
inside the cell the user has two options.

Option 1: (negative entry for the cell on the forced collision card) After the forced collision, 
subsequent collisions of the particle are sampled normally. The weight cutoff game is turned off 
and detector contributions and DXTRAN particles are made before the weight window game is 
played. If weight windows are used, they should be set to the weight of the collided particle weight 
or set to zero if detector contributions or DXTRAN particles are desired.

Option 2: (positive entry for the cell on the forced collision card) After the forced collision, detector 
contributions or DXTRAN particles are made and either the weight cutoff or weight window game 
is played. Surviving collided particles undergo subsequent forced collisions. If weight windows are 
used, they should bracket the weight of particles entering the cell.

10. Source Variable Biasing

Provision is made for biasing the MCNP sources in any or all of the source variables specified. 
MCNP's source biasing, although not completely general, allows the production of more source 
particles, with suitably reduced weights, in the more important regimes of each variable. For 
example, one may start more “tracks” at high energies and in strategic directions in a shielding 
problem while correcting the distribution by altering the weights assigned to these tracks. Sizable 
variance reductions may result from such biasing of the source. Source biasing samples from a 
nonanalog probability density function.

If negative weight cutoff values are used on the CUT card, the weight cutoff is made relative to the 
lowest value of source particle weight generated by the biasing schemes.

1. Biasing by Specifying Explicit Sampling Frequencies: The SB input card determines 
source biasing for a particular variable by specifying the frequency at which source 
particles will be produced in the variable regime. If this fictitious frequency does not 
correspond to the fraction of actual source particles in a variable bin, the corrected 
weight of the source particles in a particular bin is determined by the ratio of the actual 
frequency (defined on the SP card) divided by the fictitious frequency (defined on the 
SB card) except for the lin-lin interpolation where it is defined to be the ratio of the actual 
to fictitious frequency evaluated at the exact value of the interpolated variable. The total 
weight of particles started in a given SI bin interval is thus conserved.

2. Biasing by Standard Prescription: Source biasing can use certain built-in prescriptions 
similar in principle to built-in analytic source distributions. These biasing options are 
detailed in the sections below for the appropriate source variables. The SB card input is 
analogous to that of an SP card for an analytic source distribution; that is, the first entry 
is a negative prescription number for the type of biasing required, followed by one or 
more optional user-specified parameters, which are discussed in the following sections.
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a. Direction Biasing: The source direction can be biased (about a reference axis) by 
sampling from a continuous exponential function or by using cones of fixed size and starting a 
fixed fraction of particles within each cone. The user can bias particles in any arbitrary direction 
or combination of directions. The sampling of the azimuthal angle about the reference axis is not 
biased.

In general, continuous biasing is preferable to fixed cone biasing because cone biasing can cause 
problems from the discontinuities of source track weight at the cone boundaries. However, if the 
cone parameters (cone size and fraction of particles starting in the cone) are optimized through a 
parameter study and the paths that tracks take to contribute to tallies are understood, fixed cone 
biasing sometimes can outperform continuous biasing. Unfortunately, it is usually time consuming 
(both human and computer) and difficult to arrive at the necessary optimization.

Source directional biasing can be sampled from an exponential probability density function 
p(µ) = CeKµ, where C is a norming constant equal to K/(eK−e−K) and , where  is an 
angle relative to the biasing direction. K is typically about 1; K = 3.5 defines the ratio of weight of 
tracks starting in the biasing direction to tracks starting in the opposite direction to be 1/1097.  This 
ratio is equal to e−2K.

Table 2.8 may help to give the user a feel for the biasing parameter K.r

From this table for K = 1, we see that half the tracks start in a cone of 64o opening about the axis, 
and the weight of tracks at 64o is 0.762 times the unbiased weight of source particles. K = 0.01 is 
almost equivalent to no biasing, and K = 3.5 is very strong.

Cone directional biasing can be invoked by specifying cone cosines on the SI card, the true 
distribution on the SP card, and the desired biasing probabilities on the SB card. Both histogram 

Table 2.8
Exponential Biasing Parameter

K
Cumulative
Probability Theta Weight K 

Cumulative
Probability Theta Weight

 .01 0 0 0.990  2.0 0 0 .245
.25  60 0.995 .25  31 .325
 .50 90 1.000 .50  48 .482
 .75 120 1.005 .75 .70 .931
1.00 180 1.010 1.00 180 13.40

1.0 0 0 .432 3.5 0 0 .143
.25  42 .552 .25 23 .190
 .50 64 .762 .50 37 .285
 .75 93 1.230  .75 53 .569
1.00 180 3.195 1.00 180 156.5

µ θcos= θ
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and linear interpolation can be used.  For example, consider the following case in which the true 
distribution is isotropic:

The direction cosine relative to the reference direction, say v, is sampled uniformly within the cone 
ν < v < 1 with probability p2 and within −1 < v < ν with the complementary probability p1.  The 
weights assigned are W(1 − ν)/(2p2) and W(1 + ν)/(2p1), respectively. Note that for a very small 
cone defined by ν and a high probability p2 >> p1 for being within the cone, the few source particles 
generated outside the cone will have a very high weight that can severely perturb a tally.  

b. Covering Cylinder Extent Biasing: This biasing prescription for the SDEF EXT variable 
allows the automatic spatial biasing of source particles in a cylindrical-source-covering-volume 
along the axis of the cylinder. Such biasing can aid in the escape of source particles from optically 
thick source regions and thus represents a variance reduction technique.

c. Covering Cylinder or Sphere Radial Biasing: This biasing prescription for the SDEF 
RAD variable allows for the radial spatial biasing of source particles in either a spherical or 
cylindrical source covering volume. Like the previous example of extent biasing, this biasing can 
be used to aid in the escape of source particles from optically thick source regions.

3. Biasing Standard Analytic Source Functions:138 The preceding examples discuss the 
biasing of source variables by either input of specific sampling frequencies 
corresponding to SP card entries or by standard analytic biasing functions. A third 
biasing category can be used in conjunction with standard analytic source probability 
functions (for example, a Watt fission spectrum).
A negative entry on an SP card, that is,
SPn  −i a b
causes MCNP to sample source distribution n from probability function i with input 
variables a,b,... . Sampling schemes are typically unbiasable. For example, for
SPn −5 a
the evaporation spectrum f(E) = C E exp(−E/a) is sampled according to the sampling 
prescription E = −a log (ξ1∗ξ2), where ξi1 and ξi2 are random numbers. Biasing this 
sampling scheme is usually very difficult or impossible. Fortunately, there is an 
approximate method available in MCNP for biasing any arbitrary probability 
function.138 The code approximates the function as a table, then uses the usual SB card 
biasing scheme to bias this approximate table function. The user inputs a coarse bin 
structure to govern the bias and the code adds up to 300 additional equiprobable bins to 
assure accuracy. For example, suppose we wish to sample the function
f(E) = C E exp(−E/a)

SIn 1 v 1–

SPn 0 1 v+
2

------------ 1 v–
2

---------

SBn 0 p1 p2
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and suppose that we want half the source to be in the range .005 < E < .1 and the other 
half to be in the range .1 < E < 20.  Then the input is
SPn   -5 a
SIn   .005  .1  20
SBn  C    0    .5   1   .
MCNP breaks up the function into 150 equiprobable bins below E = .1 and 150 more 
equiprobable bins above E = .1. Half the time E is chosen from the upper set of bins and 
half the time it is chosen from the lower set. Particles starting from the upper bins have 
a different weight from that of particles starting from the lower bins in order to adjust for 
the bias, and a detailed summary is provided when the PRINT option is used.

Note that in the above example the probability distribution function is truncated below 
E = .005 and above E = 20.  MCNP prints out how much of the distribution is lost in this 
manner and reduces the weight accordingly.

It is possible for the user to choose a foolish biasing scheme. For example,

SPn  -5 a
SIn   .005 297I .1  20
SBn   0 1 298R

causes each of the 299 bins to be chosen with equal probability. This would be all right 
except that since there are never more than 300 equiprobable bins, this allocates only 1 
equiprobable bin per user-supplied bin. The single equiprobable bin for .1 < E < 20 is 
inadequate to describe the distribution function over this range. Thus the table no longer 
approximates the function and the source will be sampled erroneously. MCNP issues an 
error message whenever too much of the source distribution is allocated to a single 
equiprobable bin, alerting users to a poor choice of binning which might inadequately 
represent the function. The coarse bins used for biasing should be chosen so that the 
probability function is roughly equally distributed among them.

11. Point Detector Tally

The point detector is a tally and does not bias random walk sampling. Recall from Section VI, 
however, that the tally choice affects the efficiency of a Monte Carlo calculation.  Thus, a little will 
be said here in addition to the discussion in the tally section.

Although flux is a point quantity, flux at a point cannot be estimated by either a track-length tally 
(F4) or a surface flux tally (F2) because the probability of a track entering the volume or crossing 
the surface of a point is zero. For very small volumes, a point detector tally can provide a good 
estimate of the flux where it would be almost impossible to get either a track-length or surface-
crossing estimate because of the low probability of crossing into the small volume.

It is interesting that a DXTRAN sphere of vanishingly small size with a surface-crossing tally 
across the diameter normal to the particle's trajectory is equivalent to a point detector. Thus, many 
of the comments on DXTRAN are appropriate and the DXC cards essentially are identical to the 
PD cards.
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For a complete discussion of point detectors, see page 2–91.

12. DXTRAN

DXTRAN typically is used when a small region is being inadequately sampled because particles 
have a very small probability of scattering toward that region. To ameliorate this situation, the user 
can specify in the input file a DXTRAN sphere that encloses the small region. Upon collision (or 
exiting the source) outside the sphere, DXTRAN creates a special “DXTRAN particle” and 
deterministically scatters it toward the DXTRAN sphere and deterministically transports it, 
without collision, to the surface of the DXTRAN sphere. The collision itself is otherwise treated 
normally, producing a non-DXTRAN particle that is sampled in the normal way, with no reduction 
in weight. However, the non-DXTRAN particle is killed if it tries to enter the DXTRAN sphere. 
DXTRAN uses a combination of splitting, Russian roulette, and sampling from a nonanalog 
probability density function. 

The subtlety about DXTRAN is how the extra weight created for the DXTRAN particles is 
balanced by the weight killed as non-DXTRAN particles cross the DXTRAN sphere. The non-
DXTRAN particle is followed without any weight correction, so if the DXTRAN technique is to 
be unbiased, the extra weight put on the DXTRAN sphere by DXTRAN particles must somehow 
(on average) balance the weight of non-DXTRAN particles killed on the sphere.

1. DXTRAN Viewpoint 1: One can view DXTRAN as a splitting process (much like the 
forced collision technique) wherein each particle is split upon departing a collision 
(or source point) into two distinct pieces:
a. the weight that does not enter the DXTRAN sphere on the next flight, either because 

the particle is not pointed toward the DXTRAN sphere or because the particle 
collides before reaching the DXTRAN sphere, and 

b. the weight that enters the DXTRAN sphere on the next flight. 

Let w0 be the weight of the particle before exiting the collision, let p1 be the analog probability that 
the particle does not enter the DXTRAN sphere on its next flight, and let p2 be the analog 
probability that the particle does enter the DXTRAN sphere on its next flight. The particle must 
undergo one of these mutually exclusive events, thus p1 + p2 = 1. The expected weight not entering 
the DXTRAN sphere is w1 = w0 p1, and the expected weight entering the DXTRAN sphere is 
w2 = w0 p2. Think of DXTRAN as deterministically splitting the original particle with weight w0 
into two particles, a non-DXTRAN (particle 1) particle of weight w1 and a DXTRAN (particle 2) 
particle of weight w2. Unfortunately, things are not quite that simple.

Recall that the non-DXTRAN particle is followed with unreduced weight w0 rather than weight 
w1 = w0 p1. The reason for this apparent discrepancy is that the non-DXTRAN particle (particle 1) 
plays a Russian roulette game. Particle 1’s weight is increased from w1 to w0 by playing a Russian 
roulette game with survival probability p1 = w1 /w0. The reason for playing this Russian roulette 
game is simply that p1 is not known, so assigning weight w1 = p1w0 to particle 1 is impossible.  
However, it is possible to play the Russian roulette game without explicitly knowing p1.  It is not 
magic, just slightly subtle.
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The Russian roulette game is played by sampling particle 1 normally and keeping it only if it does 
not enter (on its next flight) the DXTRAN sphere; that is, particle 1 survives (by definition of p1) 
with probability p1. Similarly, the Russian roulette game is lost if particle 1 enters (on its next 
flight) the DXTRAN sphere; that is, particle 1 loses the roulette with probability p2. To restate this 
idea, with probability p1, particle 1 has weight w0 and does not enter the DXTRAN sphere and with 
probability p2, the particle enters the DXTRAN sphere and is killed. Thus, the expected weight not 
entering the DXTRAN sphere is w0 p1 + 0 ∗ p2 = w1, as desired.

So far, this discussion has concentrated on the non-DXTRAN particle and ignored exactly what 
happens to the DXTRAN particle. The sampling of the DXTRAN particle will be discussed after 
a second viewpoint on the non-DXTRAN particle.

2. DXTRAN Viewpoint 2: This second way of viewing DXTRAN does not see DXTRAN 
as a splitting process but as an accounting process in which weight is both created and 
destroyed on the surface of the DXTRAN sphere.  In this view, DXTRAN estimates the 
weight that should go to the DXTRAN sphere upon collision and creates this weight on 
the sphere as DXTRAN particles. If the non-DXTRAN particle does not enter the sphere, 
its next flight will proceed exactly as it would have without DXTRAN, producing the 
same tally contributions and so forth. However, if the non-DXTRAN particle's next 
flight attempts to enter the sphere, the particle must be killed or there would be (on 
average) twice as much weight crossing the DXTRAN sphere as there should be because 
the weight crossing the sphere has already been accounted for by the DXTRAN particle.

3. The DXTRAN Particle: Although the DXTRAN particle does not confuse people nearly 
as much as the non-DXTRAN particle, the DXTRAN particle is nonetheless subtle.
The most natural approach for scattering particles toward the DXTRAN sphere would be 
to sample the scattering angle  proportional to the analog density. This approach is not 
used because it is too much work to sample proportional to the analog density and 
because it is sometimes useful to bias the sampling.

To sample  in an unbiased fashion when it is known that  points to the DXTRAN 
sphere, one samples the conditional density

Pcon( ) = P( )/ (the set S( ) points toward the sphere)

and multiplies the weight by , the probability of scattering into the cone 

(see Figure 2-25).  However, it is too much work to calculate the above integral for each 
collision.  Instead, an arbitrary density function Parb( ) is sampled and the weight is 
multiplied by

.
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The total weight multiplication is the product of the fraction of the weight scattering into 

the cone, , and the weight correction for sampling Parb( ) instead of 

Pcon( ). Thus, the weight correction on scattering is

   .

If µ is the cosine of the angle between the scattering direction and the particle’s incoming 
direction, then P( ) = P(µ)/(2π) because the scattering is symmetric in the azimuthal 
angle. If  is the cosine of the angle with respect to the cone axis (see Figure 2-25) and 
if the azimuthal angle about the cone axis is uniformly sampled, then Parb( ) = 
Parb( )/(2π). Thus

 = weight multiplier for DXTRAN particle.

This result can be obtained more directly, but the other derivation does not explain why 
Pcon( ) is not sampled.

Because Parb( ) is arbitrary, MCNP can choose a scheme that samples  from a two-
step density that favors particles within the larger  interval. In fact, the inner DXTRAN 
sphere has to do only with this arbitrary density and is not essential to the DXTRAN 
concept. The DXTRAN particles are always created on the outside DXTRAN sphere, 
with the inner DXTRAN sphere defining only the boundary between the two steps in the 
density function.

After = cos  has been chosen, the azimuthal angle  is sampled uniformly on [0,2π]; 
this completes the scattering. Recall, however, that the DXTRAN particle arrives at the 
DXTRAN sphere without collision. Thus the DXTRAN particle also has its weight 
multiplied by the negative exponential of the optical path between the collision site and 
the sphere.  Thus the DXTRAN weight multiplication is:

 exp( )

where  is the number of mean free paths from the exit site to the chosen point on the 
DXTRAN sphere.

4. Inside the DXTRAN Sphere: So far, only collisions outside the DXTRAN sphere have 
been discussed. At collisions inside the DXTRAN sphere, the DXTRAN game is not 
played because first, the particle is already in the desired region, and second, it is 
impossible to define the angular cone of Figure 2-25. If there are several DXTRAN 
spheres and the collision occurs in sphere i, DXTRAN will be played for all spheres 
except sphere i.

5. Terminology—Real particle and Pseudoparticle: Sometimes the DXTRAN particle is 
called a pseudoparticle and the non-DXTRAN particle is called the original or real 
particle. The terms “real particle” and “pseudoparticle” are potentially misleading. Both 
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particles are equally real: both execute random walks, both carry nonzero weight, and 
both contribute to tallies. The only sense in which the DXTRAN particle should be 
considered “pseudo” or “not real” is during creation. A DXTRAN particle is created on 
the DXTRAN sphere, but creation involves determining what weight the DXTRAN 
particle should have upon creation. Part of this weight determination requires calculating 
the optical path between the collision site and the DXTRAN sphere. This is done in the 
same way as point detectors (see point detector pseudoparticles on page 2–100.) MCNP 
determines the optical path by tracking a pseudoparticle from the collision site to the 
DXTRAN sphere. This pseudoparticle is deterministically tracked to the DXTRAN 
sphere simply to determine the optical path. No distance to collision is sampled, no tallies 
are made, and no records of the pseudoparticle's passage are kept (for example, tracks 
entering).  In contrast, once the DXTRAN particle is created at the sphere's surface, the 
particle is no longer a pseudoparticle. The particle has real weight, executes random 
walks, and contributes to tallies.

6. DXTRAN Details: To explain how the scheme works, consider the neighborhood of 
interest to be a spherical region surrounding a designated point in space. In fact, consider 
two spheres of arbitrary radii about the point P0 = (x0,y0,z0). Further, assume that the 
particle having direction (u,v,w) collides at the point P1 = (x,y,z), as shown in 
Figure 2-25.

The quantities I, O, I, O, RI, and R0 are defined in the figure. Thus L, the distance 
between the collision point and center of the spheres, is

.

On collision, a DXTRAN particle is placed at a point on the outer sphere of radius R0 as 
described below. Provision is made for biasing the contributions of these DXTRAN 
particles on the outer sphere within the cone defined by the inner sphere. The weight of 
the DXTRAN particle is adjusted to account for the probability of scattering in the 
direction of the point on the outer sphere and traversing the distance with no further 
collision.
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The steps in sampling the DXTRAN particles are outlined:

Sample  = I + ξ(1 − I) uniformly in ( I,1) with probability

Q(1 − I)/[Q(1 − I) + I − O]

and with probability

( I − O)/[Q(1 − I) + I − O]

sample  = O + ξ( I – O) uniformly in ( O, ). The quantity Q (equal to 5 in 
MCNP) is a factor that measures the importance assigned to scattering in the inner cone 
relative to the outer cone. Therefore, Q is also the ratio of weights for particles put in the 
two different cones.

With  = cos  chosen, a new direction  is computed by considering the 
rotation through the polar angle  (and a uniform azimuthal angle ) from the reference 
direction

.

The particle is advanced in the direction  to the surface of the sphere of radius 
R0. The new DXTRAN particle with appropriate direction and coordinates is banked. 
The weight of the DXTRAN particle is determined by multiplying the weight of the 
particle at collision by

 and

where

µ = uu' + vv' + ww',
P(µ) = scattering probability density function for scattering through the angle 

cos−1 µ in the lab system for the event sampled at (x,y,z),
ν = number of particles emitted from the event, and
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= the attenuation along the line between PI (x,y,z) and Ps, the point on the

sphere where the particle is placed.

In arriving at the weight factor, note that the density function for sampling  is given by

.

Thus the weight of the DXTRAN particle is the weight of the incoming particle at PI 
modified by the ratio of the probability density function for actually scattering from PI 
and arriving at Ps without collision to the density function actually sampled in choosing 
Ps. Therefore, particles in the outer cone have weights Q = 5 times higher than the 
weights of similar particles in the inner cone.

The attenuation is calculated at the energy obtained by scattering through the angle µ. 
The energy is uniquely determined from µ in elastic scattering (and also in level 
scattering), whereas for other nonelastic events, the energy is sampled from the 
corresponding probability density function for energy, and may not depend on µ.

7. Auxiliary Games for DXTRAN: The major disadvantage to DXTRAN is the extra time 
consumed following DXTRAN particles with low weights. Three special games can 
control this problem:

1. DXTRAN weight cutoffs,
2. DXC games, and
3. DD game.

Particles inside a DXTRAN sphere are not subject to the normal MCNP weight cutoff or 
weight window game. Instead DXTRAN spheres have their own weight cutoffs, 
allowing the user to roulette DXTRAN particles that, for one reason or another, do not 
have enough weight to be worth following.

Sometimes low-weighted DXTRAN particles occur because of collisions many free 
paths from the DXTRAN sphere. The exponential attenuation causes these particles to 
have extremely small weights. The DXTRAN weight cutoff will roulette these particles 
only after much effort has been spent producing them. The DXC cards are cell dependent 
and allow DXTRAN contributions to be taken only some fraction of the time. They work 
just like the PD cards for detectors (see page 2–102). The user specifies a probability pi 
that a DXTRAN particle will be produced at a given collision or source sampling in cell 
i. The DXTRAN result remains unbiased because when a DXTRAN particle is produced 
its weight is multiplied by . (The non-DXTRAN particle is treated exactly as before, 
unaffected unless it enters the DXTRAN sphere, whereupon it is killed.) To see the 
utility, suppose that the DXTRAN weight cutoff was immediately killing 99% of the 
DXTRAN particles from cell i. Only 1% of the DXTRAN particles survive anyway, so 
it might be appropriate to produce only 1% (pi = .01) and have these not be killed 

e
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immediately by the DXTRAN weight cutoff. Or the pi’s can often be set such that all 
DXTRAN particles from all cells are created on the DXTRAN sphere with roughly the 
same weight. Choosing the pi’s is often difficult and the method works well typically 
when the material exponential attenuation is the major source of the weight fluctuation.

Often the weight fluctuation arises because the probability P(µ) of scattering toward the 
DXTRAN sphere varies greatly, depending on what nuclide is hit and what the collision 
orientation is with respect to the DXTRAN sphere. For example, consider a highly 
forward-peaked scattering probability density. If the DXTRAN sphere were close to the 
particle’s precollision direction, P(µ) will be large; if the DXTRAN sphere were at 105ο 

to the precollision direction, P(µ) will be small.  The DD game can be used to reduce the 
weight fluctuation on the DXTRAN sphere caused by these geometry effects, as well as 
the material exponential attenuation effects.

The DD game selectively roulettes the DXTRAN pseudoparticles during creation, 
depending on the DXTRAN particles’ weight compared to some reference weight. This 
is the same game that is played on detector contributions, and is described on page 2–
102. The reference weight can be either a fraction of the average of previous DXTRAN 
particle weights or a user input reference weight.  Recall that a DXTRAN particle's 
weight is computed by multiplying the exit weight of the non-DXTRAN particle by a 
weight factor having to do with the scattering probability and the negative exponential 
of the optical path between the collision site and DXTRAN sphere. The optical path is 
computed by tracking a pseudoparticle from collision to the DXTRAN sphere. The 
weight of the pseudoparticle is monotonically decreasing, so the DD game compares the 
pseudoparticle's weight at the collision site and, upon exiting each cell, against the 
reference weight. A roulette game is played when the pseudoparticle's weight falls below 
the reference weight. The DD card stops tracking a pseudoparticle as soon as the weight 
becomes inconsequential, saving time by eliminating subsequent tracking.

8. Final Comments:
a. DXTRAN should be used carefully in optically thick problems. Do not rely on 

DXTRAN to do penetration.
b. If the source is user supplied, some provision must be made for obtaining the source 

contribution to particles on the DXTRAN sphere. 
c. Extreme care must be taken when more than one DXTRAN sphere is in a problem.  

Cross-talk between spheres can result in extremely low weights and an excessive 
growth in the number of particle tracks. 

d. Never put a zero on the DXC card. A zero will bias the calculation by not creating 
DXTRAN particles but still killing the non-DXTRAN particle if it enters the 
DXTRAN sphere. 

e. Usually there should be a rough balance in the summary table of weight created and 
lost by DXTRAN. 

f. DXTRAN cannot be used with reflecting surfaces for the same reasons that point 
detectors cannot be used with reflecting surfaces. See page 2–101 for further 
explanation.
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g. Both DXTRAN and point detectors track pseudoparticles to a point. Therefore, 
most of the discussion about detectors applies to DXTRAN. Refer to the section on 
detectors, page 2–91, for more information.

13. Correlated Sampling

Correlated sampling estimates the change in a quantity resulting from a small alteration of any type 
in a problem. This technique enables the evaluation of small quantities that would otherwise be 
masked by the statistical errors of uncorrelated calculations. MCNP correlates a pair of runs by 
providing each new history in the original and altered problems with the same starting 
pseudorandom number. The same sequence of subsequent numbers is used and each history tracks 
identically until the alteration causes the tracking to diverge. The sequencing of random numbers 
is done by incrementing the random number generator at the beginning of each history by a stride 
S of random numbers from the beginning of the previous history. The default value of S is 152,917. 
The stride should be a quantity greater than would be needed by most histories (see page 2–191).

MCNP does not provide an estimate of the error in the difference. Reference 133 shows how the 
error in the difference between two correlated runs can be estimated. A postprocessor code would 
have to be written to do this.

Correlated sampling should not be confused with more elaborate Monte Carlo perturbation 
schemes that calculate differences and their variances directly. MCNP also has a sophisticated 
perturbation capability.

VIII.CRITICALITY CALCULATIONS

Nuclear criticality, the ability to sustain a chain reaction by fission neutrons, is characterized by 
keff, the eigenvalue to the neutron transport equation. In reactor theory, keff is thought of as the ratio 
between the number of neutrons in successive generations, with the fission process regarded as the 
birth event that separates generations of neutrons.139 For critical systems, keff = 1 and the chain 
reaction will just sustain itself. For subcritical systems, keff < 1 and the chain reaction will not 
sustain itself. For supercritical systems, keff > 1 and the number of fissions in the chain reaction will 
increase with time. In addition to the geometry description and material cards, all that is required 
to run a criticality problem is a KCODE card, described below, and an initial spatial distribution of 
fission points using either the KSRC card, the SDEF card, or an SRCTP file.

Calculating keff consists of estimating the mean number of fission neutrons produced in one 
generation per fission neutron started. A generation is the life of a neutron from birth in fission to 
death by escape, parasitic capture, or absorption leading to fission. In MCNP, the computational 
equivalent of a fission generation is a keff cycle; that is, a cycle is a computed estimate of an actual 
fission generation. Processes such as (n,2n) and (n,3n) are considered internal to a cycle and do not 
act as termination. Because fission neutrons are terminated in each cycle to provide the fission 
source for the next cycle, a single history can be viewed as continuing from cycle to cycle. The 
effect of the delayed neutrons is included by using the total  when the data are available. In a 
Mode N,P problem, secondary photon production from neutrons is turned off during inactive 

ν

10/3/05 2-163



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
CRITICALITY CALCULATIONS
cycles. MCNP uses three different estimators for keff. We recommend using, for the final keff result, 
the statistical combination of all three.140

It is extremely important to emphasize that the result from a criticality calculation is a confidence 
interval for keff that is formed using the final estimated keff and the estimated standard deviation.  A 
properly formed confidence interval from a valid calculation should include the true answer the 
fraction of time used to define the confidence interval. There will always be some probability that 
the true answer lies outside of a confidence interval.

Reference 141 is an introduction to using MCNP for criticality calculations, focusing on the unique 
aspects of setting up and running a criticality problem and interpreting the results. A quickstart 
chapter gets the new MCNP user on the computer running a simple criticality problem as quickly 
as possible.

A. Criticality Program Flow

Because the calculation of keff entails running successive fission cycles, criticality calculations 
have a different program flow than MCNP fixed source problems. They require a special criticality 
source that is incompatible with the surface source and user-supplied sources. Unlike fixed source 
problems, where the source being sampled throughout the problem never changes, the criticality 
source changes from cycle to cycle.

1. Criticality Problem Definition

To set up a criticality calculation, the user initially supplies an INP file that includes the KCODE 
card with the following information:

1. the nominal number of source histories, N, per keff cycle;
2. an initial guess of keff ;
3. the number of source cycles, Ic, to skip before keff accumulation; and
4. the total number of cycles, It, in the problem.

Other KCODE entries are discussed in Chapter 3, page 3–76. The initial spatial distribution of 
fission neutrons can be entered by using (1) the KSRC card with sets of x,y,z point locations, (2) the 
SDEF card to define points uniformly in volume, or (3) a file (SRCTP) from a previous MCNP 
criticality calculation. If the SDEF card is used, the default WGT value should not be changed. Any 
KSRC points in geometric cells that are void or have zero importance are rejected.  The remaining 
KSRC points are duplicated or rejected enough times so the total number of points M in the source 
spatial distribution is approximately the nominal source size N. The energy of each source particle 
for the first keff cycle is selected from a generic Watt thermal fission distribution if it is not available 
from the SRCTP file.

2. Particle Transport for Each keff Cycle

In each keff cycle, M (varying with cycle) source particles are started isotropically. For the first 
cycle, these M points come from one of three user–selected source possibilities. For subsequent 
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cycles, these points are the ones written at collision sites from neutron transport in the previous 
cycle. The total source weight of each cycle is a constant N. That is, the weight of each source 
particle is N/M, so all normalizations occur as if N rather than M particles started in each cycle.

Source particles are transported through the geometry by the standard random walk process, except 
that fission is treated as capture, either analog or implicit, as defined on the PHYS:N or CUT:N 
card. At each collision point the following four steps are performed for the cycle:

1. the three prompt neutron lifetime estimates are accumulated;

2. if fission is possible, the three keff estimates are accumulated; and

3. if fission is possible,  fission sites (including the sampled outgoing energy of the 
fission neutron) at each collision are stored for use as source points in the next cycle,

where n = [  + random number];
W = particle weight (before implicit capture weight reduction or

analog capture);
= average number of neutrons produced by fission at the

incident energy of this collision, with either prompt  or
total  (default) used;

σf = microscopic material fission cross section;
σt = microscopic material total cross section; and
keff = estimated collision keff from previous cycle.

For the first cycle, use the second KCODE card entry.

M = Σ n = number of fission source points to be used in the next cycle. The number of 
fission sites n stored at each collision is rounded up or down to an integer (including 
zero) with a probability proportional to its closeness to that integer. If the initial guess of 
keff is too low or too high, the number of fission sites written as source points for the next 
cycle will be, respectively, too high or too low relative to the desired nominal number N.  
A bad initial guess of keff causes only this consequence.

A very poor initial guess for the spatial distribution of fissions can cause the first cycle 
estimate of keff to be extremely low. This situation can occur when only a fraction of the 
fission source points enter a cell with a fissionable material. As a result, one of two error 
messages can be printed:  (1) no new source points were generated, or (2) the new source 
has overrun the old source. The second message occurs when the MCNP storage for the 
fission source points is exceeded because the small keff that results from a poor initial 
source causes n to become very large.

The fission energy of the next–cycle neutron is sampled separately for each source point 
and stored for the next cycle. It is sampled from the same distributions as fissions would 
be sampled in the random walk based on the incident neutron energy and fissionable 
isotope. The geometric coordinates and cell of the fission site are also stored.

4. The collision nuclide and reaction are sampled (after steps 1, 2, and 3) but the fission 
reaction is not allowed to occur because fission is treated as capture. The fission neutrons 
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that would have been created are accrued by three different methods to estimate keff for 
this cycle. The three estimators are a collision estimator, an absorption estimator and a 
track length estimator as discussed in subsection B on page 2–167.

3. keff Cycle Termination

At the end of each keff cycle, a new set of M source particles has been written from fissions in that 
cycle. The number M varies from cycle to cycle but the total starting weight in each cycle is a 
constant N. These M particles are written to the SRCTP file at certain cycle intervals. The SRCTP 
file can be used as the initial source in a subsequent criticality calculation with a similar, though 
not identical, geometry. Also, keff quantities are accumulated, as is described below.

4. Convergence

The first Ic cycles in a criticality calculation are inactive cycles, where the spatial source changes 
from the initial definition to the correct distribution for the problem. No keff accumulation, 
summary table, activity table, or tally information is accrued for inactive cycles. Photon 
production, perturbations, and DXTRAN are turned off during inactive cycles. Ic  is the third entry 
on the KCODE card for the number of keff cycles to be skipped before keff and tally accumulation. 
After the first Ic  cycles, the fission source spatial distribution is assumed to have achieved 
equilibrium, active cycles begin, and keff and tallies are accumulated. Cycles are run until either a 
time limit is reached or the total cycles on the KCODE card have been completed.

Criticality calculations with MCNP are based on an iterative procedure called "power 
iteration."142,143 After assuming an initial guess for the fission source spatial distribution (i.e., first 
generation), histories are followed to produce a source for the next fission neutron generation and 
to estimate a new value for keff. The new fission source distribution is then used to follow histories 
for the second generation, producing yet another fission source distribution and estimate of keff. 
These generations (also called cycles or batches) are repeated until the source spatial distribution 
has converged. Once the fission source distribution has converged to its stationary state, tallies for 
reaction rates and keff may be accumulated by running additional cycles until the statistical 
uncertainties have become sufficiently small.

Analysis of the power iteration procedure for solving keff eigenvalue calculations142 shows that the 
convergence of the fission source distribution, and the estimated eigenvalue, keff, can be 
modeled as

 

,

where  and k0 are the fundamental eigenfunction and eigenvalue of the exact transport solution, 
 and k1 are the eigenfunction and eigenvalue of the first higher mode, a and b are constants, and 

n is the number of cycles performed in the power iteration procedure. Note that k0 is the expected 
value of keff, and that k0>k1>0, so that (k1/k0) is less than 1. The quantity (k1/k0) is called the 
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dominance ratio (DR), and is the key physical parameter that determines the convergence rate of 
the power iteration procedure. The DR is a function of problem geometry and materials. As the 
number of cycles n becomes large, the error terms due to higher modes die off as DRn, and the 
source distribution and keff approach their stationary, equilibrium values. For typical light-water 
reactor systems, the DR is often in the range 0.8-0.99, and 50-100 inactive cycles may be required 
for errors in the initial guess to die away sufficiently that the source and keff converge. For some 
critical systems (e.g., heavy-water reactors, fuel storage vaults), however, the DR may be very 
close to 1 (e.g., .99 or higher), and hundreds or thousands of inactive cycles may be required to 
attain source convergence. 

It should also be noted that the source distribution  and the eigenvalue keff do not converge in the 
same manner. The expression for keff (n+1) has the additional factor (1-k1/k0) on the higher-mode 
error. For problems where the DR is very close to 1, the source distribution may take hundreds or 
thousands of cycles to converge (due to errors dying out as DRn), while keff may converge rapidly 
(since its higher-mode error is damped by the additional factor 1-DR, which may be very small). 
That is, keff will converge more rapidly than the source distribution. Thus, it is very important to 
examine the behavior of both keff and the source distribution when assessing problem convergence. 
Both keff and the fission source distribution must converge before starting active cycles for 
tallies. It is up to the user to specify the number of inactive cycles Ic to run in order to attain 
convergence. Most users will make a trial calculation (using a small number of histories per cycle, 
such as 1000) to examine the convergence behavior of keff and the source distribution, to determine 
a proper value for Ic, and then make a final calculation using a larger number of histories per cycle 
(e.g., 5000 or more) and sufficient active cycles to attain small uncertainties. To assist users in 
assessing convergence of criticality calculations, MCNP provides several statistical checks on keff, 
as discussed in the next sections. In addition, MCNP calculates a quantity called the entropy of the 
source distribution, Hsrc,144,145 to assist users in assessing the convergence of the source 
distribution.

B. Estimation of keff Confidence Intervals and Prompt Neutron Lifetimes

The criticality eigenvalue keff and various prompt neutron lifetimes, along with their standard 
deviations, are automatically estimated in every criticality calculation in addition to any user-
requested tallies. keff and the lifetimes are estimated for every active cycle, as well as averaged over 
all active cycles. keff and the lifetimes are estimated in three different ways. These estimates are 
combined140 using observed statistical correlations to provide the optimum final estimate of keff 
and its standard deviation.

It is known146 that the power iteration method with a fixed source size produces a very small 
negative bias ∆keff in keff that is proportional to 1/N. This bias is negligible146 for all practical 
problems where N is greater than about 200 neutrons per cycle and as long as too many active 
cycles are not used. It has been shown146 that this bias is less, probably much less, than one-half of 
one standard deviation for 400 active cycles when the ratio of the true keff standard deviation to keff 
is 0.0025 at the problem end.

In MCNP the definition of keff is:

S
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,

where the phase-space variables are t, E, and  for time, energy, direction, and implicitly r for 
position with incremental volume dV around r. The denominator is the loss rate, which is the sum 
of leakage, capture (n,0n), fission, and multiplicity (n,xn) terms. By particle balance, the loss rate 
is also the source rate, which is unity in a criticality calculation. If the number of fission neutrons 
produced in one generation is equal to the number in the previous generation, then the system is 
critical. If it is greater, the system is supercritical. If it is less, then the system is subcritical. The 
multiplicity term is:

.

The above definition of keff comes directly from the time-integrated Boltzmann transport equation 
(without external sources):

which may be rewritten to look more like the definition of keff as:

.
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The loss rate is on the left and the production rate is on the right.

The neutron prompt removal lifetime is the average time from the emission of a prompt neutron in 
fission to the removal of the neutron by some physical process such as escape, capture, or fission. 
Also, even with the TOTNU card to produce delayed neutrons as well as prompt neutrons (KCODE 
default), the neutrons are all born at time zero, so the removal lifetimes calculated in MCNP are 
prompt removal lifetimes, even if there are delayed neutrons.

The definition of the prompt removal lifetime147 is

,

where  is the population per unit volume per unit energy per unit solid angle. In a multiplying 
system in which the population is increasing or decreasing on an asymptotic period, the population 
changes in accordance with

,

where  is the adjoint–weighted removal lifetime. MCNP calculates the nonadjoint–weighted 
prompt removal lifetime τr that can be significantly different in a multiplying system. In a 
nonmultiplying system, keff = 0 and , the population decays as

,

where the nonadjoint–weighted removal lifetime τr is also the relaxation time.

Noting that the flux is defined as

,

where v is the speed, the MCNP nonadjoint–weighted prompt removal lifetime τr is defined as

.

The prompt removal lifetime is a fundamental quantity in the nuclear engineering point kinetics 
equation. It is also useful in nuclear well-logging calculations and other pulsed source problems 
because it gives the population time-decay constant.
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1. Collision Estimators

The collision estimate for keff for any active cycle is:

,

where i is summed over all collisions in a cycle where fission is possible;
k is summed over all nuclides of the material involved in the ith collision;

= total microscopic cross section;
= microscopic fission cross section;
= average number of prompt or total neutrons produced per fission by the

collision nuclide at the incident energy;
fk = atomic fraction for nuclide k;
N = nominal source size for cycle; and
Wi = weight of particle entering collision.

Because Wi represents the number of neutrons entering the ith collision,

is the expected number of neutrons to be produced from all fission processes in the collision.  Thus 

 is the mean number of fission neutrons produced per cycle. The collision estimator tends to be 

best, sometimes only marginally so, in very large systems.

The collision estimate of the prompt removal lifetime for any active cycle is the average time 
required for a fission source neutron to be removed from the system by either escape, capture 
(n,0n), or fission.

, 

where Te and Tx are the times from the birth of the neutron until escape or collision. We is the weight 
lost at each escape. Wc + Wf is the weight lost to (n,0n) and fission at each collision,

, 

where  is the microscopic capture (n,0n) cross section, and Wi is the weight entering the 
collision.
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2. Absorption Estimators

The absorption estimator for keff for any active cycle is made when a neutron interacts with a 
fissionable nuclide. The estimator differs for analog and implicit absorption. For analog 
absorption,

,

where i is summed over each analog absorption event in the kth nuclide. Note that in analog 
absorption, the weight is the same both before and after the collision. Because analog absorption 
includes fission in criticality calculations, the frequency of analog absorption at each collision with 
nuclide k is . The analog absorption keff estimate is very similar to the collision 
estimator of keff except that only the kth absorbing nuclide, as sampled in the collision, is used rather 
than averaging over all nuclides.

For implicit absorption, the following is accumulated:

,

where i is summed over all collisions in which fission is possible and  
is the weight absorbed in the implicit absorption. The difference between the implicit absorption 
estimator  and the collision estimator  is that only the nuclide involved in the collision is 
used for the absorption keff estimate rather than an average of all nuclides in the material for the 
collision keff estimator.

The absorption estimator with analog absorption is likely to produce the smallest statistical 
uncertainty of the three estimators for systems where the ratio  is nearly 
constant. Such would be the case for a thermal system with a dominant fissile nuclide such that the 
1/velocity cross-section variation would tend to cancel.

The absorption estimate differs from the collision estimate in that the collision estimate is based 
upon the expected value at each collision, whereas the absorption estimate is based upon the events 
actually sampled at a collision. Thus all collisions will contribute to the collision estimate of  
and  by the probability of fission (or capture for ) in the material. Contributions to the 
absorption estimator will only occur if an actual fission (or capture for ) event occurs for the 
sampled nuclide in the case of analog absorption. For implicit absorption, the contribution to the 
absorption estimate will only be made for the nuclide sampled.

The absorption estimate of the prompt removal lifetime for any active cycle is again the average 
time required for a fission source neutron to be removed from the system by either escape, capture 
(n,0n), or fission.
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For implicit absorption,

,

where

.

For analog absorption,

,

where Te, Tc, Tf, and Tx are the times from the birth of the neutron until escape, capture (n,0n), 
fission, or collision. We is the weight lost at each escape. Wc and Wf  are the weights lost to capture 
(n,0n) and fission at each capture (n,0n) or fission event with the nuclide sampled for the collision.

3. Track Length Estimators

The track length estimator of keff is accumulated every time the neutron traverses a distance d in a 
fissionable material cell:

,

where i is summed over all neutron trajectories,
ρ is the atomic density in the cell, and
d is the trajectory track length from the last event.

Because  is the expected number of fission neutrons produced along trajectory d, 
 is a third estimate of the mean number of fission neutrons produced in a cycle per nominal 

fission source neutron.

The track length estimator tends to display the lowest variance for optically thin fuel cells (for 
example, plates) and fast systems where large cross–section variations because of resonances may 
cause high variances in the other two estimators.

The track length estimator for the prompt removal lifetime for each cycle is accumulated every 
time the neutron traverses a distance d in any material in any cell:
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,

where Ws is the source weight summed over all histories in the cycle and v is the velocity. Note that 
d/v is the time span of the track. Note further that:

,

and in criticality problems:

These relationships show how  is related to the definition of τr on page 2–169.

4. Other Lifetime Estimators

In addition to the collision, absorption, and track length estimators of the prompt removal lifetime 
τr , MCNP provides the escape, capture (n,0n), and fission prompt lifespans and lifetimes for all 
KCODE problems having a sufficient number of settle cycles. Further, the “average time of” 
printed in the problem summary table is related to the lifespans, and track-length estimates of many 
lifetimes can be computed using the 1/v tally multiplier option on the FM card for track-length 
tallies.

In KCODE problems, MCNP calculates the lifespan of escape le, capture (n,0n) lc, fission lf, and 
removal lr :

,

,

, and

.

These sums are taken over all the active histories in the calculation. (If KC8 = 0 on the KCODE 
card, then the sums are over both active and inactive cycle histories, but KC8 = 1, the default, is 
assumed for the remainder of this discussion.) The capture (n,0n) and fission contributions are 
accumulated at each collision with a nuclide, so these are absorption estimates.  Thus,
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.

The difference is that  is the average of the  for each cycle and lr is the average over all 
histories. lr =  if there is precisely one active cycle, but then neither  nor lr is printed out 
because there are too few cycles. The cycle average  does not precisely equal the history average 
lr because they are ratios.

le and lc are the “average time to” escape and capture (n,0n) that is printed in the problem summary 
table for all neutron and photon problems.

, , and  are the weight lost to escape, capture (n,0n), and fission in the 
problem summary table.

The “fractions” Fx printed out below the lifespan in the KCODE summary table are, for 
x = e, c, f, or r,

.

The prompt lifetimes147 for the various reactions τx are then

.

Both  and the covariance-weighted combined estimator  are used. Note again that the 
slight differences between similar quantities are because lx and Fx are averaged over all active 
histories whereas  and  are averaged within each active cycle, and then the final values 
are the averages of the cycle values, i.e., history–averages vs. batch–averages.

The prompt removal lifetime can also be calculated using the F4 track-length tally with the 1/v 
multiplier option on the FM card and using the volume divided by the average source weight Ws 
as the multiplicative constant. The standard track length tally is then converted from

to

.

Remember to multiply by volume, either by setting the FM card constant to the volume or 
overriding the F4 volume divide by using segment divisors of unity on the SD card. Ws should be 
unity for KCODE calculations. The only difference between  and the modified F4 tally will be 
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any variations from unity in Ws and the error estimation, which will be batch-averaged for  and 
history-averaged for the F4 tally.

Lifetimes for all other processes also can be estimated by using the FM multiplier to calculate 
reaction rates as well (the numerator and denominator are separate tallies that must be divided by 
the user — see the examples in Chapters 4 and 5):

.

Note that the lifetimes are inversely additive:

.

5. Combined keff and τr Estimators

MCNP provides a number of combined keff and τr estimators that are combinations of the three 
individual keff and τr estimators using two at a time or all three. The combined keff  and τr values 
are computed by using a maximum likelihood estimate, as outlined by Halperin148 and discussed 
further by Urbatsch.140 This technique, which is a generalization of the inverse variance weighting 
for uncorrelated estimators, produces the maximum likelihood estimate for the combined average 
keff and τr, which, for multivariate normality, is the almost–minimum variance estimate. It is 
“almost” because the covariance matrix is not known exactly and must be estimated. The three-
combined keff and τr estimators are the best final estimates from an MCNP calculation.140

This method of combining estimators can exhibit one feature that is disconcerting: sometimes 
(usually with highly positively correlated estimators) the combined estimate will lie outside the 
interval defined by the two or three individual average estimates. Statisticians at Los Alamos have 
shown140 that this is the best estimate to use for a final keff and τr value. Reference 140 shows the 
results of one study of 500 samples from three highly positively correlated normal distributions, all 
with a mean of zero. In 319 samples, all three estimators fell on the same side of the expected value. 
This type of behavior occurs with high positive correlation because if one estimator is above or 
below the expected value, the others have a good probability of being on the same side of the 
expected value. The advantage of the three–combined estimator is that the Halperin algorithm 
correctly predicts that the true value will lie outside of the range.

6. Error Estimation and Estimator Combination

After the first Ic inactive cycles, during which the fission source spatial distribution is allowed to 
come into spatial equilibrium, MCNP begins to accumulate the estimates of keff and τr with those 
estimates from previous active (after the inactive) cycles. The relative error R of each quantity is 
estimated in the usual way as
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where M = the number of active cycles,

,

where xm = a quantity, such as , from cycle m. This assumes that the cycle–to–cycle estimates 
of each keff are uncorrelated. This assumption generally is good for keff, but not for the 
eigenfunction (fluxes) of optically large systems.149

MCNP also combines the three estimators in all possible ways and determines the covariance and 
correlations. The simple average of two estimators is defined as xij = (1/2)(xi + xj), where, for 
example, xi may be the collision estimator  and xj may be the absorption estimator .

The “combined average” of two estimators is weighted by the covariances as

,

where the covariance Cij is

.

Note that  for estimator i.

The “correlation” between two estimators is a function of their covariances and is given by

correlation = .

The correlation will be between unity (perfect positive correlation) and minus one (perfect anti or 
negative correlation). If the correlation is one, no new information has been gained by the second 
estimator. If the correlation is zero, the two estimators appear statistically independent and the 
combined estimated standard deviation should be significantly less than either. If the correlation is 
negative one, even more information is available because the second estimator will tend to be low, 
relative to the expected value, when the first estimator is high and vice versa. Even larger 
improvements in the combined standard deviation should occur.

The combined average estimator (keff or τr) and the estimated standard deviation of all three 
estimators are based on the method of Halperin148 and is much more complicated than the two-
combination case. The improvements to the standard deviation of the three-combined estimator 
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will depend on the magnitude and sign of the correlations as discussed above. The details and 
analysis of this method are given in Ref. 140.

For many problems, all three estimators are positively correlated. The correlation will depend on 
what variance reduction (for example, implicit or analog capture) is used. Occasionally, the 
absorption estimator may be only weakly correlated with either the collision or track length 
estimator. It is possible for the absorption estimator to be significantly anticorrelated with the other 
two estimators for some fast reactor compositions and large thermal systems. Except in the most 
heterogeneous systems, the collision and track length estimators are likely to be strongly positively 
correlated.

There may be a negative bias146 in the estimated standard deviation of keff for systems where the 
locations of fission sites in one generation are correlated with the locations of fission sites in 
successive generations. The statistical methods used in MCNP for estimating standard deviations 
in keff calculations do not account for the effects of intergenerational correlation, leading to 
underprediction of standard deviations. These systems are typically large with small neutron 
leakage. The magnitude of this effect can be estimated by batching the cycle keff values in batch 
sizes much greater than one cycle,146 which MCNP provides automatically. For problems where 
there is a reason to suspect the results, a more accurate calculation of this effect can be done by 
making several independent calculations of the same problem (using different random number 
sequences) and observing the variance of the population of independent keff values. The larger the 
number of independent calculations that can be made, the better the distribution of keff values can 
be assessed.

7. Creating and Interpreting keff Confidence Intervals

The result of a Monte Carlo criticality calculation (or any other type of Monte Carlo calculation) 
is a confidence interval. For criticality, this means that the result is not just keff, but keff plus and 
minus some number of estimated standard deviations to form a confidence interval (based on the 
Central Limit Theorem) in which the true answer is expected to lie a certain fraction of the time. 
The number of standard deviations used (for example, from a Student's t Table) determines the 
fraction of the time that the confidence interval will include the true answer, for a selected 
confidence level. For example, a valid 99% confidence interval should include the true result 99% 
of the time. There is always some probability (in this example, 1%) that the true result will lie 
outside of the confidence interval. To reduce this probability to an acceptable level, either the 
confidence interval must be increased according to the desired Student's t percentile, or more 
histories need to be run to get a smaller estimated standard deviation.

MCNP uses three different estimators for keff. The advantages of each estimator vary with the 
problem: no one estimator will be the best for all problems. All estimators and their estimated 
standard deviations are valid under the assumption that they are unbiased and consistent, therefore 
representative of the true parameters of the population. This statement has been validated 
empirically140 for all MCNP estimators for small dominance ratios. The batched keff results table 
should be used to estimate if the calculated batch-size-of-one keff standard deviation appears to be 
adequate.
10/3/05 2-177



CHAPTER 2 - GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
CRITICALITY CALCULATIONS
The confidence interval based on the three-statistically-combined keff estimator is the 
recommended result to use for all final keff confidence interval quotations because all of the 
available information has been used in the final result. This estimator often has a lower estimated 
standard deviation than any of the three individual estimators and therefore provides the smallest 
valid confidence interval as well. The final estimated keff value, estimated standard deviation, and 
the estimated 68%, 95%, and 99% confidence intervals (using the correct number of degrees of 
freedom) are presented in the box on the keff results summary page of the output. If other confidence 
intervals are wanted, they can be formed from the estimated standard deviation of keff. At least 30 
active cycles need to be run for the final keff results box to appear. Thirty cycles are required so that 
there are enough degrees of freedom to form confidence intervals using the well-known estimated 
standard deviation multipliers. (When constructing a confidence interval using any single keff 
estimator, its standard deviation, and a Student’s t Table, there are It − Ic −1 degrees of freedom. 
For the two- and three-combined keff estimators, there are It − Ic − 2 and It − Ic − 3 degrees of 
freedom, respectively.)

All of the keff estimators and combinations by two or three are provided in MCNP so that the user 
can make an alternate choice of confidence interval if desired. Based on statistical studies, using 
the individual keff estimator with the smallest estimated standard deviation is not recommended. Its 
use can lead to confidence intervals that do not include the true result the correct fraction of the 
time.140 The studies have shown that the standard deviation of the three-combined keff estimator 
provides the correct coverage rates, assuming that the estimated standard deviations in the 
individual keff estimators are accurate. This accuracy can be verified by checking the batched keff 
results table. When significant anti-correlations occur among the estimators, the resultant much 
smaller estimated standard deviation of the three-combined average has been verified140 by 
analyzing a number of independent criticality calculations.

8. Analysis to Assess the Validity of a Criticality Calculation

The two most important requirements for producing a valid criticality calculation for a specified 
geometry are sampling all of the fissionable material well and ensuring that the fundamental spatial 
mode was achieved before and maintained during the active keff cycles. MCNP has checks to assess 
the fulfillment of both of these conditions.

MCNP verifies that at least one fission source point was generated in each cell containing 
fissionable material. A WARNING message is printed on the keff results summary page that 
includes a list of cells that did not have any particles entering, and/or no collisions, and/or no fission 
source points. For repeated structure geometries, a source point in any one cell that is repeated will 
satisfy this test. For example, assume a problem with a cylinder and a cube that are both filled with 
the same universe, namely a sphere of uranium and the space outside the sphere.  If a source point 
is placed in the sphere inside the cylinder but not in the sphere inside the cube, the test will be 
satisfied.

One basic assumption that is made for a good criticality calculation is that the normal spatial mode 
for the fission source has been achieved after Ic cycles were skipped. MCNP attempts to assess this 
condition in several ways. The estimated combined keff and its estimated standard deviation for the 
first and second active cycle halves of the problem are compared. A WARNING message is issued 
if either the difference of the two values of combined col/abs/track-length keff does not appear to 
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be zero or the ratio of the larger-to-the-smaller estimated standard deviations of the two col/abs/
track-length keff is larger than expected. Failure of either or both checks implies that the two active 
halves of the problem do not appear to be the same and the output from the calculation should be 
inspected carefully.

MCNP checks to determine which number of cycles skipped produces the minimum estimated 
standard deviation for the combined keff estimator. If this number is larger than Ic, it may indicate 
that not enough inactive cycles were skipped. The table of combined keff–by–number–of–cycles 
skipped should be examined to determine if enough inactive cycles were skipped.

It is assumed that N is large enough so that the collection of active cycle keff estimates for each 
estimator will be normally distributed if the fundamental spatial mode has been achieved in Ic 
cycles and maintained for the rest of the calculation. To test this assumption, MCNP performs 
normality checks150,151 on each of the three keff estimator cycle data at the 95% and 99% 
confidence levels. A WARNING message is issued if an individual keff data set does not appear to 
be normally distributed at the 99% confidence level. This condition will happen to good data about 
1% of the time. Unless there is a high positive correlation among the three estimators, it is expected 
to be rare that all three keff estimators will not appear normally distributed at the 99% confidence 
level when the normal spatial mode has been achieved and maintained. When the condition that all 
three sets of keff estimators do not appear to be normal at the 99% confidence level occurs, the box 
with the final keff will not be printed. The final confidence interval results are available elsewhere 
in the output. Examine the calculation carefully to see if the normal mode was achieved before the 
active cycles began. The normality checks are also made for the batched-keff and keff-by- cycles-
skipped tables so that normality behavior can be studied by batch size and Ic.

These normality checks test the assumption that the individual cycle keff values behave in the 
assumed way. Even if the underlying individual cycle keff values are not normally distributed, the 
three average keff values and the combined keff estimator will be normally distributed if the 
conditions required by the Central Limit Theorem are met for the average. If required, this 
assumption can be tested by making several independent calculations to verify empirically that the 
population of the average keff values appears to be normally distributed with the same population 
variance as estimated by MCNP.

MCNP tests for a monotonic trend of the three-combined keff estimator over the last ten active 
cycles. This type of behavior is not expected in a well converged solution for keff and could indicate 
a problem with achieving or maintaining the normal spatial mode. A WARNING message is 
printed if such a monotonic trend is observed.

To assist users in assessing the convergence of the fission source spatial distribution, MCNP 
computes a quantity called the Shannon entropy of the fission source distribution, Hsrc.144,145 The 
Shannon entropy is a well-known concept from information theory and provides a single number 
for each cycle to help characterize convergence of the fission source distribution. It has been found 
that the Shannon entropy converges to a single steady-state value as the source distribution 
approaches stationarity. Line plots of Shannon entropy vs. cycle are easier to interpret and assess 
than are 2-D or 3-D plots of the source distribution vs. cycle. 
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To compute Hsrc, it is necessary to superimpose a 3-D grid on a problem encompassing all of the 
fissionable regions, and then to tally the number of fission sites in a cycle that fall into each of the 
grid boxes. These tallies may then be used to form a discretized estimate of the source distribution, 
{PJ, J=1,Ns}, where Ns is the number of grid boxes in the superimposed mesh, and PJ = (number 
of source sites in Jth grid box)/(total number of source sites). Then, the Shannon entropy of the 
discretized source distribution for that cycle is given by

.

Hsrc varies between 0 for a point distribution to ln2(Ns) for a uniform distribution. Also note that 
as PJ approaches 0, PJ ln2(PJ) approaches 0. MCNP prints Hsrc for each cycle of a KCODE 
calculation. Plots of Hsrc vs. cycle can also be obtained during or after a calculation, using the z 
option and requesting plots for "kcode 6." The user may specify a particular grid to use in 
determining Hsrc by means of the HSRC input card. If the HSRC card is provided, users should 
specify a small number of grid boxes (e.g., 5-10 in each of the XYZ directions), chosen according 
to the symmetry of the problem and layout of the fuel regions. If the HSRC card is not provided, 
MCNP will automatically determine a grid that encloses all of the fission sites for the cycle. The 
number of grid boxes will be determined by dividing the number of histories per cycle by 20, and 
then finding the nearest integer for each direction that will produce this number of equal-sized grid 
boxes, although not fewer than 4x4x4 will be used.

Upon completion of the problem, MCNP will compute the average value of Hsrc for the last half of 
the active cycles, as well as its (population) standard deviation. MCNP will then report the first 
cycle found (active or inactive) where Hsrc falls within one standard deviation of its average for the 
last half of the cycles, along with a recommendation that at least that many cycles should be 
inactive. Plots of Hsrc vs. cycle should be examined to further verify that the number of inactive 
cycles is adequate for fission source convergence.

When running criticality calculations with MCNP, it is essential that users examine the 
convergence of both keff and the fission source distribution (using Shannon entropy). If either 
keff or the fission source distribution is not converged prior to starting the active cycles, then 
results from the calculations will not be correct.

9. Normalization of Standard Tallies in a Criticality Calculation

Track length fluxes, surface currents, surface fluxes, heating and detectors—all the standard 
MCNP tallies—can be made during a criticality calculation. The tallies are for one fission neutron 
generation. Biases may exist in these criticality results, but appear to be smaller than statistical 
uncertainties.146 These tallied quantities are accumulated only after the Ic inactive cycles are 
finished. The tally normalization is per active source weight w, where w = N ∗ (It − Ic), and N is the 
nominal source size (from the KCODE card); It is the total number of cycles in the problem; and Ic 
is the number of inactive cycles (from KCODE card). The number w is appropriately adjusted if 
the last cycle is only partially completed. If the tally normalization flag (on the KCODE card) is 
turned on, the tally normalization is the actual number of starting particles during the active cycles 
rather than the nominal weight above. Bear in mind, however, that the source particle weights are 

Hsrc PJ 2 PJ( )ln⋅

J 1=

Ns

∑–=
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all set to W = N/M so that the source normalization is based upon the nominal source size N for 
each cycle.

An MCNP tally in a criticality calculation is for one fission neutron being born in the system at the 
start of a cycle. The tally results must be scaled either by the total number of neutrons in a burst or 
by the neutron birth rate to produce, respectively, either the total result or the result per unit time 
of the source. The scaling factor is entered on the Fm card.

The statistical errors that are calculated for the tallies assume that all the neutron histories are 
independent. They are not independent because of the cycle–to–cycle correlations that become 
more significant for large or loosely-coupled systems. For some very large systems, the estimated 
standard deviation for a tally that involves only a portion of the problem has been observed to be 
underestimated by a factor of five or more (see Ref. 149 pages 42–44). This value also is a function 
of the size of the tally region. In the Ref. 149 slab reactor example, the entire problem (that is, keff) 
standard deviation was not underestimated at all. An MCNP study152 of the FFTF fast reactor 
indicates that 90% coverage rates for flux tallies are good, but that 2 out of 300 tallies were beyond 
four estimated standard deviations. Independent runs can be made to study the real eigenfunction 
distribution (that is, tallies) and the estimated standard deviations for difficult criticality 
calculations. This method is the only way to determine accurately these confidence intervals for 
large or loosely-coupled problems where intergeneration correlation is significant.

10. Neutron Tallies and the MCNP Net Multiplication Factor

The MCNP net multiplication factor M printed out on the problem summary page differs from the 
keff from the criticality code. We will examine a simple model to illustrate the approximate 
relationship between these quantities and compare the tallies between standard and criticality 
calculations.

Assume we run a standard MCNP calculation using a fixed neutron source distribution identical in 
space and energy to the source distribution obtained from the solution of an eigenvalue problem 
with keff < 1. Each generation will have the same space and energy distribution as the source. The 
contribution to an estimate of any quantity from one generation is reduced by a factor of keff from 
the contribution in the preceding generation. The estimate Ek of a tally quantity obtained in a 
criticality eigenvalue calculation is the contribution for one generation produced by a unit source 
of fission neutrons. An estimate for a standard MCNP fixed source calculation, Es, is the sum of 
contributions for all generations starting from a unit source.

. (2.29)

Note that 1/(1 − keff) is the true system multiplication, often called the subcritical multiplication 
factor. The above result depends on our assumptions about the unit fission source used in the 
standard MCNP run. Usually, Es will vary considerably from the above result, depending on the 
difference between the fixed source and the eigenmode source generated in the eigenvalue 
problem. Es will be a fairly good estimate if the fixed source is a distributed source roughly 
approximating the eigenmode source. Tallies from a criticality calculation are appropriate only for 
a critical system and the tally results can be scaled to a desired fission neutron source (power) level 
or total neutron pulse strength.

Es Ek keffEk keff
2 Ek keff

3 Ek …+ + + + Ek 1 keff–( )⁄= =
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In a fixed source MCNP problem, the net multiplication M is defined to be unity plus the gain Gf 
in neutrons from fission plus the gain Gx from nonfission multiplicative reactions. Using neutron 
weight balance (creation equals loss),

M = 1 + Gf + Gx = We + Wc , (2.30)

where We is the weight of neutrons escaped per source neutron and Wc is the weight of neutrons 
captured per source neutron. In a criticality calculation, fission is treated as an absorptive process; 
the corresponding relationship for the net multiplication is then

, (2.31)

where the superscript o designates results from the criticality calculation and  is the weight of 
neutrons causing fission per source neutron. Because keff is the number of fission neutrons 
produced in a generation per source neutron, we can also write

, (2.32)

where  is the average number of neutrons emitted per fission for the entire problem. Making the 
same assumptions as above for the fixed source used in the standard MCNP calculation and using 
equations (2.26), (2.27), and (2.28), we obtain

or, by using (2.28) and (2.29),

.

Often, the nonfission multiplicative reactions . This implies that keff can be approximated 
by  (from an appropriate Fixed Source calculation)

, (2.33)

when the two fission neutron source distributions are nearly the same. The average value of  
in a problem can be calculated by dividing the fission neutrons gained by the fission neutrons lost 
as given in the totals of the neutron weight balance for physical events. Note, however, that the 
above estimate is subject to the same limitations as described in Eq. 2.26.
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C. Recommendations for Making a Good Criticality Calculation

1. Problem Set-Up

As with any calculation, the geometry must be adequately and correctly specified to represent the 
true physical situation. Plot the geometry and check cells, materials, and masses for correctness. 
Specify the appropriate nuclear data, including S(α,β) thermal data, at the correct material 
temperatures. Do as good a job as possible to put initial fission source points in every cell with 
fissionable material. Try running short problems with both analog and implicit capture (see the 
PHYS:N card) to improve the figure of merit for the combined keff and any tallies being made. 
Follow the tips for good calculations listed at the end of Chapter 1.

2. Number of Neutrons per Cycle and Number of Cycles

Criticality calculations can suffer from two potential problems. The first is the failure to 
sufficiently converge the spatial distribution of the fission source from its initial guess to a 
distribution fluctuating around the fundamental eigenmode solution. It is recommended that the 
user make an initial run with a relatively small number of source particles per generation (perhaps 
500 or 1000) and generously allow a large enough number of cycles so that the eigenvalue appears 
to be fluctuating about a constant value. The user should examine the results and continue the 
calculation if any trends in the eigenvalue are noticeable.  The SRCTP file from the last keff cycle 
of the initial run can then be used as the source for the final production run to be made with a larger 
number of histories per cycle.

This convergence procedure can be extended for very slowly convergent problems—typically 
large, thermal, low-leakage systems, where a convergence run might be made with 500 or 1000 
histories per cycle. Then a second convergence run would be made with 1000 histories per cycle, 
using the SRCTP file from the first run as an initial fission source guess. If the results from the 
second run appear satisfactory, then a final run might be made using 5000 or 10000 particles per 
cycle with the SRCTP file from the second run as an initial fission source guess. In the final run, 
only a few cycles should need to be skipped. The bottom line is this:  skip enough cycles so that 
the normal spatial mode is achieved.

The second potential problem arises from the fact that the criticality algorithm produces a very 
small negative bias in the estimated eigenvalue. The bias depends upon 1/N, where N is the number 
of source particles per generation. Thus, it is desirable to make N as large as possible. Any value 
of N > 500 should be sufficient to reduce the bias to a small level.The eigenvalue bias ∆keff has 
been shown146 to be

, (2.34)

where is the true standard deviation for the final keff,
σapprox is the approximate standard deviation computed assuming

the individual keff values are statistically independent, and
.

∆keff–
It Ic–( )
2keff

------------------ σkeff

2 σapprox
2–( )=

σkeff

σkeff

2 σapprox
2>
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The standard deviations are computed at the end of the problem. Because the σ2s decrease as 
1/(It − Ic), ∆keff is independent of the number of active cycles. Recall that ∆keff is proportional to 
1/N, the number of neutrons per keff cycle.

Eqn. (2.31) can be written146 as the following inequality:

. (2.35)

This inequality is useful for determining an upper limit to the number of active cycles that should 
be used for a calculation without having ∆keff dominate . If  is 0.0010, which is a 
reasonable value for criticality calculations, and It − Ic is 1000, then  and ∆keff 
will not dominate the keff confidence interval. If  is reasonably well approximated by MCNP's 
estimated standard deviation, this ratio will be much less than 0.5.

The total running time for the active cycles is proportional to N(It − Ic), and the standard deviation 
in the estimated eigenvalue is proportional to . From the results of the convergence 
run, the total number of histories needed to achieve the desired standard deviation can be estimated.

It is recommended that 200 to 1000 active cycles be used. This large number of cycles will provide 
large batch sizes of keff cycles (for example, 40 batches of 10 cycles each for 400 active cycles) to 
compare estimated standard deviations with those obtained for a batch size of one keff cycle. For 
example, for 400 active cycles, 40 batches of 10 keff values are created and analyzed for a new 
average keff and a new estimated standard deviation. The behavior of the average keff by a larger 
number of cycles can also be observed to ensure a good normal spatial mode.  Fewer than 30 active 
cycles is not recommended because trends in the average keff may not have enough cycles to 
develop.

3. Analysis of Criticality Problem Results

The goal of the calculation is to produce a keff confidence interval that includes the true result the 
desired fraction of the time. Check all WARNING messages. Understand their significance to the 
calculation. Study the results of the checks that MCNP makes that were described starting on 
page 2–178.

The criticality problem output contains a lot of useful information. Study it to make sure that: 1) the 
problem terminated properly; 2) enough cycles were skipped to ensure that the normal spatial mode 
for fission sources was achieved; 3) all cells with fissionable material were sampled; 4) the average 
combined keff appears to be varying randomly about the average value for the active cycles; 5) the 
average combined keff–by–cycles–skipped does not exhibit a trend during the latter stages of the 
calculation; 6) the confidence intervals for the batched (with at least 30 batch values) combined keff 
do not differ significantly from the final result; 7) the impact of having the largest of each of the 
three keff estimators occurring on the next cycle is not too great on the final confidence interval; and 
8) the combined keff figure of merit should be stable. The combined keff figure of merit should be 
reasonably stable, but not as stable as a tally figure of merit because the number of histories for 
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each cycle is not exactly the same, and the combined keff relative error may experience some 
changes because of changes in the estimated covariance matrix for the three individual estimators.

Plots (using the z option) can be made of the three individual and average keff estimators by cycle, 
as well as the three-estimator-combined keff. Use these plots to better understand the results.

If there is concern about a calculation, the keff–by–cycles–skipped table presents the results that 
would be obtained in the final result box for differing numbers of cycles skipped. This information 
can provide insight into fission source spatial convergence, normality of the keff data sets, and 
changes in the 95% and 99% confidence intervals. If concern persists, a problem could be run that 
tallies the track length estimator keff using an F4:n tally and an FM card using the −6 and −7 reaction 
multipliers (see Chapter 4 for an example). In the most drastic cases, several independent 
calculations can be made and the variance of the keff values (and any other tallies) could be 
computed from the individual values.

If a conservative (too large) keff confidence interval is desired, the results from the largest keff 
occurring on the next cycle table can be used. This situation could occur with a maximum 
probability of 1/(It − Ic) for highly positively correlated keff values to 1/(It − Ic)3 for no correlation.

Finally, keep in mind the discussion starting on page 2–180. For large systems with a dominance 
ratio close to one, the estimated standard deviations for tallies could be much smaller than the true 
standard deviation. The cycle–to–cycle correlations in the fission sources are not taken into 
account, especially for any tallies that are not made over the entire problem. The only way to obtain 
the correct statistical errors in this situation is to run a series of independent problems using 
different random number sequences and analyze the sampled tally results to estimate the statistical 
uncertainties.

IX. VOLUMES AND AREAS

The particle flux in Monte Carlo transport problems often is estimated as the track length per unit 
volume or the number of particles crossing a surface per unit area. Therefore, knowing the volumes 
and surface areas154 of the geometric regions in a Monte Carlo problem is essential. Knowing 
volumes is useful in calculating the masses and densities of cells and thus in calculating volumetric 
or mass heating. Furthermore, calculation of the mass of a geometry is frequently a good check on 
the accuracy of the geometry setup when the mass is known by other means.

Calculating volumes and surface areas in modern Monte Carlo transport codes is nontrivial.  
MCNP allows the construction of cells from unions and/or intersections of regions defined by an 
arbitrary combination of second-degree surfaces, toroidal fourth-degree surfaces, or both. These 
surfaces can have different orientations or be segmented for tallying purposes. The cells they form 
can even consist of several disjoint subcells. Cells can be constructed from quadralateral or 
hexagonal lattices or can be embedded in repeated structures universes.  Although such generality 
greatly increases the flexibility of MCNP, computing cell volumes and surface areas 
understandably requires increasingly elaborate computational methods.
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MCNP automatically calculates volumes and areas of polyhedral cells and of cells or surfaces 
generated by surfaces of revolution about any axis, even a skew axis. If a tally is segmented, the 
segment volumes or areas are computed. For nonrotationally symmetric or nonpolyhedral cells, a 
stochastic volume and surface area method that uses ray tracing is available. See page 2–186.

A. Rotationally Symmetric Volumes and Areas

The procedure for computing volumes and surface areas of rotationally symmetric bodies follows:

1. Determine the common axis of symmetry of the cell.154 If there is none and if the cell is 
not a polyhedron, MCNP cannot compute the volume (except stochastically) and the area 
of each bounding surface cannot be computed on the side of the asymmetric cell.

2. Convert the bounding surfaces to q-form:

ar2 + br + cs2 + ds + e = 0 ,

where s is the axis of rotational symmetry in the r-s coordinate system. All MCNP 
surfaces except tori are quadratic surfaces and therefore can be put into q-form.

3. Determine all intersections of the bounding surfaces with each other in the r-s coordinate 
system. This procedure generally requires the solution of a quartic equation.23 For 
spheres, ellipses, and tori, extra intersection points are added so that these surfaces are 
not infinite. The list of intersections are put in order of increasing s-coordinate. If no 
intersection is found, the surface is infinite; its volume and area on one side cannot be 
computed.

4. Integrate over each bounding surface segment between intersections:

for volumes;

for surface areas.

A bounding surface segment lies between two intersections that bound the cell of interest.

A numerical integration is required for the area of a torroidal surface;  all other integrals are directly 
solved by integration formulas. The sense of a bounding surface to a cell determines the sign of V. 
The area of each surface is determined cell-by-cell twice, once for each side of the surface. An area 
will be calculated unless bounded on both sides by asymmetric or infinite cells.

B. Polyhedron Volumes and Areas

A polyhedron is a body bounded only by planes that can have an arbitrary orientation. The 
procedure for calculating the volumes and surface areas of polyhedra is as follows:

V π r2 sd∫=

A 2π r 1 rd
sd

-----⎝ ⎠
⎛ ⎞ 2

+ sd∫=
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1. For each facet side (planar surface), determine the intersections (ri,si) of the other 
bounding planes in the r-s coordinate system. The r-s coordinate system is redefined for 
each facet to be an arbitrary coordinate system in the plane of the facet.

2. Determine the area of the facet:

,

and the coordinates of its centroid, rc, sc:

.

.

The sums are over all bounding edges of the  facet where i and i + 1 are the ends of the 
bounding edge such that, in going from i to i + 1, the facet is on the right side. As with 
rotationally symmetric cells, the area of a surface is determined cell-by-cell twice, once 
for each side. The area of a surface on one side is the sum over all facets on that side.

3. The volume of a polyhedron is computed by using an arbitrary reference plane.  Prisms 
are projected from each facet normal to the reference plane, and the volume of each 
prism is V = da cos  where
d = distance from reference plane to facet centroid;
a = facet area; and

= angle between the external normal of the facet and the positive
normal of the reference plane.

The sum of the prism volumes is the polyhedron cell volume.

C. Stochastic Volume and Area Calculation

MCNP cannot calculate the volumes and areas of asymmetric, nonpolyhedral, or infinite cells.  
Also, in very rare cases, the volume and area calculation can fail because of roundoff errors. For 
these cases a stochastic estimation is possible by ray tracing. The procedure is as follows:

1. Void out all materials in the problem (VOID card).
2. Set all nonzero importances to one and all positive weight windows to zero.
3. Use a planar source with a source weight equal to the surface area to flood the geometry 

with particles. This will cause the particle flux throughout the geometry to statistically 
approach unity. Perhaps the best way to do a stochastic volume estimation is to use an 
inward-directed, biased cosine source on a spherical surface with weight equal to πr2.153

4. Use the cell flux tally (F4) to tabulate volumes and the surface flux tally (F2) to tabulate 
areas. The cell flux tally is inversely proportional to cell volume. Thus in cells whose 
volumes are known, the unit flux will result in a tally of unity and, in cells whose volume 
is uncalculated, the unit flux will result in a tally of volumes. Similarly, the surface flux 

a 1
2
--- si 1+ si–( )∑ ri 1+ ri+( )=

rc 1 6a( )⁄ si 1+ si–( ) ri 1+
2 ri 1+ ri ri

2+ +( )∑=

sc 1 6a( )⁄ ri 1+ ri–( ) si 1+
2 si 1+ si si

2+ +( )∑=

θ
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tally is inversely proportional to area so that the unit flux will result in a tally of unity 
wherever the area is known and a tally of area wherever it is unknown.

X. PLOTTER

The MCNP plotter draws cross-sectional views of the problem geometry according to commands 
entered by the user. See Appendix B for the command vocabulary and examples of use. The 
pictures can be drawn on the screen of a terminal or to a postscript file as directed by the user. The 
pictures are drawn in a square viewport on the graphics device. The mapping between the viewport 
and the portion of the problem space to be plotted, called the window, is user–defined. A plane in 
problem space, the plot plane, is defined by specifying an origin  and two perpendicular basis 
vectors  and . The size of the window in the plot plane is defined by specifying two extents. The 
picture appears in the viewport with the origin at the center, the first basis vector pointing to the 
right and the second basis vector pointing up. The width of the picture is twice the first extent and 
the height is twice the second extent. If the extents are unequal, the picture is distorted. The central 
task of the plotter is to plot curves representing the intersections of the surfaces of the geometry 
with the plot plane within the window.

All plotted curves are conics, defined here to include straight lines. The intersection of a plane with 
any MCNP surface that is not a torus is always a conic. A torus is plotted only if the plot plane 
contains the torus axis or is perpendicular to it, in which case the intersection curves are conics. 
The first step in plotting the curves is to find equations for them, starting from the equations for the 
surfaces of the problem. Equations are needed in two forms for each curve: a quadratic equation 
and a pair of parametric equations. The quadratic equations are needed to solve for the intersections 
of the curves. The parametric equations are needed for defining the points on the portions of the 
curves that are actually plotted.

The equation of a conic is

As2 + 2Hst + Bt2 + 2Gs + 2Ft + C = 0 ,

where s and t are coordinates in the plot plane. They are related to problem coordinates (x,y,z) by

or in matrix form

.

In matrix form the conic equation is

r0
a b

r r0 sa tb+ +=

1
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z

1 0 0
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.

Thus, finding the equation of a curve to be plotted is a matter of finding the QM matrix, given the 
PL matrix and the coefficients of the surface.

Any surface in MCNP, except for tori, can be readily written as

Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + Gx + Hy + Jz + K = 0 ,

or in matrix form as

,

or

.

The transpose of the transformation between (s,t) and (x,y,z) is

,

where PLT is the transpose of the PL matrix. Substitution in the surface equation gives

.

Therefore, QM = PLT AM PL.

A convenient set of parametric equations for conics is

straight line s = C1 + C2p
t = C4 + C5p

parabola s = C1 + C2p + C3p2

t = C4 + C5p + C6p2

ellipse s = C1 + C2 sin p + C3 cos p

1 s t[ ]
C G F
G A H
F H B

1
s
t

0 or 1 s t[ ] QM
1
s
t
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1 x y z[ ]
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t = C4 + C5 sin p + C6 cos p
hyperbola s = C1 + C2 sinh p + C3 cosh p

t = C4 + C5 sinh p + C6 cosh p.

The type of a conic is determined by examination of the conic invariants,155 which are simple 
functions of the elements of QM. Some of the surfaces produce two curves, such as the two 
branches of a hyperbola or two straight lines. A separate set of parametric coefficients, C1 through 
C6, is needed for each curve in such cases. The parametric coefficients are found by transforming 
QM into yet another coordinate system where most of its elements are zero. The parametric 
coefficients are then simple functions155 of the remaining elements. Finally, the coefficients are 
transformed from that coordinate system back to the (s,t) system.

For a plottable torus, the curves are either a pair of identical ellipses or a pair of concentric circles. 
The parametric coefficients are readily calculated from the surface coefficients and the elements of 
QM are simple functions of the parametric coefficients.

The next step is to reject all curves that lie entirely outside the window by finding the intersections 
of each curve with the straight line segments that bound the window, taking into account the 
possibility that an ellipse may lie entirely inside the window.

The remaining curves are plotted one at a time. The intersections of the current curve, with all of 
the other remaining curves and with the boundaries of the window, are found by solving the 
simultaneous equations

,

where i = 1 is the current curve and i = 2 is one of the other curves. This process generally requires 
finding the roots of a quartic. False roots and roots outside the window are rejected and the value 
of the parameter p for each remaining intersection is found. The intersections then are arranged in 
order of increasing values of p.

Each segment of the curve–the portion of the curve between two adjacent intersections–is 
examined to see whether and how it should be plotted. A point near the center of the segment is 
transformed back to the (x,y,z) coordinate system. All cells immediately adjacent to the surface at 
that point are found. If there is exactly one cell on each side of the surface and those cells are the 
same, the segment is not plotted. If there is exactly one cell on each side and those cells are 
different, the segment is plotted as a solid line. If anything else is found, the segment is plotted as 
a dotted line, which indicates either that there is an error in the problem geometry or that some other 
surface of the problem also intersects the plot plane along the segment.

If a curve to be plotted is not a straight line, it is plotted as a sequence of short straight lines between 
selected points on the curve. The points are selected according to the criterion that the middle of 
the line drawn between points must not lie farther from the nearest point on the true curve than the 
nominal resolution of the picture. The nominal resolution is fixed at 1/3000 of a side of the 
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viewport. This is a bit coarse for the best plotting devices and is quite a bit too fine for the worst 
ones, but it produces adequate pictures at reasonable cost.

XI. RANDOM NUMBERS

Like any other Monte Carlo program, MCNP uses a sequence of random numbers to sample from 
probability distributions. MCNP has always used the linear congruential scheme of Lehmer,15 
though the mechanics of implementation have been modified for portability to different computer 
platforms. A random sequence of integers In is generated by

In+1 = G In+C   mod 2M,       n = 0,1,...

where G is the random number multiplier, I0 is the initial random seed, C is an additive constant, 
and M-bit integers and M-bit floating point mantissas are assumed. The random number is then

Rn = 2−MIn .

The MCNP5 random number generator169 implements the above algorithm in portable Fortran 90 
using either 48-bit integers (the default) or 63-bit integers.

The starting random number for history k is

I0 (k) = GkS I0  + C (GkS-1)/(G-1)   mod 2M,

where S is the random number stride, that is, the number of random numbers allocated to each 
single history. This initial random number expression is evaluated very efficiently using a fast 
skip-ahead algorithm.168 Successive random numbers for history k are then

In
(k) = G In

(k) + C   mod 2M .

The default values of G, M, I0, S, and C, which can be changed with the RAND card, are

G = 519 = 19,073,486,328,125
M = 48
C = 0
S = 152,917
I0 = 1

The values of G, M, and C may be changed by selecting another set of parameters using the RAND 
card. The 3 other sets of parameters use 63-bit integers and a nonzero additive constant C.

The period P of the MCNP algorithm using the default parameters is , and 
 for the extended random number parameters. 

MCNP prints a WARNING and counts the number of histories for which the stride S is exceeded.  
MCNP also prints a WARNING if the period P is exceeded. Exceeding the stride or the period does 

P 246 7.04 1013×≈=
P 263 9.2 1018×≈=
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not result in wrong answers but may result in an underestimate of the variance. However, because 
the random numbers are used for very different purposes, MCNP seems quite insensitive to 
overrunning either the stride or the period.156

Sometimes users wish to know how much of the variation between problems is purely statistical 
and the variance is insufficient to provide this information. In correlated sampling (see page 2–163) 
and criticality problems, the variances can be underestimated because of correlation between 
histories. In this case, rerun the problems with a different random number sequence, either by 
starting with a new random number or by changing the random number stride or multiplier on the 
RAND card.  MCNP checks for and does not allow invalid choices, such as an even numbered 
initial random number that, after a few random numbers, would result in all subsequent random 
numbers being zero.

XII. PERTURBATIONS

The evaluation of response or tally sensitivities to cross-section data involves finding the ratio of 
the change in a tally to the infinitesimal change in the data, as given by the Taylor series expansion. 
In deterministic methods, this ratio is approximated by performing two calculations, one with the 
original data and one with the perturbed data. This approach is useful even when the magnitude of 
the perturbation becomes very small. In Monte Carlo methods, however, this approach fails as the 
magnitude of the perturbation becomes small because of the uncertainty associated with the 
response. For this reason, the differential operator technique was developed.

The differential operator perturbation technique as applied in the Monte Carlo method was 
introduced by Olhoeft157 in the early 1960s. Nearly a decade after its introduction, this technique 
was applied to geometric perturbations by Takahashi.158 A decade later, the method was 
generalized for perturbations in cross-section data by Hall159,160 and later Rief.161 A rudimentary 
implementation into MCNP followed shortly thereafter.162 With an enhancement of the user 
interface and the addition of second order effects, this implementation has evolved into a standard 
MCNP feature.

A. Derivation of the Operator

In the differential operator approach, a change in the Monte Carlo response c, due to changes in a 
related data set (represented by the parameter v), is given by a Taylor series expansion

. . . +  + . . . ,

where the nth-order coefficient is

.

This can be written as

∆c dc
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------ ∆v 1
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,

for the data set

,

where Kb(h) is some constant, B represents a set of macroscopic cross sections, and H represents a 
set of energies or an energy interval.

For a track-based response estimator

,

where tj is the response estimator and qj is the probability of path segment j (path segment j is 
comprised of segment j − 1 plus the current track). This gives

,

or

,

where

.

With some manipulations presented in Refs. 163 and 164, the path segment estimator γnjtj can be 
converted to a particle history estimator of the form

,

where pi is the probability of the ith history and Vni is the nth-order coefficient estimator for history 
i, given by
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Note that this sum involves only those path segments j' in particle history i. The Monte Carlo 
expected value of un becomes

,

for a sample of N particle histories.

The probability of path segment j is the product of the track probabilities,

,

where rk is the probability of track k and segment j contains m + 1 tracks. If the kth track starts with 
a neutron undergoing reaction type “a” at energy E' and is scattered from angle θ' to angle θ and 
E, continues for a length λk, and collides, then

,

where xa(E') is the macroscopic reaction cross section at energy E', xT(E') is the total cross section 
at energy E', and  is the probability distribution function in phase space 
of the emerging neutron.  If the track starts with a collision and ends in a boundary crossing

.

If the track starts with a boundary crossing and ends with a collision,

  .

And finally, if the track starts and ends with boundary crossings

  .

1. First Order

For a first-order perturbation, the differential operator becomes

un〈 〉 1
N
---- Vni

i
∑=

1
Nn!
--------- γnj′tj′

j′
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

i
∑=

qj rk

k 0=

m

∏=

rk
xa E′( )
xT E′( )
----------------⎝ ⎠

⎛ ⎞ Pa E′ E   θ′ θ→;→( )dEdθ e
xT E( )λk–

( )xT E( )dλk=

Pa E′ E   θ′ θ→;→( )dEdθ

rk
xa eE′( )
xT E′( )
------------------⎝ ⎠

⎛ ⎞ Pa E′ E   θ′ θ→;→( )dEdθ e
xT E( )λk–

( )=

rk e
xT E( )λk–

( )xT E( )=

rk e
xT E( )λk–

=
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whereas,

 .

then

,

where

for a track segment k that starts with a particle undergoing reaction type “a” at energy E' and is 
scattered to energy E and collides after a distance λk. Note that δhE and δba are unity if h=E and 
b=a; otherwise they vanish. For other types of tracks (for which the various expressions for rk were 
given in the previous section), that is, collision to boundary, boundary to collision, and boundary 
to boundary, derivatives of rk can be taken leading to one or more of these four terms for βj'k.

The second term of γ1j' is

,

where the tally response is a linear function of some combination of reaction cross sections, or

,

γ1j′ xb h( ) xb h( )∂
∂ tj′qj′( )⎝ ⎠

⎛ ⎞ 1
tj′qj′
----------⎝ ⎠

⎛ ⎞

h H∈
∑

b B∈
∑≡

xb h( )
qj′

-------------
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xb h( )∂
----------------

xb h( )
tj′

-------------
tj′∂

xb h( )∂
----------------+⎝ ⎠

⎛ ⎞

h H∈
∑

b B∈
∑=

1
qj′
-----

qj′∂
xb h( )∂

---------------- 1
rk
----

rk∂
xb h( )∂

----------------

k 0=

m

∑=

γ1j' βj′k R1j′+
k 0=

m

∑=

βj′k
xb h( )

rk
-------------⎝ ⎠

⎛ ⎞ rk∂
xb h( )∂

----------------⎝ ⎠
⎛ ⎞

h H∈
∑

b B∈
∑≡

δhE′δba
δhE′xb E′( )

xT E′( )
--------------------------– δhExb E( )λk–

δhExb E( )
xT E( )

----------------------+⎝ ⎠
⎛ ⎞

  h H∈
∑

b B∈
∑=

R1j′
xb h( )

tj′
-------------

∂tj′
∂xb h( )
----------------

h H∈
∑

b B∈
∑=

tj′ λk xc E( )
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where c is an element of the tally cross sections, , and may be an element of the perturbed 
cross sections, . Then,

.

R1j' is the fraction of the reaction rate tally involved in the perturbation. If none of the nuclides 
participating in the tally is involved in the perturbation, then R1j' = 0, which is always the case for 
F1, F2, and F4 tallies without FM cards. For F4 tallies with an FM card, if the FM card 
multiplicative constant is positive (no flag to multiply by atom density) it is assumed that the FM 
tally cross sections are unaffected by the perturbation and R1j' = 0. For KCODE keff track length 
estimates, F6 and F7 heating tallies, and F4 tallies with FM cards with negative multipliers 
(multiply by atom density to get macroscopic cross sections), if the tally cross section is affected 
by the perturbation, then R1j' > 0. For keff and F6 and F7 tallies in perturbed cells where all nuclides 
are perturbed, generally R1j' = 1.

Finally, the expected value of the first-order coefficient is

.

2. Second Order

For a second-order perturbation, the differential operator becomes

c C∈
c B∈

R1j′
xb h( )

xc h( )
c C∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞
----------------------------- ∂

∂xb h( )
---------------- xc h( )

c C∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

h H∈
∑

b B∈
∑=

xc E( )
E H∈
∑

c B∈
∑

xc E( )
c C∈
∑

------------------------------------=

u1〈 〉 1
N
---- βj′k R1j′+

k 0=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

tj′
j′
∑

i
∑=

γ2j′ x2
b h( ) ∂2

∂x2
b h( )

------------------- tj′qj′( )
⎝ ⎠
⎜ ⎟
⎛ ⎞ 1

tj′qj′
----------⎝ ⎠

⎛ ⎞

h H∈
∑

b B∈
∑≡
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.

Whereas tj' is a linear function of , then

and by taking first and second derivatives of the rk terms of qj' as for the first-order perturbation,

,

where

     

The expected value of the second-order coefficient is

,

where βj'k and αj'k are given by one or more terms as described above for track k and R1j' is again 
the fraction of the perturbation with nuclides participating in the tally.

3. Implementation in MCNP

The total perturbation printed in the MCNP output file is
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.

For each history i and path j', 

.

Let the first-order perturbation with R1j' = 0 be

,

and let the second-order perturbation with R1j' = 0 be

.

Then the Taylor series expansion for R1j' = 0 is

.

If  then

.

That is, the  case is just a correction to the  case.

In MCNP, P1j' and P2j' are accumulated along every track length through a perturbed cell.  All 
perturbed tallies are multiplied by

     ,

and then if  the tally is further corrected by

R1j' ∆v + P1j' R1j' ∆v2 . 

∆c〈 〉 1
N
---- ∆cj′

j′
∑

i
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2
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R1j' is the fraction of the reaction rate tally involved in the perturbation. R1j' = 0 for F1, F2, F4 tallies 
without FM cards, and F4 tallies with FM cards with positive multiplicative constants.

B. Limitations

Although it is always a high priority to minimize the limitations of any MCNP feature, the 
perturbation technique has the limitations given below. Chapter 3, page 3–154, has examples you 
can refer to.

1. A fatal error is generated if a PERT card attempts to unvoid a region. The simple solution 
is to include the material in the unperturbed problem and void the region of interest with 
the PERT card. See Appendix B of Ref. 165.

2. A fatal error is generated if a PERT card attempts to alter a material composition in such 
a way as to introduce a new nuclide. The solution is to set up the unperturbed problem 
with a mixture of both materials and introduce PERT cards to remove each.  See 
Appendix B of Ref. 165.

3. The track length estimate of keff in KCODE criticality calculations assumes the 
fundamental eigenfunction (fission distribution) is unchanged in the perturbed 
configuration.

4. DXTRAN, point detector tallies, and pulse height tallies are not currently compatible 
with the PERT card.

5. While there is no limit to the number of perturbations, they should be kept to a minimum, 
as each perturbation can degrade performance by 10–20%.

6. Use caution in selecting the multiplicative constant and reaction number on FM cards 
used with F4 tallies in perturbation problems.

7. The METHOD keyword can indicate if a perturbation is so large that higher than second-
order terms are needed to prevent inaccurate tallies.

8. If a perturbation changes the relative concentrations of nuclides (MAT keyword) it is 
assumed that the perturbation contribution from each nuclide is independent (that is, 
second-order differential cross terms are neglected).

C. Accuracy

Analyzing the first- and second-order perturbation results presented in Ref. 166 leads to the 
following rules of thumb. The first-order perturbation estimator typically provides sufficient 
accuracy for response or tally changes that are less than 5%. The default first- plus second-order 
estimator offers acceptable accuracy for response changes that are less than 20–30%. This upper 
bound depends on the behavior of the response as a function of the perturbed parameter. The 
magnitude of the second-order estimator is a good measure of the range of applicability. If this 
magnitude exceeds 30% of the first-order estimator, it is likely that higher-order terms are needed 
for an accurate prediction.  The METHOD keyword on the PERT card allows one to tally the 
second-order term separate from the first.  See Chapter 3, page 3–153.
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The MCNP perturbation capability assumes that changes in the relative concentrations or densities 
of the nuclides in a material are independent and neglects the cross-differential terms in the second-
order perturbation term when changing two or more cross sections at once. In some cases there will 
be a large FALSE second-order perturbation term. See Chapter 3, page 3–154 for further discussion 
and examples. Reference 166 provides more discussion and a method for calculating the cross 
terms.

The MCNP perturbation capability has been shown to be inaccurate for some large but very 
localized perturbations in criticality problems.  An alternative implementation that only requires 
postprocessing standard MCNP tallies has been shown to be much more accurate in some cases.  
See Ref. 167.
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ENDF/B REACTION TYPES
APPENDIX G - MCNP DATA LIBRARIES

Appendix G is divided into eight sections. Section I lists some of the more frequently used 
ENDF/B reaction types that can be used with the FMn input card, Sections II through VII provide 
details about the data libraries available for use with MCNP, and Section VIII is a list of references.  
Information about any specific data library, as well as other useful information, can be found on 
the following Data Team web site: http://www-xdiv.lanl.gov/PROJECTS/DATA/nuclear/
nuclear.html  

I. ENDF/B REACTION TYPES

The following partial list includes some of the more useful reactions for use with the FMn input 
card and with the cross-section plotter (see pages 3–99 and B–14.) The complete ENDF/B list can 
be found in the ENDF/B manual.1 The MT column lists the ENDF/B reaction number. The FM 
column lists special MCNP reaction numbers that can be used with the FM card and cross-section 
plotter.

The nomenclature between MCNP and ENDF/B is inconsistent in that MCNP often refers to the 
number of the reaction type as R whereas ENDF/B uses MT, but they are the same. The problem 
arises because MCNP has an MT input card used for the S(α,β) thermal treatment. However, the 
nomenclature between Monte Carlo transport and Deterministic transport techniques can be 
radically different. See Reference 2 on page G–74 for more information.

Generally only a subset of reactions is available for a particular nuclide. Some reaction data are 
eliminated by MCNP in cross-section processing if they are not required by the problem.  
Examples are photon production in a MODE N problem or certain reaction cross sections not 
requested on an FM card. FM numbers should be used when available rather than MT numbers.  
If an MT number is requested, the equivalent FM number will be displayed on the legend of cross-
section plots.

Page
I. ENDF/B Reaction Types G–1
II. S(α,β) Data for Use with the MTm Card G–5
III. Neutron Cross Section Libraries G–9
IV. Multigroup Data G–40
V. Photoatomic Data G–43
VI. Photonuclear Data G–58
VII. Dosimetry Data G–60
VIII References G–74
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ENDF/B REACTION TYPES
Neutron Continuous-energy and Discrete Reactions:

In addition, the following special reactions are available for many nuclides:

MT FM Microscopic Cross-Section Description
1 –1 Total (see Note 1)
2 −3 Elastic (see Note 1)
16 (n,2n)
17 (n,3n)
18 Total fission (n,fx) if and only if MT=18 is used to specify fission in 

the original evaluation.
−6 Total fission cross section. (equal to MT=18 if MT=18 exists; 

otherwise equal to the sum of MTs 19, 20, 21, and 38.)
19 (n,f)
20 (n,n'f)
21 (n,2nf)
22 (n,n'α)
28 (n,n'p)
32 (n,n'd)
33 (n,n't)
38 (n,3nf)
51 (n,n') to 1st excited state
52 (n,n') to 2nd excited state
⋅ ⋅
90 (n,n') to 40th excited state
91 (n,n') to continuum
101 −2 Absorption: sum of MT=102-117 

(neutron disappearance; does not include fission)
102 (n,γ)
103 (n,p)
104 (n,d)
105 (n,t)
106 (n,3He)
107 (n,α)

202 −5 total photon production
203 total proton production (see Note 2)
204 total deuterium production (see Note 2)
205 total tritium production (see Note 2)
206 total 3He production (see Note 2)
207 total alpha production (see Note 2)
301 −4 average heating numbers (MeV/collision)

−7 nubar (prompt or total)
−8 fission Q (in print table 98, but not plots)
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ENDF/B REACTION TYPES
S(α,β):

Neutron and Photon Multigroup:

Photoatomic Data:

Electrons (see Note 3):

MT FM Microscopic Cross-Section Description
1 Total cross section
2 Elastic scattering cross-section
4  Inelastic scattering cross-section

MT FM Microscopic Cross-Section Description
1 −1 Total cross section
18 −2 Fission cross section

−3 Nubar data
−4 Fission chi data

101 −5 Absorption cross section
−6 Stopping powers
−7 Momentum transfers

n Edit reaction n
202 Photon production
301 Heating number
318 Fission Q
401 Heating number times total cross section

MT FM Microscopic Cross-Section Description
501 −5 Total
504 −1 Incoherent (Compton + Form Factor)
502 −2 Coherent (Thomson + Form Factor)
522 −3 Photoelectric with fluorescence
516 −4 Pair production
301 −6 Heating number

MT FM Microscopic Cross-Section Description
1 de/dx electron collision stopping power
2 de/dx electron radiative stopping power
3 de/dx total electron stopping power
4 electron range
5 electron radiation yield
6 relativistic β2

7 stopping power density correction
8 ratio of rad/col stopping powers
9 drange
10 dyield
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Notes:
1. At the time they are loaded, the total and elastic cross sections from the data library are 

thermally adjusted by MCNP to the temperature of the problem, if that temperature is 
different from the temperature at which the cross-section set was processed (see
page 2-29). If different cells have different temperatures, the cross sections first are 
adjusted to zero degrees and adjusted again to the appropriate cell temperatures during 
transport.  The cross-section plot will never display the transport adjustment. Therefore, 
for plotting, reactions 1 and −1 are equivalent and reactions 2 and −3 are equivalent. But 
for the FM card, reactions −1 and −3 will use the zero degree data and reactions 1 and 2 
will use the transport-adjusted data.  For example, if a library evaluated at 300° is used 
in a problem with cells at 400° and 500°, the cross-section plotter and MT = −1 and 
MT = −3 options on the FM card will use 0° data. The MT = 1 and MT = 2 options on 
the FM card will use 400° and 500° data.

2. The user looking for total production of p, d, t, 3He and 4He should be warned that in 
some evaluations, such processes are represented using reactions with MT (or R) 
numbers other than the standard ones given in the above list. This is of particular 
importance with the so-called “pseudolevel” representation of certain reactions which 
take place in light isotopes. For example, the ENDF/B-V evaluation of carbon includes 
cross sections for the (n,n'3α) reaction in MT = 52 to 58. The user interested in particle 
production from light isotopes should check for the existence of pseudolevels and thus 
possible deviations from the above standard reaction list.

3. Two electron transport libraries, el and el03, are maintained.  The electron transport 
algorithms and data in MCNP where adapted from the ITS code.3 The el library was 
developed and released in 1990 in conjunction with the addition of electron transport into 
MCNP4; the electron transport algorithms and data correspond (roughly) to that found 
in ITS version 1.  The el03 library4 was developed and released in 2000 in conjunction 
with upgrades to the electron physics package; these upgrades correspond (roughly) to 
that of ITS version 3.  The MT numbers for use in plotting the cross-section values for 
these tables should be taken from the Print Table 85 column headings and are not from 
ENDF.

11 rng array values
12 qav array values
13 ear array values
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II. S(α,β) DATA FOR USE WITH THE MTn CARD

Table G .1 lists all the S(α,β) data libraries that are maintained. The number(s) in parentheses 
following the description in words [Beryllium Metal (4009)] specify the nuclides for which the 
S(α,β) data are valid. For example, lwtr.01t provides scattering data only for 1H; 16O would still 
be represented by the default free-gas treatment. The entries in each of the columns of 
Table G .1 are described as follows:

ZAID The table identification to be specified on MTn cards. The portion of 
the ZAID before the decimal point provides a shorthand 
alphanumeric description of the material. The two digits after the 
decimal point differentiate among different tables for the same 
material. The final character in the ZAID is a "t" which indicates a 
thermal S(α,β) table.

Source There are currently three evaluated sources of MCNP S(α,β) tables:
(1) ENDF5–Indicates that the data were processed from

evaluations distributed by the National Nuclear Data Center at
Brookhaven National Laboratory as part of ENDF/B-V. 
Note that these evaluations were carried over from ENDF/
B-III.5

(2) LANL89–Initial work on cold moderator scattering data
performed at Los Alamos National Laboratory.6,7 

(3) ENDF6.3–Indicates that the data were processed from
evaluations distributed by the National Nuclear Data Center at
Brookhaven National Laboratory as part of ENDF/B-VI,
Release 3.8 

Library Name of the library that contains the data table for this ZAID.

Date Processed Date that the data table was processed by the NJOY code.

Temperature The temperature of the data in degrees Kelvin.

Number of Angles The number of equally-likely discrete secondary cosines provided at 
each combination of incident and secondary energy for inelastic 
scattering and for each incident energy for incoherent elastic 
scattering.

Number of Energies The number of secondary energies provided for each incident energy 
for inelastic scattering.

Elastic Scattering Data There are three options:
 (1)  none–no elastic scattering data for this material.

(2)  coh–coherent elastic scattering data provided for this material 
      (Bragg scattering).
(3)  inco–incoherent elastic scattering data provided for this
       material.
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Table G .1
Thermal S(α,β) Cross-Section Libraries

Library Date of Temp Num of Num of Elastic
ZAID Source Name Processing ( K) Angles Energies Data

Beryllium Metal (4009)
be.01t endf5 tmccs 10/24/85 300 8 20 coh
be.04t endf5 tmccs 10/24/85 600 8 20 coh
be.05t endf5 tmccs 10/24/85 800 8 20 coh
be.06t endf5 tmccs 10/24/85 1200 8 20 coh
be.60t endf6.3 sab2002 09/13/99 294 16 64 coh
be.61t endf6.3 sab2002 09/13/99 400 16 64 coh
be.62t endf6.3 sab2002 09/13/99 600 16 64 coh
be.63t endf6.3 sab2002 09/14/99 800 16 64 coh
be.64t endf6.3 sab2002 09/14/99 1000 16 64 coh
be.65t endf6.3 sab2002 09/14/99 1200 16 64 coh
be.69t endf6.3 sab2002 09/17/99 77 16 64 coh

Benzene (1001, 6000, 6012)
benz.01t endf5 tmccs 09/08/86 300 8 32 none
benz.02t endf5 tmccs 09/08/86 400 8 32 none
benz.03t endf5 tmccs 09/08/86 500 8 32 none
benz.04t endf5 tmccs 09/08/86 600 8 32 none
benz.05t endf5 tmccs 09/08/86 800 8 32 none
benz.60t endf6.3 sab2002 09/14/99 294 16 64 none
benz.61t endf6.3 sab2002 09/14/99 400 16 64 none
benz.62t endf6.3 sab2002 09/14/99 600 16 64 none
benz.63t endf6.3 sab2002 09/14/99 800 16 64 none

Beryllium Oxide (4009, 8016)
beo.01t endf5 tmccs 09/08/86 300 8 32 coh
beo.04t endf5 tmccs 09/08/86 600 8 32 coh
beo.05t endf5 tmccs 09/08/86 800 8 32 coh
beo.06t endf5 tmccs 09/08/86 1200 8 32 coh
beo.60t endf6.3 sab2002 09/14/99 294 16 64 coh
beo.61t endf6.3 sab2002 09/14/99 400 16 64 coh
beo.62t endf6.3 sab2002 09/14/99 600 16 64 coh
beo.63t endf6.3 sab2002 09/14/99 800 16 64 coh
beo.64t endf6.3 sab2002 09/14/99 1000 16 64 coh
beo.65t endf6.3 sab2002 09/14/99 1200 16 64 coh

Ortho Deuterium (1002)
dortho.01t lanl89 therxs 05/30/89 20 8 8 none
dortho.60t endf6.3 sab2002 09/16/99 19 16 64 none

Para Deuterium (1002)
dpara.01t lanl89 therxs 05/30/89 20 8 8 none
dpara.60t endf6.3 sab2002 09/16/99 19 16 64 none
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Table G .1 (Cont.)
Thermal S(α,β) Cross-Section Libraries

Library Date of Temp Num of Num of Elastic
ZAID Source Name Processing ( K) Angles Energies Data

Graphite (6000, 6012)
grph.01t endf5 tmccs 09/08/86 300 8 32 coh
grph.04t endf5 tmccs 09/08/86 600 8 32 coh
grph.05t endf5 tmccs 09/08/86 800 8 32 coh
grph.06t endf5 tmccs 09/08/86 1200 8 32 coh
grph.07t endf5 tmccs 09/08/86 1600 8 32 coh
grph.08t endf5 tmccs 09/08/86 2000 8 32 coh
grph.60t endf6.3 sab2002 09/14/99 294 16 64 coh
grph.61t endf6.3 sab2002 09/14/99 400 16 64 coh
grph.62t endf6.3 sab2002 09/14/99 600 16 64 coh
grph.63t endf6.3 sab2002 09/14/99 800 16 64 coh
grph.64t endf6.3 sab2002 09/14/99 1000 16 64 coh
grph.65t endf6.3 sab2002 09/14/99 1200 16 64 coh

Hydrogen in Zirconium Hydride (1001)
h/zr.01t endf5 tmccs 10/22/85 300 8 20 inco
h/zr.02t endf5 tmccs 10/22/85 400 8 20 inco
h/zr.04t endf5 tmccs 10/22/85 600 8 20 inco
h/zr.05t endf5 tmccs 10/22/85 800 8 20 inco
h/zr.06t endf5 tmccs 10/22/85 1200 8 20 inco
h/zr.60t endf6.3 sab2002 09/14/99 294 16 64 inco
h/zr.61t endf6.3 sab2002 09/14/99 400 16 64 inco
h/zr.62t endf6.3 sab2002 09/14/99 600 16 64 inco
h/zr.63t endf6.3 sab2002 09/14/99 800 16 64 inco
h/zr.64t endf6.3 sab2002 09/14/99 1000 16 64 inco
h/zr.65t endf6.3 sab2002 09/14/99 1200 16 64 inco

Ortho Hydrogen (1001)
hortho.01t lanl89 therxs 03/03/89 20 8 8 none
hortho.60t endf6.3 sab2002 01/21/03 19 16 64 none
hortho.61t endf6.3 sab2002 06/14/00 20 16 64 none
hortho.62t endf6.3 sab2002 06/14/00 21 16 64 none
hortho.63t endf6.3 sab2002 06/14/00 22 16 64 none
hortho.64t endf6.3 sab2002 06/14/00 23 16 64 none
hortho.65t endf6.3 sab2002 06/14/00 24 16 64 none
hortho.66t endf6.3 sab2002 06/14/00 25 16 64 none
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Table G .1 (Cont.)
Thermal S(α,β) Cross-Section Libraries

Library Date of Temp Num of Num of Elastic
ZAID Source Name Processing ( K) Angles Energies Data

Para Hydrogen (1001)
hpara.01t lanl89 therxs 03/03/89 20 8 8 none
hpara.60t endf6.3 sab2002 06/14/00 19 16 64 none
hpara.61t endf6.3 sab2002 06/13/00 20 16 64 none
hpara.62t endf6.3 sab2002 06/14/00 21 16 64 none
hpara.63t endf6.3 sab2002 06/14/00 22 16 64 none
hpara.64t endf6.3 sab2002 06/14/00 23 16 64 none
hpara.65t endf6.3 sab2002 06/14/00 24 16 64 none
hpara.66t endf6.3 sab2002 06/14/00 25 16 64 none

Deuterium in Heavy Water (1002)
hwtr.01t endf5 tmccs 10/22/85 300 8 20 none
hwtr.02t endf5 tmccs 10/22/85 400 8 20 none
hwtr.03t endf5 tmccs 10/22/85 500 8 20 none
hwtr.04t endf5 tmccs 10/22/85 600 8 20 none
hwtr.05t endf5 tmccs 10/22/85 800 8 20 none
hwtr.60t endf6.3 sab2002 09/14/99 294 16 64 none
hwtr.61t endf6.3 sab2002 01/20/03 400 16 64 none
hwtr.62t endf6.3 sab2002 09/14/99 600 16 64 none
hwtr.63t endf6.3 sab2002 09/14/99 800 16 64 none
hwtr.64t endf6.3 sab2002 01/20/03 1000 16 64 none

Hydrogen in Liquid Methane (1001)
lmeth.01t lanl89 therxs 04/10/88 100 8 8 none
lmeth.60t endf6.3 sab2002 09/17/99 100 16 64 none

Hydrogen in Light Water (1001)
lwtr.01t endf5 tmccs 10/22/85 300 8 20 none
lwtr.02t endf5 tmccs 10/22/85 400 8 20 none
lwtr.03t endf5 tmccs 10/22/85 500 8 20 none
lwtr.04t endf5 tmccs 10/22/85 600 8 20 none
lwtr.05t endf5 tmccs 10/22/85 800 8 20 none
lwtr.60t endf6.3 sab2002 09/13/99 294 16 64 none
lwtr.61t endf6.3 sab2002 09/13/99 400 16 64 none
lwtr.62t endf6.3 sab2002 09/13/99 600 16 64 none
lwtr.63t endf6.3 sab2002 09/13/99 800 16 64 none
lwtr.64t endf6.3 sab2002 01/21/03 1000 16 64 none

Hydrogen in Polyethylene (1001)
poly.01t endf5 tmccs 10/22/85 300 8 20 inco
poly.60t endf6.3 sab2002 09/14/99 294 16 64 inco

Hydrogen in Solid Methane (1001)
smeth.01t lanl89 therxs 04/10/88 22 8 8 inco
smeth.60t endf6.3 sab2002 09/17/99 22 16 64 inco
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Table G .1 (Cont.)
Thermal S(α,β) Cross-Section Libraries

Library Date of Temp Num of Num of Elastic
ZAID Source Name Processing ( K) Angles Energies Data

Zirconium in Zirconium Hydride (40000, 40090, 40091, 40092, 40094, 40096)
zr/h.01t endf5 tmccs 09/08/86 300 8 32 inco
zr/h.02t endf5 tmccs 09/08/86 400 8 32 inco
zr/h.04t endf5 tmccs 09/08/86 600 8 32 inco
zr/h.05t endf5 tmccs 09/08/86 800 8 32 inco
zr/h.06t endf5 tmccs 09/08/86 1200 8 32 inco
zr/h.60t endf6.3 sab2002 09/14/99 294 16 64 inco
zr/h.61t endf6.3 sab2002 09/14/99 400 16 64 inco
zr/h.62t endf6.3 sab2002 09/14/99 600 16 64 inco
zr/h.63t endf6.3 sab2002 09/14/99 800 16 64 inco
zr/h.64t endf6.3 sab2002 09/14/99 1000 16 64 inco
zr/h.65t endf6.3 sab2002 09/14/99 1200 16 64 inco

III. NEUTRON CROSS-SECTION LIBRARIES

Table G .2 lists all the continuous-energy and discrete neutron data libraries that are maintained. 
Not all libraries are publicly available. The entries in each of the columns of Table G .2 are 
described as follows:

ZAID The nuclide identification number with the form ZZZAAA.nnX, where 
ZZZ is the atomic number 
AAA is the mass number (000 for elements) 
nn is the unique table identification number 
X = C for continuous-energy neutron tables 
X = D for discrete-reaction tables

Atomic Weight Ratio The atomic weight ratio (AWR) is the ratio of the atomic mass of the
nuclide to a neutron. This is the AWR that is contained in the original 
evaluation and that was used in the NJOY processing of the evaluation.

Library Name of the library that contains the data file for that ZAID. The 
number in brackets following a file name refers to one of the special 
notes at the end of Table G .2.

Source Indicates the originating evaluation for that data file.

ENDF/B-V.# or ENDF/B-VI.# (such as B-V.0 and B-VI.1) are the 
Evaluated Nuclear Data Files, a US effort coordinated by the National 
Nuclear Data Center at Brookhaven National Laboratory. The 
evaluations are updated periodically by evaluators from all over the 
world, and the release number of the evaluation is given. This is not 
necessarily the same as the ENDF revision number for that evaluation. 
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For example, Pu-243 is noted as ENDF/B-VI.2 as it was first released 
with Release 2 of ENDF/B-VI, but it is Revision 1 of that evaluation.

LLNL – evaluated nuclear data libraries compiled by the Nuclear Data 
Group at Lawrence Livermore National Laboratory. The number in the 
library name indicates the year the library was produced or received.

LANL – evaluations from the Nuclear Physics Group T-16 at Los 
Alamos National Laboratory.

:T or  :X – the original evaluation has been modified by the Los Alamos 
National Laboratory Groups T-16 or X-5.

Evaluation Date Denotes the year that the evaluation was completed or accepted. In 
cases where this information is not known, the date that the data library 
was produced is given. It is rare that a completely new evaluation is 
produced. Most often, only a section of an existing evaluation is 
updated, but a new evaluation date is assigned. This can be misleading 
for the users, and we encourage you to read the File 1 information for 
data tables important to your application to understand the history of a 
specific evaluation. This information is available from the Data Team’s 
web site. The notation “<1985” means “before” 1985.

Temperature Indicates the temperature (°K) at which the data were processed. The 
temperature enters into the processing of the evaluation of a data file 
only through the Doppler broadening of cross sections. The user must 
be aware that without the proper use of the TMP card, MCNP will 
attempt to correct the data libraries to the default 300°K by modifying 
the elastic and total cross sections only.

Doppler broadening refers to a change in cross section resulting from 
thermal motion (translation, rotation and vibration) of nuclei in a target 
material. Doppler broadening is done on all cross sections for incident 
neutrons (nonrelativistic energies) on a target at some temperature 
(Temp) in which the free-atom approximation is valid. In general an 
increase in the temperature of the material containing neutron-
absorbing nuclei in a homogeneous system results in Doppler 
broadening of resonances and an increase in resonance absorption. 
Furthermore, a constant cross section at zero °K goes to 1/v behavior 
as the temperature increases. You should not only use the best 
evaluations but also use evaluations that are at temperatures 
approximating the temperatures in your application.

Length The total length of a particular cross-section file in words. It is 
understood that the actual storage requirement in an MCNP problem 
will often be less because certain data that are not needed for a problem 
may be expunged.

Number of Energies The number of energy points (NE) on the grid used for the neutron 
cross section for that data file. In general, a finer energy grid (or greater 
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number of points) indicates a more accurate representation of the cross 
sections, particularly through the resonance region.

Emax The maximum incident neutron energy for that data file. For all 
incident neutron energies greater than Emax, MCNP assumes the last 
cross-section value given.

GPD  “yes” means that photon-production data are included; 
“no” means that such data are not included.

for fissionable material,  indicates the type of fission nu data 
available. “pr” indicates that only prompt nu data are given; 
“tot” indicates that only total nu data are given; 
“both” indicates that prompt and total nu are given.

CP “yes” indicates that secondary charged-particles data are present;
“no” indicates that such data are not present.

DN “yes” indicates that delayed neutron data are present;
“no” indicates that such data are not present.

UR “yes” indicates that unresolved resonance data are present;
“no” indicates that such data are not present.

Numbers in brackets [ ] refer to notes on page G–39.

Table G .2 contains no indication of a “recommended” library for each isotope. Because of the wide 
variety of applications MCNP is used to simulate, no one data set is “best.” The default cross-
section set for each isotope is determined by the XSDIR file being used (see page 2-18). 

Finally, you can introduce a cross-section library of your own by using the XS input card.

υ υ
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Table G .2
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

Z = 1   **************   Hydrogen   *******************************************

**   H-1   **
1001.24c 0.9991 la150n B-VI.6 1998 293.6 10106 686 150.0 yes no yes no no
1001.42c 0.9992 endl92 LLNL <1992 300.0 1968 121 30.0 yes no no no no
1001.50c 0.9992 rmccs B-V.0 1977 293.6 2766 244 20.0 yes no no no no
1001.50d 0.9992 drmccs B-V.0 1977 293.6 3175 263 20.0 yes no no no no
1001.53c 0.9992 endf5mt[1] B-V.0 1977 587.2 4001 394 20.0 yes no no no no
1001.60c 0.9992 endf60 B-VI.1 1989 293.6 3484 357 100.0 yes no no no no
1001.62c 0.9992 actia B-VI.8 1998 293.6 10128 688 150.0 yes no yes no no
1001.66c 0.9992 endf66a B-VI.6:X 1998 293.6 10128 688 150.0 yes no yes no no
**   H-2   **
1002.24c 1.9968 la150n B-VI.6 1997 293.6 10270 538 150.0 yes no yes no no
1002.50c 1.9968 endf5p B-V.0 1967 293.6 3987 214 20.0 yes no no no no
1002.50d 1.9968 dre5 B-V.0 1967 293.6 4686 263 20.0 yes no no no no
1002.55c 1.9968 rmccs LANL/T 1982 293.6 5981 285 20.0 yes no no no no
1002.55d 1.9968 drmccs LANL/T 1982 293.6 5343 263 20.0 yes no no no no
1002.60c 1.9968 endf60 B-VI.0 1967[2] 293.6 2704 178 20.0 yes no no no no
1002.66c 1.9968 endf66a B-VI.6 1997 293.6 10270 538 150.0 yes no yes no no
**   H-3   **
1003.42c 2.9901 endl92 LLNL <1992 300.0 2308 52 30.0 no no no no no
1003.50c 2.9901 rmccs B-V.0 1965 293.6 2428 184 20.0 no no no no no
1003.50d 2.9901 drmccs B-V.0 1965 293.6 2807 263 20.0 no no no no no
1003.60c 2.9901 endf60 B-VI.0 1965 293.6 3338 180 20.0 no no no no no
1003.66c 2.9901 endf66a B-VI.0 1965 293.6 5782 389 20.0 no no no no no
1003.69c 2.9896 t16_2003 LANL/T16 2001 293.6 11206 468 20.0 no no no no no

Z = 2   **************   Helium   *********************************************

**   He-3   **
2003.42c 2.9901 endl92 LLNL <1992 300.0 1477 151 30.0 yes no no no no
2003.50d 2.9901 drmccs B-V.0 1971 293.6 2612 263 20.0 no no no no no
2003.50c 2.9901 rmccs B-V.0 1971 293.6 2320 229 20.0 no no no no no
2003.60c 2.9890 endf60 B-VI.1 1990 293.6 2834 342 20.0 no no no no no
2003.66c 2.9890 endf66a B-VI.1 1990 293.6 9679 668 20.0 no no yes no no
**   He-4   **
2004.42c 3.9682 endl92 LLNL <1992 300.0 1332 49 30.0 no no no no no
2004.50c 4.0015 rmccs B-V.0 1973 293.6 3061 345 20.0 no no no no no
2004.50d 4.0015 drmccs B-V.0 1973 293.6 2651 263 20.0 no no no no no
2004.60c 4.0015 endf60 B-VI.0 1973 293.6 2971 327 20.0 no no no no no
2004.62c 3.9682 actia B-VI.8 1973 293.6 5524 588 20.0 no no no no no
2004.66c 3.9682 endf66a B-VI.0:X 1973 293.6 5524 588 20.0 no no no no no

Z = 3   **************   Lithium   ********************************************

**   Li-6   **
3006.42c 5.9635 endl92 LLNL <1992 300.0 7805 294 30.0 yes no no no no
3006.50c 5.9634 rmccs B-V.0 1977 293.6 9932 373 20.0 yes no no no no
3006.50d 5.9634 drmccs B-V.0 1977 293.6 8716 263 20.0 yes no no no no
3006.60c 5.9634 endf60 B-VI.1 1989 293.6 12385 498 20.0 yes no no no no
3006.66c 5.9634 endf66a B-VI.1 1989 293.6 28012 870 20.0 yes no no no no
**   Li-7   **
3007.42c 6.9557 endl92 LLNL <1992 300.0 5834 141 30.0 yes no no no no
3007.50d 6.9557 dre5 B-V.0 1972 293.6 4935 263 20.0 yes no no no no
3007.50c 6.9557 endf5p B-V.0 1972 293.6 4864 343 20.0 yes no no no no
3007.55c 6.9557 rmccs B-V.2 1979 293.6 13171 328 20.0 yes no no no no
3007.55d 6.9557 drmccs B-V.2 1979 293.6 12647 263 20.0 yes no no no no
3007.60c 6.9557 endf60 B-VI.0 1988 293.6 14567 387 20.0 yes no no no no
3007.66c 6.9557 endf66a B-VI.0 1988 293.6 19559 677 20.0 yes no no no no

υ
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Table G .2 (Cont.)
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

Z = 4   **************   Beryllium   ******************************************

**   Be-7   **
4007.42c 6.9567 endl92 LLNL <1992 300.0 1544 127 30.0 yes no no no no
**   Be-9   **
4009.21c 8.9348 100xs[3] LANL/T:X 1989 300.0 28964 316 100.0 yes no no no no
4009.24c 8.9347 la150n LANL 1989 293.6 68468 619 100.0 yes no yes no no
4009.50c 8.9348 rmccs B-V.0 1976 293.6 8886 329 20.0 yes no no no no
4009.50d 8.9348 drmccs B-V.0 1976 293.6 8756 263 20.0 yes no no no no
4009.60c 8.9348 endf60 B-VI.0 1986 293.6 64410 276 20.0 yes no no no no
4009.62c 8.9348 actia B-VI.8 2000 293.6 115407 514 20.0 yes no yes no no
4009.66c 8.9348 endf66a B-VI.0 1986 293.6 113907 538 20.0 yes no yes no no

Z = 5   **************   Boron   **********************************************

**   B-10   **
5010.42c 9.9269 endl92 LLNL <1992 300.0 4733 175 30.0 yes no no no no
5010.50d 9.9269 drmccs B-V.0 1977 293.6 12322 263 20.0 yes no no no no
5010.50c 9.9269 rmccs B-V.0 1977 293.6 20200 514 20.0 yes no no no no
5010.53c 9.9269 endf5mt[1] B-V.0 1977 587.2 23676 700 20.0 yes no no no no
5010.60c 9.9269 endf60 B-VI.1 1989 293.6 27957 673 20.0 yes no no no no
5010.66c 9.9269 endf66a B-VI.1 1989 293.6 51569 1035 20.0 yes no no no no
**   B-11   **
5011.42c 10.9147 endl92 LLNL <1992 300.0 4285 244 30.0 yes no no no no
5011.50d 10.9150 dre5 B-V.0 1974 293.6 2812 263 20.0 no no no no no
5011.50c 10.9150 endf5p B-V.0 1974 293.6 4344 487 20.0 no no no no no
5011.55d 10.9150 drmccs B-V.0:T 1971[4] 293.6 7106 263 20.0 yes no no no no
5011.55c 10.9150 rmccsa B-V.0:T 1971[4] 293.6 12254 860 20.0 yes no no no no
5011.56d 10.9147 newxsd LANL/T 1986 293.6 17348 263 20.0 yes no no no no
5011.56c 10.9147 newxs LANL/T 1986 293.6 56929 1762 20.0 yes no no no no
5011.60c 10.9147 endf60 B-VI.0 1989 293.6 108351 2969 20.0 yes no no no no
5011.66c 10.9147 endf66a B-VI.0:X 1989 293.6 149785 3442 20.0 yes no yes no no

Z = 6   **************   Carbon   *********************************************

**   C-nat**
6000.24c 11.8980 la150n B-VI.6 1996 293.6 79070 1267 150.0 yes no yes no no
6000.50d 11.8969 drmccs B-V.0 1977 293.6 16844 263 20.0 yes no no no no
6000.50c 11.8969 rmccs B-V.0 1977 293.6 23326 875 20.0 yes no no no no
6000.60c 11.8980 endf60 B-VI.1 1989 293.6 22422 978 32.0 yes no no no no
6000.66c 11.8980 endf66a B-VI.6 1989 293.6 79070 1267 150.0 yes no yes no no
**   C-12   **
6012.21c 11.8969 100xs[3] LANL/T:X 1989 300.0 28809 919 100.0 yes no no no no
6012.42c 11.8969 endl92 LLNL <1992 300.0 6229 191 30.0 yes no no no no
6012.50d 11.8969 drmccs[5] B-V.0 1977 293.6 16844 263 20.0 yes no no no no
6012.50c 11.8969 rmccs[5] B-V.0 1977 293.6 23326 875 20.0 yes no no no no
**   C-13   **
6013.42c 12.8916 endl92 LLNL <1992 300.0 5993 429 30.0 yes no no no no

Z = 7   **************   Nitrogen   *******************************************

**   N-14   **
7014.24c 13.8827 la150n B-VI.6 1997 293.6 144740 1824 150.0 yes no yes no no
7014.42c 13.8828 endl92 LLNL <1992 300.0 20528 770 30.0 yes no no no no
7014.50c 13.8830 rmccs B-V.0 1973 293.6 45457 1196 20.0 yes no no no no
7014.50d 13.8830 drmccs B-V.0 1973 293.6 26793 263 20.0 yes no no no no
7014.60c 13.8828 endf60 LANL/T 1992 293.6 60397 1379 20.0 yes no no no no
7014.62c 13.8828 actia B-VI.8 2000 293.6 145340 1824 150.0 yes no yes no no
7014.66c 13.8828 endf66a B-VI.6 1997 293.6 144740 1824 150.0 yes no yes no no
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**   N-15   **
7015.42c 14.8713 endl92 LLNL <1992 300.0 22590 352 30.0 yes no no no no
7015.55c 14.8710 rmccsa LANL/T 1983 293.6 20920 744 20.0 yes no no no no
7015.55d 14.8710 drmccs LANL/T 1983 293.6 15273 263 20.0 yes no no no no
7015.60c 14.8710 endf60 B-VI.0 1993 293.6 24410 653 20.0 yes no no no no
7015.66c 14.8710 endf66a B-VI.0 1993 293.6 31755 880 20.0 yes no no no no

Z = 8   **************   Oxygen   *********************************************

**   O-16   **
8016.21c 15.8575 100xs[3] LANL/T:X 1989 300.0 45016 1427 100.0 yes no no no no
8016.24c 15.8531 la150n B-VI.6 1996 293.6 164461 1935 150.0 yes no yes no no
8016.42c 15.8575 endl92 LLNL <1992 300.0 9551 337 30.0 yes no no no no
8016.50c 15.8580 rmccs B-V.0 1972 293.6 37942 1391 20.0 yes no no no no
8016.50d 15.8580 drmccs B-V.0 1972 293.6 20455 263 20.0 yes no no no no
8016.53c 15.8580 endf5mt[1] B-V.0 1972 587.2 37989 1398 20.0 yes no no no no
8016.54c 15.8580 endf5mt[1] B-V.0 1972 880.8 38017 1402 20.0 yes no no no no
8016.60c 15.8532 endf60 B-VI.0 1990 293.6 58253 1609 20.0 yes no no no no
8016.62c 15.8575 actia B-VI.8 2000 293.6 407432 2759 150.0 yes no yes no no
8016.66c 15.8532 endf66a B-VI.6 1996 293.6 164461 1935 150.0 yes no yes no no
**   O-17   **
8017.60c 16.8531 endf60 B-VI.0 1978 293.6 4200 335 20.0 no no no no no
8017.66c 16.8531 endf66a B-VI.0 1978 293.6 8097 612 20.0 no no no no no

Z = 9   **************   Fluorine   *******************************************

**   F-19   **
9019.42c 18.8352 endl92 LLNL <1992 300.0 37814 1118 30.0 yes no no no no
9019.50c 18.8350 endf5p B-V.0 1976 293.6 44130 1569 20.0 yes no no no no
9019.50d 18.8350 dre5 B-V.0 1976 293.6 23156 263 20.0 yes no no no no
9019.51d 18.8350 drmccs B-V.0 1976 293.6 23156 263 20.0 yes no no no no
9019.51c 18.8350 rmccs B-V.0 1976 293.6 41442 1541 20.0 yes no no no no
9019.60c 18.8350 endf60 B-VI.0 1990 300.0 93826 1433 20.0 yes no no no no
9019.62c 18.8350 actia B-VI.8 2000 293.6 127005 1888 20.0 yes no yes no no
9019.66c 18.8350 endf66a B-VI.0:X 1990 293.6 122324 1870 20.0 yes no yes no no

Z = 10   **************   Neon   ***********************************************

**   Ne-20   **
10020.42c 19.8207 endl92 LLNL <1992 300.0 14286 1011 30.0 yes no no no no

Z = 11   **************   Sodium   *********************************************

**   Na-23   **
11023.42c 22.7923 endl92 LLNL <1992 300.0 19309 1163 30.0 yes no no no no
11023.50c 22.7920 endf5p B-V.0 1977 293.6 52252 2703 20.0 yes no no no no
11023.50d 22.7920 dre5 B-V.0 1977 293.6 41665 263 20.0 yes no no no no
11023.51d 22.7920 drmccs B-V.0 1977 293.6 41665 263 20.0 yes no no no no
11023.51c 22.7920 rmccs B-V.0 1977 293.6 48863 2228 20.0 yes no no no no
11023.60c 22.7920 endf60 B-VI.1 1977 293.6 50294 2543 20.0 yes no no no no
11023.62c 22.7920 actia B-VI.8 2000 293.6 69562 3239 20.0 yes no no no no
11023.66c 22.7920 endf66a B-VI.1 1977 293.6 64249 3239 20.0 yes no no no no

υ

G–14 10/3/05



APPENDIX G - MCNP DATA LIBRARIES
NEUTRON CROSS-SECTION LIBRARIES
Table G .2 (Cont.)
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

Z = 12   **************   Magnesium   ******************************************

**   Mg-nat**
12000.42c 24.0962 endl92 LLNL <1992 300.0 9288 468 30.0 yes no no no no
12000.50d 24.0963 dre5 B-V.0 1978 293.6 14070 263 20.0 yes no no no no
12000.50c 24.0963 endf5u B-V.0 1978 293.6 56334 2430 20.0 yes no no no no
12000.51c 24.0963 rmccs B-V.0 1978 293.6 48917 1928 20.0 yes no no no no
12000.51d 24.0963 drmccs B-V.0 1978 293.6 14070 263 20.0 yes no no no no
12000.60c 24.0963 endf60 B-VI.0 1978 293.6 55776 2525 20.0 yes no no no no
12000.61c 24.0963 actib B-VI.8 2000 77.0 69108 3213 20.0 yes no no no no
12000.62c 24.0963 actia B-VI.8 2000 293.6 68746 3172 20.0 yes no no no no
12000.64c 24.0963 endf66d B-VI.0 1978 77.0 67880 3213 20.0 yes no no no no
12000.66c 24.0963 endf66a B-VI.0 1978 293.6 67511 3172 20.0 yes no no no no

Z = 13   **************   Aluminum   *******************************************

**   Al-27   **
13027.21c 26.7498 100xs[3] LANL/T:X 1989 300.0 35022 1473 100.0 yes no no no no
13027.24c 26.7497 la150n B-VI.6 1997 293.6 214549 3148 150.0 yes no yes no no
13027.42c 26.7498 endl92 LLNL <1992 300.0 32388 1645 30.0 yes no no no no
13027.50d 26.7500 drmccs B-V.0 1973 293.6 41947 263 20.0 yes no no no no
13027.50c 26.7500 rmccs B-V.0 1973 293.6 54162 2028 20.0 yes no no no no
13027.60c 26.7500 endf60 B-VI.0 1973 293.6 55427 2241 20.0 yes no no no no
13027.61c 26.7497 actib B-VI.8 2000 77.0 220073 3038 150.0 yes no yes no no
13027.62c 26.7497 actia B-VI.8 2000 293.6 220418 3081 150.0 yes no yes no no
13027.64c 26.7497 endf66d B-VI.6 1997 77.0 213659 3037 150.0 yes no yes no no
13027.66c 26.7497 endf66a B-VI.6 1997 293.6 214004 3036 150.0 yes no yes no no
13027.91c 26.7497 actib[6] B-VI.8 2000 77.0 220104 3038 150.0 yes no yes no no
13027.92c 26.7497 actia[6] B-VI.8 2000 293.6 220449 3081 150.0 yes no yes no no

Z = 14   **************   Silicon   ********************************************

**   Si-nat**
14000.21c 27.8440 100xs[3] LANL/T:X 1989 300.0 76399 2883 100.0 yes no no no no
14000.42c 27.8442 endl92 LLNL <1992 300.0 16696 855 30.0 yes no no no no
14000.50c 27.8440 endf5p B-V.0 1976 293.6 98609 2440 20.0 yes no no no no
14000.50d 27.8440 dre5 B-V.0 1976 293.6 69498 263 20.0 yes no no no no
14000.51c 27.8440 rmccs B-V.0 1976 293.6 88129 1887 20.0 yes no no no no
14000.51d 27.8440 drmccs B-V.0 1976 293.6 69498 263 20.0 yes no no no no
14000.60c 27.8440 endf60 B-VI.0 1976 293.6 104198 2824 20.0 yes no no no no
**   Si-28   **
14028.24c 27.7370 la150n LANL 1997 293.6 264892 7417 150.0 yes no yes no no
14028.61c 27.7370 actib B-VI.6 1997 77.0 264592 7472 150.0 yes no yes no no
14028.62c 27.7370 actia B-VI.6 1997 293.6 263728 7364 150.0 yes no yes no no
14028.64c 27.7370 endf66d B-VI.6 1997 77.0 264592 7472 150.0 yes no yes no no
14028.66c 27.7370 endf66a B-VI.6 1997 293.6 263728 7364 150.0 yes no yes no no
**   Si-29   **
14029.24c 28.7280 la150n B-VI.6 1997 293.6 252663 4878 150.0 yes no yes no no
14029.61c 28.7280 actib B-VI.8 1999 77.0 252671 4879 150.0 yes no yes no no
14029.62c 28.7280 actia B-VI.8 1999 293.6 252591 4869 150.0 yes no yes no no
14029.64c 28.7280 endf66d B-VI.6 1997 77.0 252791 4894 150.0 yes no yes no no
14029.66c 28.7280 endf66a B-VI.6 1997 293.6 252615 4872 150.0 yes no yes no no
**   Si-30   **
14030.24c 29.7160 la150n B-VI.6 1997 293.6 195933 5791 150.0 yes no yes no no
14030.61c 29.7160 actib B-VI.6 1997 77.0 196252 5831 150.0 yes no yes no no
14030.62c 29.7160 actia B-VI.6 1997 293.6 195852 5781 150.0 yes no yes no no
14030.64c 29.7160 endf66d B-VI.6 1997 77.0 196252 5831 150.0 yes no yes no no
14030.66c 29.7160 endf66a B-VI.6 1997 293.6 195852 5781 150.0 yes no yes no no
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Z = 15   **************   Phosphorus   *****************************************

**   P-31   **
15031.24c 30.7080 la150n B-VI.6 1997 293.6 71942 990 150.0 yes no yes no no
15031.42c 30.7077 endl92 LLNL <1992 300.0 6805 224 30.0 yes no no no no
15031.50c 30.7080 endf5u B-V.0 1977 293.6 5733 326 20.0 yes no no no no
15031.50d 30.7080 dre5 B-V.0 1977 293.6 5761 263 20.0 yes no no no no
15031.51d 30.7080 drmccs B-V.0 1977 293.6 5761 263 20.0 yes no no no no
15031.51c 30.7080 rmccs B-V.0 1977 293.6 5732 326 20.0 yes no no no no
15031.60c 30.7080 endf60 B-VI.0 1977 293.6 6715 297 20.0 yes no no no no
15031.66c 30.7080 endf66a B-VI.6 1997 293.6 71942 990 150.0 yes no yes no no

Z = 16   **************   Sulfur   *********************************************

**   S-nat**
16000.60c 31.7882 endf60 B-VI.0 1979 293.6 108683 8382 20.0 yes no no no no
16000.61c 31.7888 actib B-VI.8 2000 77.0 162749 10459 20.0 yes no no no no
16000.62c 31.7888 actia B-VI.8 2000 293.6 160505 10272 20.0 yes no no no no
16000.64c 31.7882 endf66d B-VI.0 1979 77.0 162138 10460 20.0 yes no no no no
16000.66c 31.7882 endf66a B-VI.0 1979 293.6 159894 10273 20.0 yes no no no no
**   S-32   **
16032.42c 31.6974 endl92 LLNL <1992 300.0 6623 307 30.0 yes no no no no
16032.50c 31.6970 endf5u B-V.0 1977 293.6 6789 363 20.0 yes no no no no
16032.50d 31.6970 dre5 B-V.0 1977 293.6 6302 263 20.0 yes no no no no
16032.51c 31.6970 rmccs B-V.0 1977 293.6 6780 362 20.0 yes no no no no
16032.51d 31.6970 drmccs B-V.0 1977 293.6 6302 263 20.0 yes no no no no
16032.60c 31.6970 endf60 B-VI.0 1977 293.6 7025 377 20.0 yes no no no no
16032.61c 31.6970 actib B-VI.8 2000 77.0 14930 885 20.0 yes no no no no
16032.62c 31.6970 actia B-VI.8 2000 293.6 16050 993 20.0 yes no no no no
16032.64c 31.6970 endf66d B-VI.0 1977 77.0 12714 885 20.0 yes no no no no
16032.66c 31.6970 endf66a B-VI.0 1977 293.6 13834 993 20.0 yes no no no no

Z = 17   **************   Chlorine   *******************************************

**   Cl-nat**
17000.42c 35.1484 endl92 LLNL <1992 300.0 12012 807 30.0 yes no no no no
17000.50d 35.1480 dre5 B-V.0 1967 293.6 18209 263 20.0 yes no no no no
17000.50c 35.1480 endf5p B-V.0 1967 293.6 23313 1499 20.0 yes no no no no
17000.51c 35.1480 rmccs B-V.0 1967 293.6 21084 1375 20.0 yes no no no no
17000.51d 35.1480 drmccs B-V.0 1967 293.6 18209 263 20.0 yes no no no no
17000.60c 35.1480 endf60 B-VI.0 1967 293.6 24090 1816 20.0 yes no no no no
17000.64c 35.1480 endf66d B-VI.0 1967 77.0 44517 2799 20.0 yes no no no no
17000.66c 35.1480 endf66a B-VI.0 1967 293.6 45407 2888 20.0 yes no no no no
**   Cl-35   **
17035.61c 34.6684 actib B-VI.8 2000 77.0 316441 7217 20.0 yes no yes no no
17035.62c 34.6684 actia B-VI.8 2000 293.6 311841 6987 20.0 yes no yes no no
**   Cl-37   **
17037.61c 36.6483 actib B-VI.8 2000 77.0 137963 3495 20.0 yes no yes no no
17037.62c 36.6483 actia B-VI.8 2000 293.6 137404 3425 20.0 yes no yes no no

Z = 18   **************   Argon   **********************************************

**   Ar-nat**
18000.35c 39.6048 rmccsa LLNL <1985 0.0 5585 259 20.0 yes no no no no
18000.35d 39.6048 drmccs LLNL <1985 0.0 14703 263 20.0 yes no no no no
18000.42c 39.6048 endl92 LLNL <1992 300.0 5580 152 30.0 yes no no no no
18000.59c 39.6048 misc5xs[7,8] LANL/T 1982 293.6 3473 252 20.0 yes no no no no

υ
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Z = 19   **************   Potassium   ******************************************

**   K-nat**
19000.42c 38.7624 endl92 LLNL <1992 300.0 11060 544 30.0 yes no no no no
19000.50c 38.7660 endf5u B-V.0 1974 293.6 22051 1243 20.0 yes no no no no
19000.50d 38.7660 dre5 B-V.0 1974 293.6 23137 263 20.0 yes no no no no
19000.51d 38.7660 drmccs B-V.0 1974 293.6 23137 263 20.0 yes no no no no
19000.51c 38.7660 rmccs B-V.0 1974 293.6 18798 1046 20.0 yes no no no no
19000.60c 38.7660 endf60 B-VI.0 1974 293.6 24482 1767 20.0 yes no no no no
19000.62c 38.7660 actia B-VI.8 2000 293.6 52304 2734 20.0 yes no no no no
19000.66c 38.7660 endf66a B-VI.0 1974 293.6 51384 2734 20.0 yes no no no no

Z = 20   **************   Calcium   ********************************************

**   Ca-nat**
20000.24c 39.7360 la150n B-VI.6 1997 293.6 187818 4470 150.0 yes no yes no no
20000.42c 39.7357 endl92 LLNL <1992 300.0 13946 1002 30.0 yes no no no no
20000.50c 39.7360 endf5u B-V.0 1976 293.6 62624 2394 20.0 yes no no no no
20000.50d 39.7360 dre5 B-V.0 1976 293.6 29033 263 20.0 yes no no no no
20000.51d 39.7360 drmccs B-V.0 1976 293.6 29033 263 20.0 yes no no no no
20000.51c 39.7360 rmccs B-V.0 1976 293.6 53372 1796 20.0 yes no no no no
20000.60c 39.7360 endf60 B-VI.0 1980 293.6 76468 2704 20.0 yes no no no no
20000.61c 39.7360 actib B-VI.8 2000 77.0 185636 4178 150.0 yes no yes no no
20000.62c 39.7360 actia B-VI.8 2000 293.6 187296 4344 150.0 yes no yes no no
20000.64c 39.7360 endf66d B-VI.6 1997 77.0 184909 4179 150.0 yes no yes no no
20000.66c 39.7360 endf66a B-VI.6 1997 293.6 186569 4345 150.0 yes no yes no no
**   Ca-40   **
20040.21c 39.6193 100xs[3] LANL/T:X 1989 300.0 53013 2718 100.0 yes no no no no

Z = 21   **************   Scandium   *******************************************

**   Sc-45   **
21045.60c 44.5679 endf60 B-VI.2 1992 293.6 105627 10639 20.0 yes no no no no
21045.62c 44.5679 actia B-VI.8:X 2000 293.6 267570 22382 20.0 yes no no no no
21045.66c 44.5679 endf66a B-VI.2:X 1992 293.6 256816 22383 20.0 yes no no no no

Z = 22   **************   Titanium   *******************************************

**   Ti-nat**
22000.42c 47.4885 endl92 LLNL <1992 300.0 8979 608 30.0 yes no no no no
22000.50c 47.4676 endf5u B-V.0 1977 293.6 54801 4434 20.0 yes no no no no
22000.50d 47.4676 dre5 B-V.0 1977 293.6 10453 263 20.0 yes no no no no
22000.51d 47.4676 drmccs B-V.0 1977 293.6 10453 263 20.0 yes no no no no
22000.51c 47.4676 rmccs B-V.0 1977 293.6 31832 1934 20.0 yes no no no no
22000.60c 47.4676 endf60 B-VI.0 1977 293.6 76454 7761 20.0 yes no no no no
22000.61c 47.4676 actib B-VI.8 2000 77.0 131345 11427 20.0 yes no no no no
22000.62c 47.4676 actia B-VI.8 2000 293.6 125641 10859 20.0 yes no no no no
22000.64c 47.4676 endf66d B-VI.0 1977 77.0 131040 11428 20.0 yes no no no no
22000.66c 47.4676 endf66a B-VI.0 1977 293.6 125336 10860 20.0 yes no no no no

Z = 23   **************   Vanadium   *******************************************

**   V-nat**
23000.50d 50.5040 dre5 B-V.0 1977 293.6 8868 263 20.0 yes no no no no
23000.50c 50.5040 endf5u B-V.0 1977 293.6 38312 2265 20.0 yes no no no no
23000.51c 50.5040 rmccs B-V.0 1977 293.6 34110 1899 20.0 yes no no no no
23000.51d 50.5040 drmccs B-V.0 1977 293.6 8868 263 20.0 yes no no no no
23000.60c 50.5040 endf60 B-VI.0 1988 293.6 167334 8957 20.0 yes no no no no
23000.62c 50.5040 actia B-VI.8 2000 293.6 198692 10393 20.0 yes no no no no
23000.66c 50.5040 endf66a B-VI.0 1988 293.6 192051 10393 20.0 yes no no no no

υ
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**   V-51   **
23051.42c 50.5063 endl92 LLNL <1992 300.0 94082 5988 30.0 yes no no no no

Z = 24   **************   Chromium   *******************************************

**   Cr-nat**
24000.42c 51.5493 endl92 LLNL <1992 300.0 12573 377 30.0 yes no no no no
24000.50d 51.5490 drmccs B-V.0 1977 293.6 30714 263 20.0 yes no no no no
24000.50c 51.5490 rmccs B-V.0 1977 293.6 134454 11050 20.0 yes no no no no
**   Cr-50   **
24050.24c 49.5170 la150n B-VI.6 1997 293.6 391112 28453 150.0 yes no yes no no
24050.60c 49.5170 endf60 B-VI.1 1989 293.6 119178 11918 20.0 yes no no no no
24050.61c 49.5170 actib B-VI.8 2000 77.0 405367 29959 150.0 yes no yes no no
24050.62c 49.5170 actia B-VI.8 2000 293.6 390799 28138 150.0 yes no yes no no
24050.64c 49.5170 endf66d B-VI.6 1997 77.0 403120 29954 150.0 yes no yes no no
24050.66c 49.5170 endf66a B-VI.6 1997 293.6 388600 28139 150.0 yes no yes no no
**   Cr-52   **
24052.24c 51.4940 la150n B-VI.6 1997 293.6 346350 21232 150.0 yes no yes no no
24052.60c 51.4940 endf60 B-VI.1 1989 293.6 117680 10679 20.0 yes no no no no
24052.61c 51.4940 actib B-VI.8 2000 77.0 344811 21143 150.0 yes no yes no no
24052.62c 51.4940 actia B-VI.8 2000 293.6 342461 20849 150.0 yes no yes no no
24052.64c 51.4940 endf66d B-VI.6 1997 77.0 344376 21132 150.0 yes no yes no no
24052.66c 51.4940 endf66a B-VI.6 1997 293.6 342098 20847 150.0 yes no yes no no
**   Cr-53   **
24053.24c 52.4860 la150n B-VI.6 1997 293.6 286602 13873 150.0 yes no yes no no
24053.60c 52.4860 endf60 B-VI.1 1989 293.6 114982 10073 20.0 yes no no no no
24053.61c 52.4860 actib B-VI.8 2000 77.0 292322 14242 150.0 yes no yes no no
24053.62c 52.4860 actia B-VI.8 2000 293.6 287642 13657 150.0 yes no yes no no
24053.64c 52.4860 endf66d B-VI.6 1997 77.0 289469 14231 150.0 yes no yes no no
24053.66c 52.4860 endf66a B-VI.6 1997 293.6 284837 13652 150.0 yes no yes no no
**   Cr-54   **
24054.24c 53.4760 la150n B-VI.6 1997 293.6 259040 13750 150.0 yes no yes no no
24054.60c 53.4760 endf60 B-VI.1 1989 293.6 98510 9699 20.0 yes no no no no
24054.61c 53.4760 actib B-VI.8 2000 77.0 262192 13814 150.0 yes no yes no no
24054.62c 53.4760 actia B-VI.8 2000 293.6 260423 13593 150.0 yes no yes no no
24054.64c 53.4760 endf66d B-VI.6 1997 77.0 259591 13819 150.0 yes no yes no no
24054.66c 53.4760 endf66a B-VI.6 1997 293.6 257750 13589 150.0 yes no yes no no

Z = 25   **************   Manganese   ******************************************

**   Mn-55   **
25055.42c 54.4661 endl92 LLNL <1992 300.0 10262 460 30.0 yes no no no no
25055.50d 54.4661 dre5 B-V.0 1977 293.6 9681 263 20.0 yes no no no no
25055.50c 54.4661 endf5u B-V.0 1977 293.6 105093 12525 20.0 yes no no no no
25055.51d 54.4661 drmccs B-V.0 1977 293.6 9681 263 20.0 yes no no no no
25055.51c 54.4661 rmccs B-V.0 1977 293.6 25727 1578 20.0 yes no no no no
25055.60c 54.4661 endf60 B-VI.0 1988 293.6 184269 8207 20.0 yes no no no no
25055.61c 54.4661 actib B-VI.8 2000 77.0 279378 11967 20.0 yes no yes no no
25055.62c 54.4661 actia B-VI.8 2000 293.6 272554 11114 20.0 yes no yes no no
25055.64c 54.4661 endf66d B-VI.5 1988 77.0 270711 11967 20.0 yes no yes no no
25055.66c 54.4661 endf66a B-VI.5 1988 293.6 263887 11114 20.0 yes no yes no no

Z = 26   **************   Iron   ***********************************************

**   Fe-nat**
26000.21c 55.3650 100xs[3] LANL/T:X 1989 300.0 149855 15598 100.0 yes no no no no
26000.42c 55.3672 endl92 LLNL <1992 300.0 38653 3385 30.0 yes no no no no
26000.50c 55.3650 endf5p B-V.0 1978 293.6 115447 10957 20.0 yes no no no no
26000.50d 55.3650 dre5 B-V.0 1978 293.6 33896 263 20.0 yes no no no no
26000.55d 55.3650 drmccs LANL/T 1986 293.6 72632 263 20.0 yes no no no no
26000.55c 55.3650 rmccs LANL/T 1986 293.6 178392 6899 20.0 yes no no no no

υ

G–18 10/3/05



APPENDIX G - MCNP DATA LIBRARIES
NEUTRON CROSS-SECTION LIBRARIES
Table G .2 (Cont.)
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

**   Fe-54   **
26054.24c 53.4760 la150n B-VI.6 1996 293.6 311741 19323 150.0 yes no yes no no
26054.60c 53.4760 endf60 B-VI.1 1989 293.6 121631 10701 20.0 yes no no no no
26054.61c 53.4760 actib B-VI.8 2000 77.0 318575 20129 150.0 yes no yes no no
26054.62c 53.4760 actia B-VI.8 2000 293.6 311639 19262 150.0 yes no yes no no
26054.64c 53.4760 endf66d B-VI.6 1996 77.0 317271 20129 150.0 yes no yes no no
26054.66c 53.4760 endf66a B-VI.6 1996 293.6 310335 19262 150.0 yes no yes no no
**   Fe-56   **
26056.24c 55.4540 la150n B-VI.6 1996 293.6 461888 25792 150.0 yes no yes no no
26056.60c 55.4540 endf60 B-VI.1 1989 293.6 174517 11618 20.0 yes no no no no
26056.61c 55.4540 actib B-VI.8 2000 77.0 475976 26821 150.0 yes no yes no no
26056.62c 55.4540 actia B-VI.8 2000 293.6 466257 25606 150.0 yes no yes no no
26056.64c 55.4540 endf66d B-VI.6 1996 77.0 468162 26821 150.0 yes no yes no no
26056.66c 55.4540 endf66a B-VI.6 1996 293.6 458443 25606 150.0 yes no yes no no
**   Fe-57   **
26057.24c 56.4460 la150n B-VI.6 1996 293.6 315349 14285 150.0 yes no yes no no
26057.60c 56.4460 endf60 B-VI.1 1989 293.6 133995 7606 20.0 yes no no no no
26057.61c 56.4460 actib B-VI.8 2000 77.0 319262 14390 150.0 yes no yes no no
26057.62c 56.4460 actia B-VI.8 2000 293.6 318268 14266 150.0 yes no yes no no
26057.64c 56.4460 endf66d B-VI.6 1996 77.0 316191 14390 150.0 yes no yes no no
26057.66c 56.4460 endf66a B-VI.6 1996 293.6 315197 14266 150.0 yes no yes no no
**   Fe-58   **
26058.60c 57.4360 endf60 B-VI.1 1989 293.6 93450 6788 20.0 yes no no no no
26058.61c 57.4360 actib B-VI.8 2000 77.0 169389 11556 20.0 yes no yes no no
26058.62c 57.4360 actia B-VI.8 2000 293.6 165829 11111 20.0 yes no yes no no
26058.64c 57.4360 endf66d B-VI.5 1989 77.0 165636 11556 20.0 yes no yes no no
26058.66c 57.4360 endf66a B-VI.5 1989 293.6 162076 11111 20.0 yes no yes no no

Z = 27   **************   Cobalt   *********************************************

**   Co-59   **
27059.42c 58.4269 endl92 LLNL <1992 300.0 119231 13098 30.0 yes no no no no
27059.50d 58.4269 dre5 B-V.0 1977 293.6 11769 263 20.0 yes no no no no
27059.50c 58.4269 endf5u B-V.0 1977 293.6 117075 14502 20.0 yes no no no no
27059.51d 58.4269 drmccs B-V.0 1977 293.6 11769 263 20.0 yes no no no no
27059.51c 58.4269 rmccs B-V.0 1977 293.6 28355 1928 20.0 yes no no no no
27059.60c 58.4269 endf60 B-VI.2 1992 293.6 186618 11838 20.0 yes no no no no
27059.66c 58.4269 endf66a B-VI.2 1992 293.6 266952 19759 20.0 yes no no no no

Z = 28   **************   Nickel   *********************************************

**   Ni-nat**
28000.42c 58.1957 endl92 LLNL <1992 300.0 44833 3116 30.0 yes no no no no
28000.50c 58.1826 rmccs B-V.0 1977 293.6 139913 8927 20.0 yes no no no no
28000.50d 58.1826 drmccs B-V.0 1977 293.6 21998 263 20.0 yes no no no no
**   Ni-58   **
28058.24c 57.4380 la150n B-VI.6 1997 293.6 613673 39258 150.0 yes no yes no no
28058.42c 57.4376 endl92 LLNL <1992 300.0 38930 4914 30.0 yes no no no no
28058.60c 57.4380 endf60 B-VI.1 1989 293.6 172069 16445 20.0 yes no no no no
28058.61c 57.4380 actib B-VI.8 2000 77.0 630981 40646 150.0 yes no yes no no
28058.62c 57.4380 actia B-VI.8 2000 293.6 617974 39020 150.0 yes no yes no no
28058.64c 57.4380 endf66d B-VI.6 1997 77.0 623330 40632 150.0 yes no yes no no
28058.66c 57.4380 endf66a B-VI.6 1997 293.6 610483 39026 150.0 yes no yes no no
**   Ni-60   **
28060.24c 59.4160 la150n B-VI.6 1997 293.6 408148 21448 150.0 yes no yes no no
28060.60c 59.4160 endf60 B-VI.1 1991 293.6 110885 10055 20.0 yes no no no no
28060.61c 59.4160 actib B-VI.8 2000 77.0 424742 22574 150.0 yes no yes no no
28060.62c 59.4160 actia B-VI.8 2000 293.6 407398 21131 150.0 yes no yes no no
28060.64c 59.4160 endf66d B-VI.6 1997 77.0 420274 22569 150.0 yes no yes no no
28060.66c 59.4160 endf66a B-VI.6 1997 293.6 403014 21133 150.0 yes no yes no no

υ
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**   Ni-61   **
28061.24c 60.4080 la150n B-VI.6 1997 293.6 244768 7384 150.0 yes no yes no no
28061.60c 60.4080 endf60 B-VI.1 1989 293.6 93801 5882 20.0 yes no no no no
28061.61c 60.4080 actib B-VI.8 2000 77.0 247660 7438 150.0 yes no yes no no
28061.62c 60.4080 actia B-VI.8 2000 293.6 247188 7379 150.0 yes no yes no no
28061.64c 60.4080 endf66d B-VI.6 1997 77.0 245215 7440 150.0 yes no yes no no
28061.66c 60.4080 endf66a B-VI.6 1997 293.6 244743 7381 150.0 yes no yes no no
**   Ni-62   **
28062.24c 61.3960 la150n B-VI.6 1997 293.6 232065 9219 150.0 yes no yes no no
28062.60c 61.3960 endf60 B-VI.1 1989 293.6 82085 7230 20.0 yes no no no no
28062.61c 61.3960 actib B-VI.8 2000 77.0 234983 9227 150.0 yes no yes no no
28062.62c 61.3960 actia B-VI.8 2000 293.6 234511 9168 150.0 yes no yes no no
28062.64c 61.3960 endf66d B-VI.6 1997 77.0 232193 9235 150.0 yes no yes no no
28062.66c 61.3960 endf66a B-VI.6 1997 293.6 231705 9174 150.0 yes no yes no no
**   Ni-64   **
28064.24c 63.3790 la150n B-VI.6 1997 293.6 197799 7958 150.0 yes no yes no no
28064.60c 63.3790 endf60 B-VI.1 1989 293.6 66656 6144 20.0 yes no no no no
28064.61c 63.3790 actib B-VI.8 2000 77.0 199097 7992 150.0 yes no yes no no
28064.62c 63.3790 actia B-VI.8 2000 293.6 198313 7894 150.0 yes no yes no no
28064.64c 63.3790 endf66d B-VI.6 1997 77.0 198112 7997 150.0 yes no yes no no
28064.66c 63.3790 endf66a B-VI.6 1997 293.6 197296 7895 150.0 yes no yes no no

Z = 29   **************   Copper   *********************************************

**   Cu-nat**
29000.50d 63.5460 drmccs B-V.0 1978 293.6 12777 263 20.0 yes no no no no
29000.50c 63.5460 rmccs B-V.0 1978 293.6 51850 3435 20.0 yes no no no no
**   Cu-63   **
29063.24c 62.3890 la150n B-VI.6 1998 293.6 329768 23123 150.0 yes no yes no no
29063.60c 62.3890 endf60 B-VI.2 1989 293.6 119097 11309 20.0 yes no no no no
29063.61c 62.3890 actib B-VI.8 2000 77.0 348384 24556 150.0 yes no yes no no
29063.62c 62.3890 actia B-VI.8 2000 293.6 335072 22892 150.0 yes no yes no no
29063.64c 62.3890 endf66d B-VI.6 1997 77.0 339601 24549 150.0 yes no yes no no
29063.66c 62.3890 endf66a B-VI.6 1997 293.6 326281 22884 150.0 yes no yes no no
**   Cu-65   **
29065.24c 64.3700 la150n B-VI.6 1998 293.6 285628 17640 150.0 yes no yes no no
29065.60c 64.3700 endf60 B-VI.2 1989 293.6 118385 11801 20.0 yes no no no no
29065.61c 64.3700 actib B-VI.8 2000 77.0 304772 18575 150.0 yes no yes no no
29065.62c 64.3700 actia B-VI.8 2000 293.6 296916 17593 150.0 yes no yes no no
29065.64c 64.3700 endf66d B-VI.6 1997 77.0 291518 18562 150.0 yes no yes no no
29065.66c 64.3700 endf66a B-VI.6 1997 293.6 283630 17576 150.0 yes no yes no no

Z = 30   **************   Zinc   ***********************************************

**   Zn-nat**
30000.40c 64.8183 endl92 LLNL <1992 300.0 271897 33027 30.0 yes no no no no
30000.42c 64.8183 endl92 LLNL:X <1992 300.0 271897 33027 30.0 yes no no no no

Z = 31   **************   Gallium   ********************************************

**   Ga-nat**
31000.42c 69.1211 endl92 LLNL <1992 300.0 6311 219 30.0 yes no no no no
31000.50c 69.1211 rmccs B-V.0 1980 293.6 7928 511 20.0 yes no no no no
31000.50d 69.1211 drmccs B-V.0 1980 293.6 6211 263 20.0 yes no no no no
31000.60c 69.1211 endf60 B-VI.0 1980 293.6 9228 566 20.0 yes no no no no
31000.66c 69.1211 endf66a B-VI.0 1980 293.6 14640 1130 20.0 yes no no no no

Z = 33   **************   Arsenic   ********************************************

**   As-74   **
33074.42c 73.2889 endl92 LLNL <1992 300.0 55752 6851 30.0 yes no no no no

υ
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**   As-75   **
33075.35d 74.2780 drmccs B-V.0 1974 0.0 8480 263 20.0 yes no no no no
33075.35c 74.2780 rmccsa B-V.0 1974 0.0 50931 6421 20.0 yes no no no no
33075.42c 74.2780 endl92 LLNL <1992 300.0 56915 6840 30.0 yes no no no no

Z = 35   **************   Bromine   ********************************************

**   Br-79   **
35079.55c 78.2404 misc5xs[7,9] LANL/T 1982 293.6 10431 1589 20.0 no no no no no
**   Br-81   **
35081.55c 80.2212 misc5xs[7,9] LANL/T 1982 293.6 5342 831 20.0 no no no no no

Z = 36   **************   Krypton   ********************************************

**   Kr-78   **
36078.50c 77.2510 rmccsa B-V.0 1978 293.6 9057 939 20.0 no no no no no
36078.50d 77.2510 drmccs B-V.0 1978 293.6 4358 263 20.0 no no no no no
36078.66c 77.2510 endf66a B-VI.0 1978 293.6 27045 2221 20.0 no no no no no
**   Kr-80   **
36080.50d 79.2298 drmccs B-V.0 1978 293.6 4276 263 20.0 no no no no no
36080.50c 79.2298 rmccsa B-V.0 1978 293.6 10165 1108 20.0 no no no no no
36080.66c 79.2298 endf66a B-VI.0 1978 293.6 26039 2361 20.0 no no no no no
**   Kr-82   **
36082.50d 81.2098 drmccs B-V.0 1978 293.6 4266 263 20.0 no no no no no
36082.50c 81.2098 rmccsa B-V.0 1978 293.6 7220 586 20.0 no no no no no
36082.59c 81.2098 misc5xs[7,8] LANL/T 1982 293.6 7010 499 20.0 yes no no no no
36082.66c 81.2098 endf66a B-VI.0 1978 293.6 19674 1296 20.0 no no no no no
**   Kr-83   **
36083.50c 82.2018 rmccsa B-V.0 1978 293.6 8078 811 20.0 no no no no no
36083.50d 82.2018 drmccs B-V.0 1978 293.6 4359 263 20.0 no no no no no
36083.59c 82.2018 misc5xs[7,8] LANL/T 1982 293.6 8069 704 20.0 yes no no no no
36083.66c 82.2018 endf66a B-VI.0 1978 293.6 21271 1760 20.0 no no no no no
**   Kr-84   **
36084.50c 83.1906 rmccsa B-V.0 1978 293.6 9364 944 20.0 no no no no no
36084.50d 83.1906 drmccs B-V.0 1978 293.6 4463 263 20.0 no no no no no
36084.59c 83.1906 misc5xs[7,8] LANL/T 1982 293.6 10370 954 20.0 yes no no no no
36084.66c 83.1906 endf66a B-VI.0 1978 293.6 24427 2098 20.0 no no no no no
**   Kr-86   **
36086.50c 85.1726 rmccsa B-V.0 1975 293.6 10416 741 20.0 no no no no no
36086.50d 85.1726 drmccs B-V.0 1975 293.6 4301 263 20.0 no no no no no
36086.59c 85.1726 misc5xs[7,8] LANL/T 1982 293.6 8740 551 20.0 yes no no no no
36086.66c 85.1726 endf66a B-VI.0 1978 293.6 22203 1425 20.0 no no no no no

Z = 37   **************   Rubidium   *******************************************

**   Rb-85   **
37085.55c 84.1824 misc5xs[7,9] LANL/T 1982 293.6 27304 4507 20.0 no no no no no
37085.66c 84.1824 endf66a B-VI.0 1979 293.6 179843 15316 20.0 no no no no no
**   Rb-87   **
37087.55c 86.1626 misc5xs[7,9] LANL/T 1982 293.6 8409 1373 20.0 no no no no no
37087.66c 86.1624 endf66b B-VI.0 1979 293.6 42718 3637 20.0 no no no no no

Z = 39   **************   Yttrium   ********************************************

**   Y-88   **
39088.42c 87.1543 endl92 LLNL <1992 300.0 11682 181 30.0 yes no no no no
**   Y-89   **
39089.35c 88.1421 misc5xs[7] LLNL <1985 0.0 49885 6154 20.0 yes no no no no
39089.42c 88.1421 endl92 LLNL <1992 300.0 69315 8771 30.0 yes no no no no
39089.50d 88.1421 dre5 B-V.0[10] 1985 293.6 2311 263 20.0 no no no no no
39089.50c 88.1421 endf5u B-V.0[10] 1985 293.6 18631 3029 20.0 no no no no no

υ
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39089.60c 88.1420 endf60 B-VI.0 1986 293.6 86556 9567 20.0 yes no no no no
39089.66c 88.1420 endf66b B-VI.4 1986 293.6 144304 13207 20.0 yes no no no no

Z = 40   **************   Zirconium   ******************************************

**   Zr-nat**
40000.42c 90.4364 endl92 LLNL <1992 300.0 131855 17909 30.0 yes no no no no
40000.56d 90.4360 misc5xs[7,11] B-V:X 1976 300.0 5400 263 20.0 no no no no no
40000.56c 90.4360 misc5xs[7,11] B-V:X 1976 300.0 52064 7944 20.0 no no no no no
40000.57d 90.4360 misc5xs[7,11] B-V:X 1976 300.0 5400 263 20.0 no no no no no
40000.57c 90.4360 misc5xs[7,11] B-V:X 1976 300.0 16816 2116 20.0 no no no no no
40000.58c 90.4360 misc5xs[7,11] B-V:X 1976 587.2 57528 8777 20.0 no no no no no
40000.60c 90.4360 endf60 B-VI.1 1976[11] 293.6 66035 10298 20.0 no no no no no
40000.66c 90.4360 endf66b B-VI.1 1976 293.6 165542 22226 20.0 no no no no no
**   Zr-90   **
40090.66c 89.1320 endf66b B-VI.0:X 1976 293.6 51841 6243 20.0 no no no no no
**   Zr-91   **
40091.65c 90.1220 endf66e B-VI.0:X 1976 3000.1 86834 10971 20.0 no no no no yes
40091.66c 90.1220 endf66b B-VI.0:X 1976 293.6 106833 13828 20.0 no no no no yes
**   Zr-92   **
40092.66c 91.1120 endf66b B-VI.0:X 1976 293.6 82986 10664 20.0 no no no no no
**   Zr-93   **
40093.50c 92.1083 kidman B-V.0 1974 293.6 2579 236 20.0 no no no no no
**   Zr-94   **
40094.66c 93.0960 endf66b B-VI.0:X 1976 293.6 86543 11144 20.0 no no no no no
**   Zr-96   **
40096.66c 95.0810 endf66b B-VI.0:X 1976 293.6 47405 5652 20.0 no no no no no

Z = 41   **************   Niobium   ********************************************

**   Nb-93   **
41093.24c 92.1051 la150n LANL 1997 293.6 375888 23213 150.0 yes no yes no no
41093.42c 92.1083 endl92 LLNL <1992 300.0 73324 9277 30.0 yes no no no no
41093.50c 92.1051 endf5p B-V.0 1974 293.6 128960 17279 20.0 yes no no no no
41093.50d 92.1051 dre5 B-V.0 1974 293.6 10332 263 20.0 yes no no no no
41093.51c 92.1051 rmccs B-V.0 1974 293.6 14675 963 20.0 yes no no no no
41093.51d 92.1051 drmccs B-V.0 1974 293.6 10332 263 20.0 yes no no no no
41093.60c 92.1051 endf60 B-VI.1 1990 293.6 110269 10678 20.0 yes no no no no
41093.66c 92.1051 endf66b B-VI.6 1997 293.6 367638 23063 150.0 yes no yes no no

Z = 42   **************   Molybdenum   *****************************************

**   Mo-nat**
42000.42c 95.1158 endl92 LLNL <1992 300.0 9293 442 30.0 yes no no no no
42000.50d 95.1160 dre5 B-V.0 1979 293.6 7754 263 20.0 yes no no no no
42000.50c 95.1160 endf5u B-V.0 1979 293.6 35634 4260 20.0 yes no no no no
42000.51c 95.1160 rmccs B-V.0 1979 293.6 10139 618 20.0 yes no no no no
42000.51d 95.1160 drmccs B-V.0 1979 293.6 7754 263 20.0 yes no no no no
42000.60c 95.1160 endf60 B-VI.0 1979 293.6 45573 5466 20.0 yes no no no no
42000.66c 95.1160 endf66b B-VI.0 1979 293.6 68710 7680 20.0 yes no no no no
**   Mo-95   **
42095.50c 94.0906 kidman B-V.0 1980 293.6 15411 2256 20.0 no no no no no

Z = 43   **************   Technetium   *****************************************

**   Tc-99   **
43099.50c 98.1500 kidman B-V.0 1978 293.6 12152 1640 20.0 no no no no no
43099.60c 98.1500 endf60 B-VI.0 1978 293.6 54262 8565 20.0 no no no no no
43099.65c 98.1500 endf66e B-VI.0 1978 3000.1 67583 8545 20.0 no no no no yes
43099.66c 98.1500 endf66b B-VI.0 1978 293.6 90039 11753 20.0 no no no no yes

υ
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Z = 44   **************   Ruthenium   ******************************************

**   Ru-101   **
44101.50c 100.0390 kidman B-V.0 1980 293.6 5299 543 20.0 no no no no no
**   Ru-103   **
44103.50c 102.0220 kidman B-V.0 1974 293.6 3052 235 20.0 no no no no no

Z = 45   **************   Rhodium   ********************************************

**   Rh-103   **
45103.50d 102.0210 drmccs B-V.0 1978 293.6 4663 263 20.0 no no no no no
45103.50c 102.0210 rmccsa B-V.0 1978 293.6 18870 2608 20.0 no no no no no
45103.65c 102.0210 endf66e B-VI.0 1978 3000.1 83883 10715 20.0 no no no no yes
45103.66c 102.0210 endf66b B-VI.0 1978 293.6 116685 15401 20.0 no no no no yes
**   Rh-105   **
45105.50c 104.0050 kidman B-V.0 1974 293.6 1591 213 20.0 no no no no no

Z = 45 **************  Average fission product from Uranium-235 *******************

**  U-235 fp  **
45117.90d 115.5446 drmccs LANL/T 1982 293.6 9507 263 20.0 yes no no no no
45117.90c 115.5446 rmccs LANL/T 1982 293.6 10314 399 20.0 yes no no no no

Z = 46   **************   Palladium   ******************************************

**   Pd-102   **
46102.66c 101.0302 endf66b B-VI.5 1996 293.6 148683 659 30.0 yes no yes no no
**   Pd-104   **
46104.66c 103.0114 endf66b B-VI.5 1996 293.6 155873 1197 30.0 yes no yes no no
**   Pd-105   **
46105.50c 104.0040 kidman B-V.0 1980 293.6 4647 505 20.0 no no no no no
46105.66c 104.0039 endf66b B-VI.5 1996 293.6 634077 13480 30.0 yes no yes no no
**   Pd-106   **
46106.66c 104.9937 endf66b B-VI.5 1996 293.6 150930 1154 30.0 yes no yes no no
**   Pd-108   **
46108.50c 106.9770 kidman B-V.0 1980 293.6 4549 555 20.0 no no no no no
46108.66c 106.9769 endf66b B-VI.5 1996 293.6 168900 1981 30.0 yes no yes no no
**   Pd-110   **
46110.66c 108.9610 endf66b B-VI.5 1996 293.6 127359 862 30.0 yes no yes no no

Z = 46 **************  Average fission product from Plutonium-239 ****************

**   Pu-239 fp  **
46119.90d 117.5255 drmccs LANL/T 1982 293.6 9542 263 20.0 yes no no no no
46119.90c 117.5255 rmccs LANL/T 1982 293.6 10444 407 20.0 yes no no no no

Z = 47   **************   Silver   *********************************************

**   Ag-nat**
47000.55c 106.9420 rmccsa LANL/T 1984 293.6 29092 2350 20.0 yes no no no no
47000.55d 106.9420 drmccs LANL/T 1984 293.6 12409 263 20.0 yes no no no no
**   Ag-107   **
47107.42c 105.9867 endl92 LLNL <1992 300.0 27108 2885 30.0 yes no no no no
47107.50c 105.9870 rmccsa B-V.0 1978 293.6 12111 1669 20.0 no no no no no
47107.50d 105.9870 drmccs B-V.0 1978 293.6 4083 263 20.0 no no no no no
47107.60c 105.9870 endf60 B-VI.0 1983 293.6 64008 10101 20.0 no no no no no
47107.66c 105.9870 endf66b B-VI.0 1983 293.6 104321 13835 20.0 no no no no no

υ
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**   Ag-109   **
47109.42c 107.9692 endl92 LLNL <1992 300.0 33603 3796 30.0 yes no no no no
47109.50c 107.9690 rmccsa B-V.0 1978 293.6 14585 2120 20.0 no no no no no
47109.50d 107.9690 drmccs B-V.0 1978 293.6 3823 263 20.0 no no no no no
47109.60c 107.9690 endf60 B-VI.0 1983 293.6 76181 11903 20.0 no no no no no
47109.66c 107.9690 endf66b B-VI.0 1983 293.6 121474 16086 20.0 no no no no no

Z = 48   **************   Cadmium   ********************************************

**   Cd-nat**
48000.42c 111.4443 endl92 LLNL <1992 300.0 211537 29369 30.0 yes no no no no
48000.50d 111.4600 dre5 B-V.0 1974 293.6 3026 263 20.0 no no no no no
48000.50c 111.4600 endf5u B-V.0 1974 293.6 19714 2981 20.0 no no no no no
48000.51c 111.4600 rmccs B-V.0 1974 293.6 6734 818 20.0 no no no no no
48000.51d 111.4600 drmccs B-V.0 1974 293.6 3026 263 20.0 no no no no no
**   Cd-106   **
48106.65c 105.0000 endf66e B-VI.4 1996 3000.1 121059 10194 20.0 no no no no yes
48106.66c 105.0000 endf66b B-VI.4 1996 293.6 151365 12949 20.0 no no no no yes
**   Cd-108   **
48108.65c 106.9770 endf66e B-VI.4 1996 3000.1 112404 11496 20.0 no no no no yes
48108.66c 106.9770 endf66b B-VI.4 1996 293.6 141658 14744 20.0 no no no no yes
**   Cd-110   **
48110.65c 108.9590 endf66e B-VI.4:X 1996 3000.1 105350 10737 20.0 no no no no yes
48110.66c 108.9590 endf66b B-VI.4:X 1996 293.6 133785 13902 20.0 no no no no yes
**   Cd-111   **
48111.66c 109.9520 endf66b B-VI.3 1995 293.6 153808 16016 20.0 no no no no no
**   Cd-112   **
48112.65c 110.9420 endf66e B-VI.4 1996 3000.1 101915 11153 20.0 no no no no yes
48112.66c 110.9420 endf66b B-VI.4 1996 293.6 130334 14515 20.0 no no no no yes
**   Cd-113   **
48113.66c 111.9300 endf66b B-VI.3 1995 293.6 97047 9799 20.0 no no no no no
**   Cd-114   **
48114.65c 112.9250 endf66e B-VI.4 1996 3000.1 83882 10534 20.0 no no no no yes
48114.66c 112.9250 endf66b B-VI.4 1996 293.6 102222 13154 20.0 no no no no yes
**   Cd-116   **
48116.65c 114.9090 endf66e B-VI.4 1996 3000.1 55903 6607 20.0 no no no no yes
48116.66c 114.9090 endf66b B-VI.4 1996 293.6 66642 8141 20.0 no no no no yes

Z = 49   **************   Indium   *********************************************

**   In-nat**
49000.42c 113.8336 endl92 LLNL <1992 300.0 65498 7870 30.0 yes no no no no
49000.60c 113.8340 endf60 B-VI.0 1990 293.6 93662 10116 20.0 yes no no no no
49000.66c 113.8340 endf66b B-VI.0 1990 293.6 269821 30337 20.0 yes no no no no

Z = 49-50 **************   Fission Products *************************************

**  Avg fp **
49120.42c 116.4906 endl92fp[12] LLNL <1992 300.0 12755 164 30.0 yes no no no no
49125.42c 116.4906 endl92fp[12] LLNL <1992 300.0 9142 119 30.0 yes no no no no
50120.35c 116.4906 rmccs LLNL <1985 yes 8366 232 20.0 yes no no no no
50120.35d 116.4906 drmccs LLNL <1985 yes 8963 263 20.0 yes no no no no

Z = 50   **************   Tin   ************************************************

**   Sn-nat**
50000.40c 117.6704 endl92 LLNL <1992 300.0 248212 34612 30.0 yes no no no no
50000.42c 117.6704 endl92 LLNL:X <1992 300.0 248212 34612 30.0 yes no no no no

υ
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Z = 51   **************   Antimony   *******************************************

**   Sb-nat**
51000.42c 120.7041 endl92 LLNL <1992 300.0 95953 10721 30.0 yes no no no no

Z = 53   **************   Iodine   *********************************************

**   I-127   **
53127.42c 125.8143 endl92 LLNL <1992 300.0 76321 10 30.0 yes no no no no
53127.55c 125.8140 misc5xs[7,9] LANL/T 1982 293.6 59725 9423 20.0 no no no no no
53127.60c 125.8143 endf60[13] LANL/T 1991 293.6 399760 7888 30.0 yes no no no no
53127.66c 125.8143 endf66b B-VI.2 1991 293.6 373991 11519 30.0 yes no yes no no
**   I-129   **
53129.60c 127.7980 endf60 B-VI.0 1980 293.6 8792 1237 20.0 no no no no no
**   I-135   **
53135.50c 133.7510 kidman B-V.0 1974 293.6 1232 194 20.0 no no no no no

Z = 54   **************   Xenon   **********************************************

**   Xe-nat**
54000.42c 130.1721 endl92 LLNL <1992 300.0 43411 5173 30.0 yes no no no no
**   Xe-124   **
54124.66c 122.8420 endf66b B-VI.0 1978 293.6 21034 1979 20.0 no no no no no
**   Xe-126   **
54126.66c 124.8230 endf66b B-VI.0 1978 293.6 21388 2133 20.0 no no no no no
**   Xe-128   **
54128.66c 126.8050 endf66b B-VI.0 1978 293.6 32739 3817 20.0 no no no no no
**   Xe-129   **
54129.66c 127.7970 endf66b B-VI.0 1978 293.6 118721 15971 20.0 no no no no no
**   Xe-130   **
54130.66c 128.7880 endf66b B-VI.0 1978 293.6 34346 3984 20.0 no no no no no
**   Xe-131   **
54131.50c 129.7810 kidman B-V.0 1978 293.6 22572 3376 20.0 no no no no no
54131.66c 129.7810 endf66b B-VI.0 1978 293.6 79510 10434 20.0 no no no no no
**   Xe-132   **
54132.66c 130.7710 endf66b B-VI.0 1978 293.6 17947 1709 20.0 no no no no no
**   Xe-134   **
54134.42c 132.7551 endl92 LLNL <1992 300.0 8033 192 30.0 yes no no no no
54134.66c 132.7550 endf66b B-VI.0 1978 293.6 15028 1349 20.0 no no no no no
**   Xe-135   **
54135.50c 133.7480 endf5mt[1] B-V 1975 293.6 5529 704 20.0 no no no no no
54135.53c 133.7480 endf5mt[1] B-V 1975 587.2 5541 706 20.0 no no no no no
54135.54c 133.7480 endf5mt[1] B-V 1975 880.8 5577 712 20.0 no no no no no
**   Xe-136   **
54136.66c 134.7400 endf66b B-VI.0 1978 293.6 10700 764 20.0 no no no no no

Z = 55   **************   Cesium   *********************************************

**   Cs-133   **
55133.50c 131.7640 kidman B-V.0 1978 293.6 26713 4142 20.0 no no no no no
55133.55c 131.7640 misc5xs[7,9] LANL/T 1982 293.6 67893 11025 20.0 no no no no no
55133.60c 131.7640 endf60 B-VI.0 1978 293.6 54723 8788 20.0 no no no no no
55133.66c 131.7640 endf66b B-VI.0 1978 293.6 141927 19648 20.0 no no no no no
**   Cs-134   **
55134.60c 132.7570 endf60 B-VI.0 1988 293.6 10227 1602 20.0 no no no no no
**   Cs-135   **
55135.50c 133.7470 kidman B-V.0 1974 293.6 1903 199 20.0 no no no no no
55135.60c 133.7470 endf60 B-VI.0 1974 293.6 3120 388 20.0 no no no no no
**   Cs-136   **
55136.60c 134.7400 endf60 B-VI.0 1974 293.6 10574 1748 20.0 no no no no no
**   Cs-137   **
55137.60c 135.7310 endf60 B-VI.0 1974 293.6 2925 369 20.0 no no no no no

υ
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Z = 56   **************   Barium   *********************************************

**   Ba-138   **
56138.50c 136.7150 rmccs B-V.0 1978 293.6 6018 292 20.0 yes no no no no
56138.50d 136.7150 drmccs B-V.0 1978 293.6 6320 263 20.0 yes no no no no
56138.60c 136.7150 endf60 B-VI.0 1978 293.6 7347 267 20.0 yes no no no no
56138.66c 136.7150 endf66b B-VI.3 1994 293.6 79268 8920 20.0 yes no no no no

Z = 59   **************   Praseodymium   ***************************************

**   Pr-141   **
59141.50c 139.6970 kidman B-V.0 1980 293.6 15620 1354 20.0 no no no no no

Z = 60   **************   Neodymium   ******************************************

**   Nd-143   **
60143.50c 141.6820 kidman B-V.0 1980 293.6 17216 1701 20.0 no no no no no
**   Nd-145   **
60145.50c 143.6680 kidman B-V.0 1980 293.6 38473 3985 20.0 no no no no no
**   Nd-147   **
60147.50c 145.6540 kidman B-V.0 1979 293.6 1816 251 20.0 no no no no no
**   Nd-148   **
60148.50c 146.6460 kidman B-V.0 1980 293.6 10867 1054 20.0 no no no no no

Z = 61   **************   Promethium   *****************************************

**   Pm-147   **
61147.50c 145.6530 kidman B-V.0 1980 293.6 9152 825 20.0 no no no no no
**   Pm-148   **
61148.50c 146.6470 kidman B-V.0 1979 293.6 1643 257 20.0 no no no no no
**   Pm-149   **
61149.50c 147.6390 kidman B-V.0 1979 293.6 2069 238 20.0 no no no no no

Z = 62   **************   Samarium   *******************************************

**   Sm-147   **
62147.50c 145.6530 kidman B-V.0 1980 293.6 33773 2885 20.0 no no no no no
62147.65c 145.6530 endf66e B-VI.0 1980 3000.1 186194 15025 20.0 no no no no yes
62147.66c 145.6530 endf66b B-VI.0 1980 293.6 315674 25815 20.0 no no no no yes
**   Sm-149   **
62149.49c 147.6380 uresa B-VI.0 1978 300.0 57787 7392 20.0 no no no no yes
62149.50c 147.6380 endf5u B-V.0 1978 293.6 15662 2008 20.0 no no no no no
62149.50d 147.6380 dre5 B-V.0 1978 293.6 4429 263 20.0 no no no no no
62149.65c 147.6380 endf66e B-VI.0 1978 3000.1 47902 5399 20.0 no no no no yes
62149.66c 147.6380 endf66b B-VI.0 1978 293.6 64240 7733 20.0 no no no no yes
**   Sm-150   **
62150.49c 148.6290 uresa B-VI.2 1992 300.0 60992 8183 20.0 no no no no yes
62150.50c 148.6290 kidman B-V.0 1974 293.6 9345 1329 20.0 no no no no no
**   Sm-151   **
62151.50c 149.6230 kidman B-V.0 1980 293.6 7303 605 20.0 no no no no no
**   Sm-152   **
62152.49c 150.6150 uresa B-VI.2 1992 300.0 203407 19737 20.0 no no no no yes
62152.50c 150.6150 kidman B-V.0 1980 293.6 41252 4298 20.0 no no no no no

υ
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Z = 63   **************   Europium   *******************************************

**   Eu-nat**
63000.35c 150.6546 rmccsa LLNL <1985 yes 6926 364 20.0 yes no no no no
63000.35d 150.6546 drmccs LLNL <1985 yes 6654 263 20.0 yes no no no no
63000.42c 150.6546 endl92 LLNL <1992 300.0 37421 4498 30.0 yes no no no no
**   Eu-151   **
63151.49c 149.6230 uresa B-VI.0 1986 300.0 147572 10471 20.0 yes no no no yes
63151.50c 149.6230 rmccs B-V.0 1977 293.6 68057 5465 20.0 yes no no no no
63151.50d 149.6230 drmccs B-V.0 1977 293.6 10013 263 20.0 yes no no no no
63151.55d 149.6230 newxsd LANL/T 1986 293.6 35199 263 20.0 yes no no no no
63151.55c 149.6230 newxs LANL/T 1986 293.6 86575 4749 20.0 yes no no no no
63151.60c 149.6230 endf60 B-VI.0 1986 293.6 96099 7394 20.0 yes no no no no
63151.65c 149.6230 endf66e B-VI.0 1986 3000.1 98867 5220 20.0 yes no no no yes
63151.66c 149.6230 endf66b B-VI.0 1986 293.6 155078 10841 20.0 yes no no no yes
**   Eu-152   **
63152.49c 150.6200 uresa B-VI.0 1988 300.0 81509 6540 20.0 no no no no yes
63152.50d 150.6200 dre5 B-V.0 1973 293.6 5655 263 20.0 no no no no no
63152.50c 150.6200 endf5u B-V.0 1973 293.6 49313 4553 20.0 no no no no no
63152.65c 150.6200 endf66e B-VI.0 1988 3000.1 53516 3563 20.0 no no no no yes
63152.66c 150.6200 endf66b B-VI.0 1988 293.6 89485 6833 20.0 no no no no yes
**   Eu-153   **
63153.49c 151.6080 uresa B-VI.0 1986 300.0 129446 8784 20.0 yes no no no yes
63153.50d 151.6070 drmccs B-V.0 1978 293.6 11244 263 20.0 yes no no no no
63153.50c 151.6070 rmccs B-V.0 1978 293.6 55231 4636 20.0 yes no no no no
63153.55d 151.6080 newxsd LANL/T 1986 293.6 36372 263 20.0 yes no no no no
63153.55c 151.6080 newxs LANL/T 1986 293.6 72971 4174 20.0 yes no no no no
63153.60c 151.6080 endf60 B-VI.0 1986 293.6 86490 6198 20.0 yes no no no no
63153.65c 151.6080 endf66e B-VI.0 1986 3000.1 93021 4791 20.0 yes no no no yes
63153.66c 151.6080 endf66b B-VI.0 1986 293.6 135491 9038 20.0 yes no no no yes
**   Eu-154   **
63154.49c 152.6000 uresa B-VI.0 1989 300.0 72804 6627 20.0 no no no no yes
63154.50c 152.6000 endf5u B-V.0 1973 293.6 37008 4030 20.0 no no no no no
63154.50d 152.6000 dre5 B-V.0 1973 293.6 5458 263 20.0 no no no no no
63154.65c 152.6000 endf66e B-VI.0 1989 3000.1 54676 4078 20.0 no no no no yes
63154.66c 152.6000 endf66b B-VI.0 1989 293.6 80218 6916 20.0 no no no no yes
**   Eu-155   **
63155.50c 153.5920 kidman B-V.0 1974 293.6 4532 273 20.0 no no no no no
63155.66c 153.5920 endf66b B-VI.1 1988 293.6 27638 2440 20.0 no no no no no

Z = 64   **************   Gadolinium   *****************************************

**   Gd-nat**
64000.35c 155.8991 rmccsa LLNL <1985 yes 7878 454 20.0 yes no no no no
64000.35d 155.8991 drmccs LLNL <1985 yes 6833 263 20.0 yes no no no no
**   Gd-152   **
64152.50c 150.6150 endf5u B-V.0 1977 293.6 26251 3285 20.0 no no no no no
64152.50d 150.6150 dre5 B-V.0 1977 293.6 5899 263 20.0 no no no no no
64152.55c 150.6150 misc5xs[7,14] B-V.0:T 1986 293.6 32590 3285 20.0 yes no no no no
64152.60c 150.6150 endf60 B-VI.0 1977 293.6 32760 4391 20.0 no no no no no
64152.65c 150.6150 endf66e B-VI.4 1994 3000.1 263235 20777 20.0 no no no no yes
64152.66c 150.6150 endf66b B-VI.4 1994 293.6 341562 29480 20.0 no no no no yes
**   Gd-154   **
64154.50d 152.5990 dre5 B-V.0 1977 293.6 5930 263 20.0 no no no no no
64154.50c 152.5990 endf5u B-V.0 1977 293.6 49572 7167 20.0 no no no no no
64154.55c 152.5990 misc5xs[7,14] B-V.0:T 1986 293.6 59814 7167 20.0 yes no no no no
64154.60c 152.5990 endf60 B-VI.0 1977 293.6 67662 10189 20.0 no no no no no
64154.65c 152.5990 endf66e B-VI.4 1994 3000.1 218806 21530 20.0 no no no no yes
64154.66c 152.5990 endf66b B-VI.4 1994 293.6 286357 31180 20.0 no no no no yes

υ
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**   Gd-155   **
64155.50c 153.5920 endf5u B-V.0 1977 293.6 44965 6314 20.0 no no no no no
64155.50d 153.5920 dre5 B-V.0 1977 293.6 6528 263 20.0 no no no no no
64155.55c 153.5920 misc5xs[7,14] B-V.0:T 1986 293.6 54346 6314 20.0 yes no no no no
64155.60c 153.5920 endf60 B-VI.0 1977 293.6 61398 9052 20.0 no no no no no
64155.65c 153.5920 endf66e B-VI.0 1977 3000.1 62954 6748 20.0 no no no no yes
64155.66c 153.5920 endf66b B-VI.0 1977 293.6 106795 13011 20.0 no no no no yes
**   Gd-156   **
64156.50c 154.5830 endf5u B-V.0 1977 293.6 37371 3964 20.0 no no no no no
64156.50d 154.5830 dre5 B-V.0 1977 293.6 6175 263 20.0 no no no no no
64156.55c 154.5830 misc5xs[7,14] B-V.0:T 1986 293.6 44391 3964 20.0 yes no no no no
64156.60c 154.5830 endf60 B-VI.0 1977 293.6 42885 5281 20.0 no no no no no
64156.66c 154.5830 endf66b B-VI.0 1977 293.6 79827 7354 20.0 no no no no no
**   Gd-157   **
64157.50d 155.5760 dre5 B-V.0 1977 293.6 6346 263 20.0 no no no no no
64157.50c 155.5760 endf5u B-V.0 1977 293.6 38975 5370 20.0 no no no no no
64157.55c 155.5760 misc5xs[7,14] B-V.0:T 1986 293.6 47271 5370 20.0 yes no no no no
64157.60c 155.5760 endf60 B-VI.0 1977 293.6 56957 8368 20.0 no no no no no
64157.65c 155.5760 endf66e B-VI.0 1977 3000.1 71857 8101 20.0 no no no no yes
64157.66c 155.5760 endf66b B-VI.0 1977 293.6 99199 12007 20.0 no no no no yes
**   Gd-158   **
64158.50d 156.5670 dre5 B-V.0 1977 293.6 5811 263 20.0 no no no no no
64158.50c 156.5670 endf5u B-V.0 1977 293.6 95876 15000 20.0 no no no no no
64158.55c 156.5670 misc5xs[7,14] B-V.0:T 1986 293.6 113916 15000 20.0 yes no no no no
64158.60c 156.5670 endf60 B-VI.0 1977 293.6 59210 8909 20.0 no no no no no
64158.66c 156.5670 endf66b B-VI.0 1977 293.6 152895 19903 20.0 no no no no no
**   Gd-160   **
64160.50d 158.5530 dre5 B-V.0 1977 293.6 5030 263 20.0 no no no no no
64160.50c 158.5530 endf5u B-V.0 1977 293.6 53988 8229 20.0 no no no no no
64160.55c 158.5530 misc5xs[7,14] B-V.0:T 1986 293.6 65261 8229 20.0 yes no no no no
64160.60c 158.5530 endf60 B-VI.0 1977 293.6 54488 8304 20.0 no no no no no
64160.66c 158.5530 endf66b B-VI.0 1977 293.6 90407 11183 20.0 no no no no no

Z = 67   **************   Holmium   ********************************************

**   Ho-165   **
67165.35c 163.5135 rmccsa LLNL <1985 yes 54279 7075 20.0 yes no no no no
67165.35d 163.5135 drmccs LLNL <1985 yes 7019 263 20.0 yes no no no no
67165.42c 163.5135 endl92 LLNL <1992 300.0 103467 13884 30.0 yes no no no no
67165.55c 163.5130 newxs LANL/T 1986 293.6 56605 2426 30.0 yes no no no no
67165.55d 163.5130 newxsd LANL/T 1986 293.6 42266 263 20.0 yes no no no no
67165.60c 163.5130 endf60 B-VI.0 1988 293.6 75307 4688 30.0 yes no no no no
67165.66c 163.5130 endf66b B-VI.5 1988 293.6 101124 6648 30.0 yes no no no no

Z = 69   **************   Thulium   ********************************************

**   Tm-169   **
69169.55c 167.4830 misc5xs[7] LANL/T 1986 300.0 47941 4738 20.0 no no no no no

Z = 71   **************   Lutetium   *******************************************

**   Lu-175   **
71175.65c 173.4380 endf66e B-VI.0 1967 3000.1 34931 3631 20.0 no no no no yes
71175.66c 173.4380 endf66b B-VI.0 1967 293.6 42687 4739 20.0 no no no no yes
**   Lu-176   **
71176.65c 174.4300 endf66e B-VI.0 1967 3000.1 37422 3903 20.0 no no no no yes
71176.66c 174.4300 endf66b B-VI.0 1967 293.6 48096 5428 20.0 no no no no yes

υ
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Z = 72   **************   Hafnium   ********************************************

**   Hf-nat**
72000.42c 176.9567 endl92 LLNL <1992 300.0 108989 14113 30.0 yes no no no no
72000.50d 176.9540 newxsd B-V.0 1976 293.6 4751 263 20.0 no no no no no
72000.50c 176.9540 newxs B-V.0 1976 293.6 52231 8270 20.0 no no no no no
72000.60c 176.9540 endf60 B-VI.0 1976 293.6 84369 13634 20.0 no no no no no
**   Hf-174   **
72174.65c 172.4460 endf66e B-VI.2 1992 3000.1 35072 3834 20.0 no no no no yes
72174.66c 172.4460 endf66b B-VI.2 1992 293.6 39545 4473 20.0 no no no no yes
**   Hf-176   **
72176.65c 174.4300 endf66e B-VI.2 1992 3000.1 55807 6869 20.0 no no no no yes
72176.66c 174.4300 endf66b B-VI.2 1992 293.6 66727 8429 20.0 no no no no yes
**   Hf-177   **
72177.65c 175.4230 endf66e B-VI.2 1991 3000.1 115867 15278 20.0 no no no no yes
72177.66c 175.4230 endf66b B-VI.2 1991 293.6 219075 30022 20.0 no no no no yes
**   Hf-178   **
72178.65c 176.4150 endf66e B-VI.2 1991 3000.1 58452 7291 20.0 no no no no yes
72178.66c 176.4150 endf66b B-VI.2 1991 293.6 67580 8595 20.0 no no no no yes
**   Hf-179   **
72179.65c 177.4090 endf66e B-VI.2 1992 3000.1 79130 10151 20.0 no no no no yes
72179.66c 177.4090 endf66b B-VI.2 1992 293.6 106850 14111 20.0 no no no no yes
**   Hf-180   **
72180.65c 178.4010 endf66e B-VI.2 1991 3000.1 112444 15082 20.0 no no no no yes
72180.66c 178.4010 endf66b B-VI.2 1991 293.6 145939 19867 20.0 no no no no yes

Z = 73   **************   Tantalum   *******************************************

**   Ta-181   **
73181.42c 179.3936 endl92 LLNL <1992 300.0 47852 4927 30.0 yes no no no no
73181.50d 179.4000 dre5 B-V.0 1972 293.6 16361 263 20.0 yes no no no no
73181.50c 179.4000 endf5u B-V.0 1972 293.6 60740 6341 20.0 yes no no no no
73181.51c 179.4000 rmccs B-V.0 1972 293.6 21527 753 20.0 yes no no no no
73181.51d 179.4000 drmccs B-V.0 1972 293.6 16361 263 20.0 yes no no no no
73181.60c 179.4000 endf60 B-VI.0 1972 293.6 91374 10352 20.0 yes no no no no
73181.64c 179.4000 endf66d B-VI.0 1972 77.0 158545 17152 20.0 yes no no no no
73181.66c 179.4000 endf66b B-VI.0 1972 293.6 140345 14877 20.0 yes no no no no
**   Ta-182   **
73182.49c 180.3870 uresa B-VI.0 1971 300.0 20850 2463 20.0 no no no no yes
73182.60c 180.3870 endf60 B-VI.0 1971 293.6 12085 1698 20.0 no no no no no
73182.64c 180.3870 endf66d B-VI.0 1971 77.0 29837 3020 20.0 no no no no yes
73182.65c 180.3870 endf66e B-VI.0 1971 3000.1 25028 2333 20.0 no no no no yes
73182.66c 180.3870 endf66b B-VI.0 1971 293.6 28577 2840 20.0 no no no no yes

Z = 74   **************   Tungsten   *******************************************

**   W-nat**
74000.21c 182.2706 100xs[3] LANL/T:X 1989 300.0 194513 21386 100.0 yes no no no no
74000.55c 182.2770 rmccs B-V.2 1982 293.6 50639 1816 20.0 yes no no no no
74000.55d 182.2770 drmccs B-V.2 1982 293.6 34272 263 20.0 yes no no no no
**   W-182   **
74182.24c 180.3900 la150n B-VI.6 1996 293.6 246875 16896 150.0 yes no yes no yes
74182.48c 180.3900 uresa[16] B-VI.0 1980 300.0 150072 16495 20.0 no no no no yes
74182.50c 180.3900 endf5p B-V.0 1973 293.6 94367 11128 20.0 yes no no no no
74182.50d 180.3900 dre5 B-V.0 1973 293.6 17729 263 20.0 yes no no no no
74182.55c 180.3900 rmccsa B-V.2 1980 293.6 122290 13865 20.0 yes no no no no
74182.55d 180.3900 drmccs B-V.2 1980 293.6 26387 263 20.0 yes no no no no
74182.60c 180.3900 endf60 B-VI.0 1980 293.6 113177 12283 20.0 yes no no no no
74182.61c 180.3900 actib B-VI.8 2000 77.0 269718.0 18237 150.0 yes no yes no yes
74182.62c 180.3900 actia B-VI.8 2000 293.6 258342.0 16815 150.0 yes no yes no yes
74182.63c 180.3900 actib B-VI.8 2000 3000.1 232047.0 13528 150.0 yes no yes no yes
74182.64c 180.3900 endf66d B-VI.6 1996 77.0 257611 18238 150.0 yes no yes no yes
74182.65c 180.3900 endf66e B-VI.6 1996 3000.1 219900 13524 150.0 yes no yes no yes
74182.66c 180.3900 endf66b B-VI.6 1996 293.6 246251 16818 150.0 yes no yes no yes

υ

10/3/05 G–29



APPENDIX G - MCNP DATA LIBRARIES
NEUTRON CROSS-SECTION LIBRARIES
Table G .2 (Cont.)
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

**   W-183   **
74183.24c 181.3800 la150n B-VI.6 1996 293.6 217095 13034 150.0 yes no yes no yes
74183.48c 181.3800 uresa[16] B-VI.0 1980 300.0 119637 12616 20.0 no no no no yes
74183.50c 181.3800 endf5p B-V.0 1973 293.6 58799 5843 20.0 yes no no no no
74183.50d 181.3800 dre5 B-V.0 1973 293.6 19443 263 20.0 yes no no no no
74183.55d 181.3800 drmccs B-V.2 1980 293.6 26320 263 20.0 yes no no no no
74183.55c 181.3800 rmccsa B-V.2 1980 293.6 79534 8083 20.0 yes no no no no
74183.60c 181.3800 endf60 B-VI.0 1980 293.6 89350 9131 20.0 yes no no no no
74183.61c 181.3800 actib B-VI.8 2000 77.0 235761.0 14449 150.0 yes no yes no yes
74183.62c 181.3800 actia B-VI.8 2000 293.6 224856.0 13086 150.0 yes no yes no yes
74183.63c 181.3800 actib B-VI.8 2000 3000.1 198226.0 9757 150.0 yes no yes no yes
74183.64c 181.3800 endf66d B-VI.6 1996 77.0 228392 14446 150.0 yes no yes no yes
74183.65c 181.3800 endf66e B-VI.6 1996 3000.1 190833 9751 150.0 yes no yes no yes
74183.66c 181.3800 endf66b B-VI.6 1996 293.6 217447 13078 150.0 yes no yes no yes
**   W-184   **
74184.24c 182.3700 la150n B-VI.6 1996 293.6 192693 10180 150.0 yes no yes no yes
74184.48c 182.3700 uresa[16] B-VI.0 1980 300.0 97118 9794 20.0 no no no no yes
74184.50c 182.3700 endf5p B-V.0 1973 293.6 58870 6173 20.0 yes no no no no
74184.50d 182.3700 dre5 B-V.0 1973 293.6 17032 263 20.0 yes no no no no
74184.55d 182.3700 drmccs B-V.2 1980 293.6 26110 263 20.0 yes no no no no
74184.55c 182.3700 rmccsa B-V.2 1980 293.6 80006 7835 20.0 yes no no no no
74184.60c 182.3700 endf60 B-VI.0 1980 293.6 78809 7368 20.0 yes no no no no
74184.61c 182.3700 actib B-VI.8 2000 77.0 200883.0 10902 150.0 yes no yes no yes
74184.62c 182.3700 actia B-VI.8 2000 293.6 194523.0 10107 150.0 yes no yes no yes
74184.63c 182.3700 actib B-VI.8 2000 3000.1 181213.0 8443 150.0 yes no yes no yes
74184.64c 182.3700 endf66d B-VI.6 1996 77.0 198499 10906 150.0 yes no yes no yes
74184.65c 182.3700 endf66e B-VI.6 1996 3000.1 178773 8440 150.0 yes no yes no yes
74184.66c 182.3700 endf66b B-VI.6 1996 293.6 192123 10109 150.0 yes no yes no yes
**   W-186   **
74186.24c 184.3600 la150n B-VI.6 1996 293.6 187863 10848 150.0 yes no yes no yes
74186.48c 184.3600 uresa[16] B-VI.0 1980 300.0 102199 10485 20.0 no no no no yes
74186.50d 184.3600 dre5 B-V.0 1973 293.6 17018 263 20.0 yes no no no no
74186.50c 184.3600 endf5p B-V.0 1973 293.6 63701 6866 20.0 yes no no no no
74186.55d 184.3600 drmccs B-V.2 1980 293.6 26281 263 20.0 yes no no no no
74186.55c 184.3600 rmccsa B-V.2 1980 293.6 83618 8342 20.0 yes no no no no
74186.60c 184.3600 endf60 B-VI.0 1980 293.6 82010 7793 20.0 yes no no no no
74186.61c 184.3600 actib B-VI.8 2000 77.0 207824.0 11635 150.0 yes no yes no yes
74186.62c 184.3600 actia B-VI.8 2000 293.6 202211.0 10833 150.0 yes no yes no yes
74186.63c 184.3600 actib B-VI.8 2000 3000.1 190276.0 9128 150.0 yes no yes no yes
74186.64c 184.3600 endf66d B-VI.6 1996 77.0 193372 11635 150.0 yes no yes no yes
74186.65c 184.3600 endf66e B-VI.6 1996 3000.1 175817 9127 150.0 yes no yes no yes
74186.66c 184.3600 endf66c B-VI.6 1996 293.6 187731 10829 150.0 yes no yes no yes

Z = 75   **************   Rhenium   ********************************************

**   Re-185   **
75185.32c 183.3612 misc5xs[7] LLNL <1985 yes 13650 1488 20.0 yes no no no no
75185.42c 183.3641 endl92 LLNL <1992 300.0 23715 2214 30.0 yes no no no no
75185.50c 183.3640 rmccsa B-V.0 1968 293.6 9190 1168 20.0 no no no no no
75185.50d 183.3640 drmccs B-V.0 1968 293.6 4252 263 20.0 no no no no no
75185.60c 183.3640 endf60 B-VI.0 1990 293.6 102775 16719 20.0 no no no no no
75185.65c 183.3640 endf66e B-VI.0 1990 3000.1 179325 24470 20.0 no no no no yes
75185.66c 183.3640 endf66c B-VI.0 1990 293.6 397396 55623 20.0 no no no no yes
**   Re-187   **
75187.32c 185.3539 misc5xs[7] LLNL <1985 yes 12318 1296 20.0 yes no no no no
75187.42c 185.3497 endl92 LLNL <1992 300.0 20969 1821 30.0 yes no no no no
75187.50c 185.3500 rmccsa B-V.0 1968 293.6 8262 959 20.0 no no no no no
75187.50d 185.3500 drmccs B-V.0 1968 293.6 4675 263 20.0 no no no no no
75187.60c 185.3500 endf60 B-VI.0 1990 293.6 96989 15624 20.0 no no no no no
75187.65c 185.3500 endf66e B-VI.0 1990 3000.1 180705 24518 20.0 no no no no yes
75187.66c 185.3500 endf66c B-VI.0 1990 293.6 358295 49888 20.0 no no no no yes
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Z = 77   **************   Iridium   ********************************************

**   Ir-nat**
77000.55c 190.5630 misc5xs[7] LANL/T 1986 300.0 43071 3704 20.0 no no no no no
**   Ir-191   **
77191.49c 189.3200 uresa B-VI.4 1995 300.0 83955 8976 20.0 yes no no no yes
77191.65c 189.3200 endf66e B-VI.4:X 1995 3000.1 64690 6116 20.0 yes no no no yes
77191.66c 189.3200 endf66c B-VI.4:X 1995 293.6 90082 9290 20.0 yes no no no yes
**   Ir-193   **
77193.49c 191.3050 uresa B-VI.4 1995 300.0 82966 8943 20.0 yes no no no yes
77193.65c 191.3050 endf66e B-VI.4:X 1995 3000.1 69056 6751 20.0 yes no no no yes
77193.66c 191.3050 endf66c B-VI.4:X 1995 293.6 88688 9205 20.0 yes no no no yes

Z = 78   **************   Platinum   *******************************************

**   Pt-nat**
78000.35c 193.4141 rmccsa LLNL <1985 0.0 15371 1497 20.0 yes no no no no
78000.35d 193.4141 drmccs LLNL <1985 0.0 6933 263 20.0 yes no no no no
78000.40c 193.4141 endl92 LLNL <1992 300.0 43559 5400 30.0 yes no no no no
78000.42c 193.4141 endl92 LLNL:X <1992 300.0 43559 5400 30.0 yes no no no no

Z = 79   **************   Gold   ***********************************************

**   Au-197   **
79197.50d 195.2740 dre5 B-V.0 1977 293.6 4882 263 20.0 no no no no no
79197.50c 195.2740 endf5p B-V.0 1977 293.6 139425 22632 20.0 no no no no no
79197.55c 195.2740 rmccsa LANL/T 1983[4] 293.6 134325 17909 20.0 yes no no no no
79197.55d 195.2740 drmccs LANL/T 1983[4] 293.6 7883 263 20.0 yes no no no no
79197.56d 195.2740 newxsd LANL/T 1984 293.6 38801 263 20.0 yes no no no no
79197.56c 195.2740 newxs LANL/T 1984 293.6 122482 11823 30.0 yes no no no no
79197.60c 195.2740 endf60 B-VI.1 1984 293.6 161039 17724 30.0 yes no no no no
79197.66c 195.2740 endf66c B-VI.1 1984 293.6 377905 39417 30.0 yes no no no no

Z = 80   **************   Mercury   ********************************************

**   Hg-nat**
80000.40c 198.8668 endl92 LLNL <1992 300.0 29731 2507 30.0 yes no no no no
80000.42c 198.8668 endl92 LLNL:X <1992 300.0 29731 2507 30.0 yes no no no no
**   Hg-196   **
80196.24c 194.2820 la150n LANL 1998 293.6 153206 1690 150.0 yes no yes no no
**   Hg-198   **
80198.24c 196.2660 la150n LANL 1998 293.6 172481 3205 150.0 yes no yes no no
**   Hg-199   **
80199.24c 197.2590 la150n LANL 1998 293.6 173336 4126 150.0 yes no yes no no
**   Hg-200   **
80200.24c 198.2500 la150n LANL 1998 293.6 192339 2560 150.0 yes no yes no no
**   Hg-201   **
80201.24c 199.2440 la150n LANL 1998 293.6 166179 3492 150.0 yes no yes no no
**   Hg-202   **
80202.24c 200.2360 la150n LANL 1998 293.6 154736 1887 150.0 yes no yes no no
**   Hg-204   **
80204.24c 202.2210 la150n LANL 1998 293.6 140754 832 150.0 yes no yes no no

Z = 82   **************   Lead   ***********************************************

**   Pb-nat**
82000.42c 205.4200 endl92 LLNL <1992 300.0 270244 18969 30.0 yes no no no no
82000.50d 205.4300 drmccs B-V.0 1976 293.6 20649 263 20.0 yes no no no no
82000.50c 205.4300 rmccs B-V.0 1976 293.6 37633 1346 20.0 yes no no no no

υ
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**   Pb-206   **
82206.24c 204.2000 la150n B-VI.6 1996 293.6 424548 30415 150.0 yes no yes no no
82206.60c 204.2000 endf60 B-VI.0 1989 293.6 148815 12872 20.0 yes no no no no
82206.66c 204.2000 endf66c B-VI.6 1997 293.6 420901 30414 150.0 yes no yes no no
**   Pb-207   **
82207.24c 205.2000 la150n B-VI.6 1996 293.6 280309 10689 150.0 yes no yes no no
82207.60c 205.2000 endf60 B-VI.1 1991 293.6 111750 7524 20.0 yes no no no no
82207.66c 205.2000 endf66c B-VI.6 1997 293.6 276136 10689 150.0 yes no yes no no
**   Pb-208   **
82208.25c 206.1900 la150n LANL 1996 293.6 344772 6633 150.0 yes no yes no no
82208.60c 206.1900 endf60 B-VI.0 1989 293.6 70740 5105 20.0 yes no no no no
82208.66c 206.1900 endf66c B-VI.6:X 1996 293.6 344865 6634 150.0 yes no yes no no

Z = 83   **************   Bismuth   ********************************************

**   Bi-209   **
83209.24c 207.1850 la150n LANL 1999 293.6 249386 11047 150.0 yes no yes no no
83209.42c 207.1851 endl92 LLNL <1992 300.0 20921 1200 30.0 yes no no no no
83209.50c 207.1850 endf5u B-V.0 1980 293.6 14939 1300 20.0 yes no no no no
83209.50d 207.1850 dre5 B-V.0 1980 293.6 7516 263 20.0 yes no no no no
83209.51d 207.1850 drmccs B-V.0 1980 293.6 7516 263 20.0 yes no no no no
83209.51c 207.1850 rmccs B-V.0 1980 293.6 13721 1186 20.0 yes no no no no
83209.60c 207.1850 endf60 B-VI.0 1989 293.6 100138 8427 20.0 yes no no no no
83209.66c 207.1850 endf66c B-VI.3 1989 293.6 161302 10906 20.0 yes no no no no

Z = 90   **************   Thorium   ********************************************

**   Th-230   **
90230.60c 228.0600 endf60 B-VI.0 1977 293.6 35155 5533 20.0 no tot no no no
90230.66c 228.0600 endf66c B-VI.0 1977 293.6 64761 8428 20.0 no tot no no no
**   Th-231   **
90231.42c 229.0516 endl92 LLNL <1992 300.0 15712 187 30.0 yes both no no no
**   Th-232   **
90232.42c 230.0447 endl92 LLNL <1992 300.0 109829 13719 30.0 yes both no no no
90232.48c 230.0400 uresa[16] B-VI.0 1977 300.0 305942 41414 20.0 no both no no yes
90232.50d 230.0400 dre5 B-V.0 1977 293.6 11937 263 20.0 yes both no no no
90232.50c 230.0400 endf5u B-V.0 1977 293.6 152782 17901 20.0 yes both no no no
90232.51d 230.0400 drmccs B-V.0 1977 293.6 11937 263 20.0 yes both no no no
90232.51c 230.0400 rmccs B-V.0 1977 293.6 17925 1062 20.0 yes both no no no
90232.60c 230.0400 endf60 B-VI.0 1977 293.6 127606 16381 20.0 yes both no no no
90232.61c 230.0400 endf6dn B-VI.0 1977 293.6 132594 16381 20.0 yes both no yes no
90232.65c 230.0400 endf66e B-VI.0 1977 3000.1 238295 25915 20.0 yes both no yes yes
90232.66c 230.0400 endf66c B-VI.0 1977 293.6 362871 41487 20.0 yes both no yes yes
**   Th-233   **
90233.42c 231.0396 endl92 LLNL <1992 300.0 16015 206 30.0 yes both no no no

Z = 91   **************   Protactinium   ***************************************

**   Pa-231   **
91231.60c 229.0500 endf60 B-VI.0 1977 293.6 19835 2610 20.0 no both no no no
91231.61c 229.0500 endf6dn B-VI.0 1977 293.6 24733 2610 20.0 no both no yes no
91231.65c 229.0500 endf66e B-VI.0 1977 3000.1 31463 2422 20.0 no both no yes yes
91231.66c 229.0500 endf66c B-VI.0 1977 293.6 45111 4128 20.0 no both no yes yes
**   Pa-233   **
91233.42c 231.0383 endl92 LLNL <1992 300.0 27720 1982 30.0 yes both no no no
91233.50d 231.0380 dre5 B-V.0 1974 293.6 3700 263 20.0 no tot no no no
91233.50c 231.0380 endf5u B-V.0 1974 293.6 19519 2915 20.0 no tot no no no
91233.51d 231.0380 drmccs B-V.0 1974 293.6 3700 263 20.0 no tot no no no
91233.51c 231.0380 rmccs B-V.0 1974 293.6 5641 637 20.0 no tot no no no
91233.65c 231.0380 endf66e B-VI.0 1974 3000.1 34848 3993 20.0 no tot no no yes
91233.66c 231.0380 endf66c B-VI.0 1974 293.6 50577 6240 20.0 no tot no no yes

υ
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Z = 92   **************   Uranium   ********************************************

**   U-232   **
92232.49c 230.0400 uresa B-VI.0 1977 300.0 21813 2820 20.0 no both no no yes
92232.60c 230.0400 endf60 B-VI.0 1977 293.6 13839 1759 20.0 no both no no no
92232.61c 230.0400 endf6dn B-VI.0 1977 293.6 18734 1759 20.0 no both no yes no
92232.65c 230.0400 endf66e B-VI.0 1977 3000.1 29048 2318 20.0 no both no yes yes
92232.66c 230.0400 endf66c B-VI.0 1977 293.6 32792 2786 20.0 no both no yes yes
92232.68c 230.0438 t16_2003 LANL/T16 2003 3000.0 183542 5757 30.0 yes both no no yes
92232.69c 230.0438 t16_2003 LANL/T16 2003 293.6 197150 7269 30.0 yes both no no yes
**   U-233   **
92233.42c 231.0377 endl92 LLNL <1992 300.0 29521 2163 30.0 yes both no no no
92233.49c 231.0430 uresa B-VI.0 1978 300.0 47100 4601 20.0 yes both no no yes
92233.50d 231.0430 drmccs B-V.0 1978 293.6 4172 263 20.0 no both no no no
92233.50c 231.0430 rmccs B-V.0 1978 293.6 18815 2293 20.0 no both no no no
92233.60c 231.0430 endf60[15] B-VI.0 1978 293.6 32226 3223 20.0 yes both no no no
92233.61c 231.0430 endf6dn B-VI.0 1978 293.6 37218 3223 20.0 yes both no yes no
92233.65c 231.0430 endf66e B-VI.0 1978 3000.1 49260 3354 20.0 yes both no yes yes
92233.66c 231.0430 endf66c B-VI.0 1978 293.6 62463 4821 20.0 yes both no yes yes
92233.68c 231.0377 t16_2003 LANL/T16 2003 3000.0 323539 11206 30.0 yes both no yes yes
92233.69c 231.0377 t16_2003 LANL/T16 2003 293.6 441295 24290 30.0 yes both no yes yes
**   U-234   **
92234.42c 232.0304 endl92 LLNL <1992 300.0 13677 149 30.0 yes both no no no
92234.49c 232.0300 uresa B-VI.0 1978 300.0 161296 22539 20.0 no both no no yes
92234.50c 232.0300 endf5p B-V.0 1978 293.6 89433 12430 20.0 no tot no no no
92234.50d 232.0300 dre5 B-V.0 1978 293.6 4833 263 20.0 no tot no no no
92234.51d 232.0300 drmccs B-V.0 1978 293.6 4833 263 20.0 no tot no no no
92234.51c 232.0300 rmccs B-V.0 1978 293.6 6426 672 20.0 no tot no no no
92234.60c 232.0300 endf60 B-VI.0 1978 293.6 77059 10660 17.5 no both no no no
92234.61c 232.0300 endf6dn B-VI.0 1978 293.6 82047 10660 17.5 no both no yes no
92234.65c 232.0300 endf66e B-VI.0 1978 3000.1 144201 16318 20.0 no both no yes yes
92234.66c 232.0300 endf66c B-VI.0 1978 293.6 196273 22827 20.0 no both no yes yes
92234.68c 232.0304 t16_2003 LANL/T16 2003 3000.0 286070 16719 30.0 yes both no yes yes
92234.69c 232.0304 t16_2003 LANL/T16 2003 293.6 344651 23228 30.0 yes both no yes yes
**   U-235   **
92235.11c 233.0250 endf62mt B-VI.2 1993 77.0 696398 78912 20.0 yes both no no no
92235.12c 233.0250 endf62mt B-VI.2 1993 400.0 411854 43344 20.0 yes both no no no
92235.13c 233.0250 endf62mt B-VI.2 1993 500.0 379726 39328 20.0 yes both no no no
92235.14c 233.0250 endf62mt B-VI.2 1993 600.0 353678 36072 20.0 yes both no no no
92235.15c 233.0250 endf62mt B-VI.2 1993 800.0 316622 31440 20.0 yes both no no no
92235.16c 233.0250 endf62mt B-VI.2 1993 900.0 300278 29397 20.0 yes both no no no
92235.17c 233.0250 endf62mt B-VI.2 1993 1200.0 269062 25495 20.0 yes both no no no
92235.42c 233.0248 endl92 LLNL <1992 300.0 72790 5734 30.0 yes both no no no
92235.49c 233.0250 uresa B-VI.4 1996 300.0 647347 72649 20.0 yes both no no yes
92235.50c 233.0250 rmccs B-V.0 1977 293.6 60489 5725 20.0 yes both no no no
92235.50d 233.0250 drmccs B-V.0 1977 293.6 11788 263 20.0 yes both no no no
92235.52c 233.0250 endf5mt[1] B-V.0 1977 587.2 65286 6320 20.0 yes both no no no
92235.53c 233.0250 endf5mt[1] B-V.0 1977 587.2 36120 2685 20.0 yes both no no no
92235.54c 233.0250 endf5mt[1] B-V.0 1977 880.8 36008 2671 20.0 yes both no no no
92235.60c 233.0250 endf60 B-VI.2 1993 293.6 289975 28110 20.0 yes both no no no
92235.61c 233.0250 endf6dn B-VI.2 1993 293.6 294963 28110 20.0 yes both no yes no
92235.64c 233.0250 endf66d B-VI.5 1997 77.0 1115810 111154 20.0 yes both no yes yes
92235.65c 233.0250 endf66e B-VI.5 1997 3000.1 332639 24135 20.0 yes both no yes yes
92235.66c 233.0250 endf66c B-VI.5 1997 293.6 722105 67409 20.0 yes both no yes yes
92235.67c 233.0250 t16_2003 LANL/T16 2003 77.0 1119233 111037 20.0 yes both no yes yes
92235.68c 233.0250 t16_2003 LANL/T16 2003 3000.0 337079 24131 20.0 yes both no yes yes
92235.69c 233.0250 t16_2003 LANL/T16 2003 293.6 726320 67380 20.0 yes both no yes yes
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**   U-236   **
92236.42c 234.0178 endl92 LLNL <1992 300.0 14595 311 30.0 yes both no no no
92236.49c 234.0180 uresa B-VI.0 1989 300.0 159074 20865 20.0 no both no no yes
92236.50c 234.0180 endf5p B-V.0 1978 293.6 138715 19473 20.0 no tot no no no
92236.50d 234.0180 dre5 B-V.0 1978 293.6 4838 263 20.0 no tot no no no
92236.51c 234.0180 rmccs B-V.0 1978 293.6 7302 800 20.0 no tot no no no
92236.51d 234.0180 drmccs B-V.0 1978 293.6 4838 263 20.0 no tot no no no
92236.60c 234.0180 endf60 B-VI.0 1989 293.6 82819 10454 20.0 no both no no no
92236.61c 234.0180 endf6dn B-VI.0 1989 293.6 87807 10454 20.0 no both no yes no
92236.65c 234.0180 endf66e B-VI.0 1989 3000.1 153474 15331 20.0 no both no yes yes
92236.66c 234.0180 endf66c B-VI.0 1989 293.6 199786 21120 20.0 no both no yes yes
92236.68c 234.0178 t16_2003 LANL/T16 2003 3000.0 276138 15549 30.0 yes both no yes yes
92236.69c 234.0178 t16_2003 LANL/T16 2003 293.6 328212 21335 30.0 yes both no yes yes
**   U-237   **
92237.42c 235.0123 endl92 LLNL <1992 300.0 13465 210 30.0 yes both no no no
92237.50c 235.0120 endf5p B-V.0 1976 293.6 32445 3293 20.0 yes tot no no no
92237.50d 235.0120 dre5 B-V.0 1976 293.6 8851 263 20.0 yes tot no no no
92237.51c 235.0120 rmccs B-V.0 1976 293.6 10317 527 20.0 yes tot no no no
92237.51d 235.0120 drmccs B-V.0 1976 293.6 8851 263 20.0 yes tot no no no
92237.65c 235.0120 endf66e B-VI.2 1976 3000.1 72824 6381 20.0 yes both no yes yes
92237.66c 235.0120 endf66c B-VI.2 1976 293.6 87188 7977 20.0 yes both no yes yes
92237.68c 235.0124 t16_2003 LANL/T16 2000 3000.0 120768 6401 30.0 yes both no yes yes
92237.69c 235.0124 t16_2003 LANL/T16 2000 293.6 135303 8016 30.0 yes both no yes yes
**   U-238   **
92238.11c 236.0060 endf62mt B-VI.2 1993 77.0 621385 74481 20.0 yes both no no no
92238.12c 236.0060 endf62mt B-VI.2 1993 400.0 456593 53882 20.0 yes both no no no
92238.13c 236.0060 endf62mt B-VI.2 1993 500.0 433681 51018 20.0 yes both no no no
92238.14c 236.0060 endf62mt B-VI.2 1993 600.0 414185 48581 20.0 yes both no no no
92238.15c 236.0060 endf62mt B-VI.2 1993 800.0 386305 45096 20.0 yes both no no no
92238.16c 236.0060 endf62mt B-VI.2 1993 900.0 372625 43386 20.0 yes both no no no
92238.17c 236.0060 endf62mt B-VI.2 1993 1200.0 348137 40325 20.0 yes both no no no
92238.21c 236.0060 100xs[3] LANL/T:X 1993 300.0 279245 30911 100.0 yes both no no no
92238.42c 236.0058 endl92 LLNL <1992 300.0 107739 7477 30.0 yes both no no no
92238.48c 236.0060 uresa[16] B-VI.2 1993 300.0 705623 85021 20.0 no both no no yes
92238.50c 236.0060 rmccs B-V.0 1979 293.6 88998 9285 20.0 yes both no no no
92238.50d 236.0060 drmccs B-V.0 1979 293.6 16815 263 20.0 yes both no no no
92238.52c 236.0060 endf5mt[1] B-V.0 1979 587.2 123199 8454 20.0 yes both no no no
92238.53c 236.0060 endf5mt[1] B-V.0 1979 587.2 160107 17876 20.0 yes both no no no
92238.54c 236.0060 endf5mt[1] B-V.0 1979 880.8 160971 17984 20.0 yes both no no no
92238.60c 236.0060 endf60 B-VI.2 1993 293.6 206322 22600 20.0 yes both no no no
92238.61c 236.0060 endf6dn B-VI.2 1993 293.6 211310 22600 20.0 yes both no yes no
92238.64c 236.0060 endf66d B-VI.5 1993 77.0 976500 103602 20.0 yes both no yes yes
92238.65c 236.0060 endf66e B-VI.5 1993 3000.1 425088 42334 20.0 yes both no yes yes
92238.66c 236.0060 endf66c B-VI.5 1993 293.6 751905 78647 20.0 yes both no yes yes
92238.67c 236.0058 t16_2003 LANL/T16 2003 77.0 1099087 103664 30.0 yes both no yes yes
92238.68c 236.0058 t16_2003 LANL/T16 2003 3000.0 547675 42396 30.0 yes both no yes yes
92238.69c 236.0058 t16_2003 LANL/T16 2003 293.6 874492 78709 30.0 yes both no yes yes
**   U-239   **
92239.35d 237.0007 drmccs LLNL <1985 yes 9286 263 20.0 yes pr no no no
92239.35c 237.0007 rmccsa LLNL <1985 yes 9809 394 20.0 yes pr no no no
92239.42c 237.0007 endl92 LLNL <1992 300.0 14336 205 30.0 yes both no no no
92239.68c 237.0007 t16_2003 LANL/T16 2000 3000.0 111013 6340 30.0 yes both no yes yes
92239.69c 237.0007 t16_2003 LANL/T16 2000 293.6 125557 7956 30.0 yes both no yes yes
**   U-240   **
92240.42c 237.9944 endl92 LLNL <1992 300.0 14000 128 30.0 yes both no no no
92240.68c 237.9944 t16_2003 LANL/T16 2003 3000.0 243398 11524 30.0 yes both no yes yes
92240.69c 237.9944 t16_2003 LANL/T16 2003 293.6 276968 15254 30.0 yes both no yes yes
**   U-241   **
92241.68c 238.9890 t16_2003 LANL/T16 2000 3000.0 117572 6309 30.0 yes both no yes yes
92241.69c 238.9890 t16_2003 LANL/T16 2000 293.6 132260 7941 30.0 yes both no yes yes
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Z = 93   **************   Neptunium   ******************************************

**   Np-235   **
93235.42c 233.0249 endl92 LLNL <1992 300.0 17717 660 30.0 yes both no no no
**   Np-236   **
93236.42c 234.0188 endl92 LLNL <1992 300.0 13464 179 30.0 yes both no no no
**   Np-237   **
93237.42c 235.0118 endl92 LLNL <1992 300.0 31966 2477 30.0 yes both no no no
93237.50c 235.0120 endf5p B-V.0 1978 293.6 63223 8519 20.0 no tot no no no
93237.50d 235.0120 dre5 B-V.0 1978 293.6 5267 263 20.0 no tot no no no
93237.55d 235.0120 drmccs LANL/T 1984 293.6 20484 263 20.0 no both no no no
93237.55c 235.0120 rmccsa LANL/T 1984 293.6 32558 1682 20.0 no both no no no
93237.60c 235.0118 endf60 B-VI.1 1990 293.6 105150 7218 20.0 yes both no no no
93237.61c 235.0118 endf6dn B-VI.1 1990 293.6 110048 7218 20.0 yes both no yes no
93237.66c 235.0118 endf66c B-VI.1 1990 293.6 255036 18967 20.0 yes both no yes no
93237.69c 235.0118 t16_2003 LANL/T16 2003 293.6 255036 18967 20.0 yes both no yes no
**   Np-238   **
93238.42c 236.0060 endl92 LLNL <1992 300.0 13445 165 30.0 yes both no no no
**   Np-239   **
93239.60c 236.9990 endf60 B-VI.0 1988 293.6 7406 562 20.0 no tot no no no
93239.66c 236.9990 endf66c B-VI.0 1988 293.6 17349 1087 20.0 no tot no no no

Z = 94   **************   Plutonium   ******************************************

**   Pu-236   **
94236.60c 234.0180 endf60 B-VI.0 1978 293.6 33448 4610 20.0 no tot no no no
94236.66c 234.0180 endf66c B-VI.4 1995 293.6 25187 1537 20.0 no both no no no
**   Pu-237   **
94237.42c 235.0120 endl92 LLNL <1992 300.0 17284 279 30.0 yes both no no no
94237.60c 235.0120 endf60 B-VI.0 1978 293.6 3524 257 20.0 no tot no no no
94237.66c 235.0120 endf66c B-VI.0 1978 293.6 10982 718 20.0 no tot no no no
**   Pu-238   **
94238.42c 236.0046 endl92 LLNL <1992 300.0 30572 2177 30.0 yes both no no no
94238.49c 236.0045 uresa B-VI.0 1978 300.0 41814 5337 20.0 no both no no yes
94238.50d 236.1670 dre5 B-V.0 1978 293.6 5404 263 20.0 no tot no no no
94238.50c 236.1670 endf5p B-V.0 1978 293.6 18763 2301 20.0 no tot no no no
94238.51c 236.1670 rmccs B-V.0 1978 293.6 6067 537 20.0 no tot no no no
94238.51d 236.1670 drmccs B-V.0 1978 293.6 5404 263 20.0 no tot no no no
94238.60c 236.0045 endf60 B-VI.0 1978 293.6 29054 3753 20.0 no both no no no
94238.61c 236.0045 endf6dn B-VI.0 1978 293.6 33952 3753 20.0 no both no yes no
94238.65c 236.0045 endf66e B-VI.0 1978 3000.1 50571 4565 20.0 no both no yes yes
94238.66c 236.0045 endf66c B-VI.0 1978 293.6 58875 5603 20.0 no both no yes yes
**   Pu-239   **
94239.11c 236.9986 endf62mt B-VI.2 1993 77.0 568756 62522 20.0 yes both no no no
94239.12c 236.9986 endf62mt B-VI.2 1993 400.0 418556 43747 20.0 yes both no no no
94239.13c 236.9986 endf62mt B-VI.2 1993 500.0 395964 40923 20.0 yes both no no no
94239.14c 236.9986 endf62mt B-VI.2 1993 600.0 377116 38567 20.0 yes both no no no
94239.15c 236.9986 endf62mt B-VI.2 1993 800.0 350292 35214 20.0 yes both no no no
94239.16c 236.9986 endf62mt B-VI.2 1993 900.0 338236 33707 20.0 yes both no no no
94239.17c 236.9986 endf62mt B-VI.2 1993 1200.0 312572 30499 20.0 yes both no no no
94239.42c 236.9986 endl92 LLNL <1992 300.0 93878 6827 30.0 yes both no no no
94239.49c 236.9986 uresa B-VI.2 1993 300.0 595005 64841 20.0 yes both no no yes
94239.50d 236.9990 dre5 B-V.0 1976 293.6 12631 263 20.0 yes both no no no
94239.50c 236.9990 endf5p B-V.0 1976 293.6 74049 7809 20.0 yes both no no no
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94239.55d 236.9990 drmccs B-V.2 1983 293.6 20727 263 20.0 yes both no no no
94239.55c 236.9990 rmccs B-V.2 1983 293.6 102099 10318 20.0 yes both no no no
94239.60c 236.9986 endf60 B-VI.2 1993 293.6 283354 26847 20.0 yes both no no no
94239.61c 236.9986 endf6dn B-VI.2 1993 293.6 288252 26847 20.0 yes both no yes no
94239.64c 236.9986 endf66d B-VI.5 1997 77.0 866231 83969 20.0 yes both no yes yes
94239.65c 236.9986 endf66e B-VI.5 1997 3000.1 374390 29320 20.0 yes both no yes yes
94239.66c 236.9986 endf66c B-VI.5 1997 293.6 685322 63868 20.0 yes both no yes yes
94239.67c 236.9986 t16_2003 LANL/T16 2003 77.0 887458 83969 20.0 yes both no yes yes
94239.68c 236.9986 t16_2003 LANL/T16 2003 3000.0 395617 29320 20.0 yes both no yes yes
94239.69c 236.9986 t16_2003 LANL/T16 2003 293.6 706549 63868 20.0 yes both no yes yes
**   Pu-240   **
94240.42c 237.9916 endl92 LLNL <1992 300.0 198041 16626 30.0 yes both no no no
94240.49c 237.9920 uresa B-VI.2 1986 300.0 341542 41596 20.0 yes both no no yes
94240.50d 237.9920 drmccs B-V.0 1977 293.6 9569 263 20.0 yes both no no no
94240.50c 237.9920 rmccs B-V.0 1977 293.6 58917 6549 20.0 yes both no no no
94240.60c 237.9920 endf60 B-VI.2 1986 293.6 133071 15676 20.0 yes both no no no
94240.61c 237.9920 endf6dn B-VI.2 1986 293.6 137969 15676 20.0 yes both no yes no
94240.65c 237.9920 endf66e B-VI.2 1986 3000.1 283740 29451 20.0 yes both no yes yes
94240.66c 237.9920 endf66c B-VI.2 1986 293.6 395889 41912 20.0 yes both no yes yes
**   Pu-241   **
94241.42c 238.9860 endl92 LLNL <1992 300.0 14108 203 30.0 yes both no no no
94241.49c 238.9780 uresa B-VI.3 1994 300.0 155886 17753 20.0 yes both no no yes
94241.50c 238.9780 endf5p B-V.0 1977 293.6 38601 3744 20.0 yes both no no no
94241.50d 238.9780 dre5 B-V.0 1977 293.6 11575 263 20.0 yes both no no no
94241.51c 238.9780 rmccs B-V.0 1977 293.6 13403 623 20.0 yes both no no no
94241.51d 238.9780 drmccs B-V.0 1977 293.6 11575 263 20.0 yes both no no no
94241.60c 238.9780 endf60 B-VI.1 1988 293.6 76453 8112 20.0 yes both no no no
94241.61c 238.9780 endf6dn B-VI.1 1988 293.6 81351 8112 20.0 yes both no yes no
94241.65c 238.9780 endf66e B-VI.3 1994 3000.1 104019 9145 20.0 yes both no yes yes
94241.66c 238.9780 endf66c B-VI.3 1994 293.6 185478 18196 20.0 yes both no yes yes
**   Pu-242   **
94242.42c 239.9793 endl92 LLNL <1992 300.0 48688 4287 30.0 yes both no no no
94242.49c 239.9790 uresa B-VI.0 1978 300.0 130202 14922 20.0 yes both no no yes
94242.50c 239.9790 endf5p B-V.0 1978 293.6 71429 7636 20.0 yes both no no no
94242.50d 239.9790 dre5 B-V.0 1978 293.6 12463 263 20.0 yes both no no no
94242.51c 239.9790 rmccs B-V.0 1978 293.6 15702 728 20.0 yes both no no no
94242.51d 239.9790 drmccs B-V.0 1978 293.6 12463 263 20.0 yes both no no no
94242.60c 239.9790 endf60 B-VI.0 1978 293.6 73725 7896 20.0 yes both no no no
94242.61c 239.9790 endf6dn B-VI.0 1978 293.6 78623 7896 20.0 yes both no yes no
94242.65c 239.9790 endf66e B-VI.0 1978 3000.1 123314 11409 20.0 yes both no yes yes
94242.66c 239.9790 endf66c B-VI.0 1978 293.6 157136 15167 20.0 yes both no yes yes
**   Pu-243   **
94243.42c 240.9740 endl92 LLNL <1992 300.0 20253 745 30.0 yes both no no no
94243.60c 240.9740 endf60 B-VI.2 1976 293.6 45142 4452 20.0 yes tot no no no
94243.65c 240.9740 endf66e B-VI.2 1976 3000.1 70649 6413 20.0 yes tot no no yes
94243.66c 240.9740 endf66c B-VI.2 1976 293.6 97856 9436 20.0 yes tot no no yes
**   Pu-244   **
94244.60c 241.9680 endf60 B-VI.0 1978 293.6 23654 3695 20.0 no tot no no no
94244.65c 241.9680 endf66e B-VI.0 1978 3000.1 51446 6450 20.0 no tot no no yes
94244.66c 241.9680 endf66c B-VI.0 1978 293.6 61726 7931 20.0 no tot no no yes

Z = 95   **************   Americium   ******************************************

**   Am-241   **
95241.42c 238.9860 endl92 LLNL <1992 300.0 32579 2011 30.0 yes both no no no
95241.50c 238.9860 endf5u B-V.0 1978 293.6 42084 4420 20.0 yes tot no no no
95241.50d 238.9860 dre5 B-V.0 1978 293.6 9971 263 20.0 yes tot no no no
95241.51c 238.9860 rmccs B-V.0 1978 293.6 12374 713 20.0 yes tot no no no
95241.51d 238.9860 drmccs B-V.0 1978 293.6 9971 263 20.0 yes tot no no no
95241.60c 238.9860 endf60 LANL/T 1994 300.0 168924 13556 30.0 yes both no no no
95241.61c 238.9860 endf6dn LANL/T 1994 300.0 173822 13556 30.0 yes both no yes no
95241.65c 238.9860 endf66e B-VI.3:X 1994 3000.1 162566 8011 30.0 yes both no yes yes
95241.66c 238.9860 endf66c B-VI.3:X 1994 293.6 267137 19630 30.0 yes both no yes yes
95241.68c 238.9860 t16_2003 LANL/T16 2003 3000.0 163034 8020 30.0 yes both no yes yes
95241.69c 238.9860 t16_2003 LANL/T16 2003 293.6 267605 19639 30.0 yes both no yes yes

υ
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**   Am-242metastable   **
95242.42c 239.9801 endl92 LLNL <1992 300.0 21828 1368 20.0 yes both no no no
95242.50c 239.9800 endf5u B-V.0 1978 293.6 8593 323 20.0 yes tot no no no
95242.50d 239.9800 dre5 B-V.0 1978 293.6 9048 263 20.0 yes tot no no no
95242.51d 239.9800 drmccs B-V.0 1978 293.6 9048 263 20.0 yes tot no no no
95242.51c 239.9800 rmccs B-V.0 1978 293.6 8502 317 20.0 yes tot no no no
95242.65c 239.9800 endf66e B-VI.1 1978 3000.1 27793 945 20.0 yes both no yes yes
95242.66c 239.9800 endf66c B-VI.1 1978 293.6 27625 933 20.0 yes both no yes yes
**   Am-243   **
95243.42c 240.9733 endl92 LLNL <1992 300.0 52074 4867 30.0 yes both no no no
95243.50c 240.9730 endf5u B-V.0 1978 293.6 92015 11921 20.0 yes tot no no no
95243.50d 240.9730 dre5 B-V.0 1978 293.6 11742 263 20.0 yes tot no no no
95243.51d 240.9730 drmccs B-V.0 1978 293.6 11742 263 20.0 yes tot no no no
95243.51c 240.9730 rmccs B-V.0 1978 293.6 13684 757 20.0 yes tot no no no
95243.60c 240.9730 endf60 B-VI.0 1988 293.6 104257 11984 20.0 yes both no no no
95243.61c 240.9730 endf6dn B-VI.0 1988 293.6 109155 11984 20.0 yes both no yes no
95243.65c 240.9734 endf66e B-VI.5 1996 3000.1 160276 10268 30.0 yes both no yes yes
95243.66c 240.9734 endf66c B-VI.5 1996 293.6 308812 26772 30.0 yes both no yes yes
95243.68c 240.9734 t16_2003 ENDF/B-VI.5 1996 3000.0 160276 10268 30.0 yes both no yes yes
95243.69c 240.9734 t16_2003 ENDF/B-VI.5 1996 293.6 308812 26772 30.0 yes both no yes yes

Z = 96   **************   Curium   *********************************************

**   Cm-241   **
96241.60c 238.9870 endf60 B-VI.0 1978 293.6 3132 278 20.0 no tot no no no
96241.66c 238.9870 endf66c B-VI.0 1978 293.6 9515 598 20.0 no tot no no no
**   Cm-242   **
96242.42c 239.9794 endl92 LLNL <1992 300.0 37766 3141 30.0 yes both no no no
96242.50c 239.9790 endf5u B-V.0 1978 293.6 30897 3113 20.0 yes tot no no no
96242.50d 239.9790 dre5 B-V.0 1978 293.6 8903 263 20.0 yes tot no no no
96242.51d 239.9790 drmccs B-V.0 1978 293.6 8903 263 20.0 yes tot no no no
96242.51c 239.9790 rmccs B-V.0 1978 293.6 9767 472 20.0 yes tot no no no
96242.60c 239.9790 endf60 B-VI.0 1978 293.6 34374 3544 20.0 yes both no no no
96242.61c 239.9790 endf6dn B-VI.0 1978 293.6 39269 3544 20.0 yes both no yes no
96242.65c 239.9790 endf66e B-VI.0 1978 3000.1 54517 4410 20.0 yes both no yes yes
96242.66c 239.9790 endf66c B-VI.0 1978 293.6 62059 5248 20.0 yes both no yes yes
**   Cm-243   **
96243.42c 240.9733 endl92 LLNL <1992 300.0 21543 1099 30.0 yes both no no no
96243.60c 240.9730 endf60 B-VI.0 1978 293.6 18860 1445 20.0 yes tot no no no
96243.65c 240.9730 endf66e B-VI.0 1978 3000.1 29796 1965 20.0 yes tot no no yes
96243.66c 240.9730 endf66c B-VI.0 1978 293.6 32793 2298 20.0 yes tot no no yes
**   Cm-244   **
96244.42c 241.9661 endl92 LLNL <1992 300.0 46590 4198 30.0 yes both no no no
96244.49c 241.9660 uresa B-VI.0 1978 300.0 97975 11389 20.0 yes pr no no yes
96244.50d 241.9660 dre5 B-V.0 1978 293.6 9509 263 20.0 yes tot no no no
96244.50c 241.9660 endf5u B-V.0 1978 293.6 45991 4919 20.0 yes tot no no no
96244.51d 241.9660 drmccs B-V.0 1978 293.6 9509 263 20.0 yes tot no no no
96244.51c 241.9660 rmccs B-V.0 1978 293.6 10847 566 20.0 yes tot no no no
96244.60c 241.9660 endf60 B-VI.0 1978 293.6 73001 8294 20.0 yes tot no no no
96244.65c 241.9660 endf66e B-VI.0 1978 3000.1 91371 8861 20.0 yes tot no no yes
96244.66c 241.9660 endf66c B-VI.0 1978 293.6 116265 11627 20.0 yes tot no no yes
**   Cm-245   **
96245.42c 242.9602 endl92 LLNL <1992 300.0 25678 1564 30.0 yes both no no no
96245.60c 242.9600 endf60 B-VI.2 1979 293.6 29535 2636 20.0 yes both no no no
96245.61c 242.9600 endf6dn B-VI.2 1979 293.6 34433 2636 20.0 yes both no yes no
96245.65c 242.9600 endf66e B-VI.2 1979 3000.1 44920 3214 20.0 yes both no yes yes
96245.66c 242.9600 endf66c B-VI.2 1979 293.6 52336 4038 20.0 yes both no yes yes
**   Cm-246   **
96246.42c 243.9534 endl92 LLNL <1992 300.0 24550 1376 30.0 yes both no no no
96246.60c 243.9530 endf60 B-VI.2 1976 293.6 37948 3311 20.0 yes tot no no no
96246.66c 243.9530 endf66c B-VI.2 1976 293.6 56186 4704 20.0 yes tot no no no

υ
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Table G .2 (Cont.)
Continuous-Energy and Discrete Neutron Data Libraries Maintained by X-5

Library Eval Temp Length Emax
ZAID AWR Name Source Date (°K) words NE (MeV) GPD CP DN UR

**   Cm-247   **
96247.42c 244.9479 endl92 LLNL <1992 300.0 39971 3256 30.0 yes both no no no
96247.60c 244.9500 endf60 B-VI.2 1976 293.6 38800 3679 20.0 yes tot no no no
96247.65c 244.9500 endf66e B-VI.2 1976 3000.1 49949 3849 20.0 yes tot no no yes
96247.66c 244.9500 endf66c B-VI.2 1976 293.6 64799 5499 20.0 yes tot no no yes
**   Cm-248   **
96248.42c 245.9413 endl92 LLNL <1992 300.0 40345 3355 30.0 yes both no no no
96248.60c 245.9410 endf60 B-VI.0 1978 293.6 83452 9706 20.0 yes tot no no no
96248.65c 245.9410 endf66e B-VI.0 1978 3000.1 102038 10383 20.0 yes tot no no yes
96248.66c 245.9410 endf66c B-VI.0 1978 293.6 130361 13530 20.0 yes tot no no yes

Z = 97   **************   Berkelium   ******************************************

**   Bk-249   **
97249.42c 246.9353 endl92 LLNL <1992 300.0 19573 809 30.0 yes both no no no
97249.60c 246.9400 endf60 B-VI.0:X 1986 293.6 50503 5268 20.0 no both no no no
97249.65c 246.9400 endf66e B-VI.0 1986 3000.1 65384 5360 20.0 no both no no yes
97249.66c 246.9400 endf66c B-VI.0 1986 293.6 85568 7883 20.0 no both no no yes

Z = 98   **************   Californium   ****************************************

**   Cf-249   **
98249.42c 246.9352 endl92 LLNL <1992 300.0 49615 4554 30.0 yes both no no no
98249.60c 246.9400 endf60 B-VI.0:X 1989 293.6 41271 4329 20.0 no both no no no
98249.61c 246.9400 endf6dn B-VI.0:X 1989 293.6 46154 4329 20.0 no both no yes no
98249.65c 246.9400 endf66e B-VI.0:X 1989 3000.1 62455 4376 20.0 no both no yes yes
98249.66c 246.9400 endf66c B-VI.0:X 1989 293.6 78679 6404 20.0 no both no yes yes
**   Cf-250   **
98250.42c 247.9281 endl92 LLNL <1992 300.0 17659 574 30.0 yes both no no no
98250.60c 247.9280 endf60 B-VI.2 1976 293.6 47758 5554 20.0 yes tot no no no
98250.65c 247.9280 endf66e B-VI.2 1976 3000.1 66024 6701 20.0 yes tot no no yes
98250.66c 247.9280 endf66c B-VI.2 1976 293.6 77434 8132 20.0 yes tot no no yes
**   Cf-251   **
98251.42c 248.9227 endl92 LLNL <1992 300.0 17673 545 30.0 yes both no no no
98251.60c 248.9230 endf60 B-VI.2 1976 293.6 42817 4226 20.0 yes both no no no
98251.61c 248.9230 endf6dn B-VI.2 1976 293.6 47715 4226 20.0 yes both no yes no
98251.65c 248.9230 endf66e B-VI.2 1976 3000.1 64568 5257 20.0 yes both no yes yes
98251.66c 248.9230 endf66c B-VI.2 1976 293.6 73253 6222 20.0 yes both no yes yes
**   Cf-252   **
98252.42c 249.9161 endl92 LLNL <1992 300.0 21027 1210 30.0 yes both no no no
98252.60c 249.9160 endf60 B-VI.2 1976 293.6 49204 5250 20.0 yes both no no no
98252.65c 249.9160 endf66e B-VI.2 1976 3000.1 66642 6250 20.0 yes tot no no yes
98252.66c 249.9160 endf66c B-VI.2 1976 293.6 78378 7554 20.0 yes tot no no yes

υ
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Notes:

1. The data libraries previously known as EPRIXS and U600K are now a part of the data 
library ENDF5MT.

2. Data were translated to ENDF/B-VI format with some modifications by LANL.

3. The 100XS data library contains data for 9 nuclides up to 100 MeV. Heating numbers on 
this data library are known to be incorrect, overestimating the energy deposition.9

4. Photon production data were added to the existing ENDF evaluation for 11B in 1984. A 
complete new evaluation was performed in 1986.

5. The natural carbon data 6000.50c are repeated here with the ZAID of 6012.50c for the 
user's convenience. Both are based on the natural carbon ENDF/B-V.0 evaluation.

6. The delayed gamma ray at an energy of 1.7791 MeV from the reaction n+27Al->28Al-
>28Si+β-+γ has been included in the thermal-capture photon-production data for these 
two ZAIDs.10 

7. The data libraries previously known as ARKRC, GDT2GP, IRNAT, MISCXS, TM169, 
and T2DDC are now a part of the data library MISC5XS.

8. Photon production data were added to ENDF/B-V.0 neutron files for argon and krypton 
by T-16, with the intent to roughly estimate photon heating.11

9. Data for Br, Rb, I, and Cs were taken from incomplete fission-product evaluations.12

10. This is ENDF/B-V.0 for 89Y after modification by evaluator to get better agreement with 
ENDL85.13,14

11. The following files for Zr have been replaced by the indicated ZAID, eliminating the rare 
problem of having a secondary neutron energy greater than the incident neutron energy 
caused by an ENDF/B-V.0 evaluation problem.15 Note that this correction has been 
made for the ENDF/B-VI evaluation.

12. The ZAIDs for ENDL-based average fission product data files have been changed for the 
latest library, ENDL92, to 49120.42c and 49125.42c. Z is now set to 49 to ensure that 
the appropriate atomic fraction and photon transport library is used. You may need to 
update the atomic weight ratio table in your XSDIR file to include these entries.16,17 The 
ENDL92FP library is not publicly available.

13. The LANL/T-16 evaluation for I-127 was accepted for ENDF/B-VI.2 with 
modifications. These data are processed from the original LANL/T-16 evaluation.

14. Photon production data for Gd were added to the ENDF/B-V.0 neutron cross sections by 
T-16. These data are valid only to 1 MeV.18

15. Photon production data for 233U were added by LANL to the original evaluation in 1981.

40000.50c rmccs -> 40000.56c misc5xs
40000.50d drmccs -> 40000.56d misc5xs
40000.51c endf5p -> 40000.57c misc5xs
40000.51d dre5 -> 40000.57d misc5xs
40000.53c eprixs -> 40000.58c misc5xs
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16. There was a processing problem for the URES library that affected the photon 
production data for 182, 183, 184, 186W, 232Th and 238U.  The URESA library contains the 
same ACE files as the URES library except that photon-production data for the affected 
isotopes is zeroed.  The IDs for the affected isotopes have been changed from “49c” to 
“48c”. Heating numbers in the unresolved region are known to be incorrect.

IV. MULTIGROUP DATA

Currently, only one coupled neutron-photon multigroup library is supported by the Data Team, 
MGXSNP.19 MGXSNP is comprised of 30-group neutron and 12-group photon data primarily 
based on ENDF/B-V for 95 nuclides. The MCNP-compatible multigroup data library was 
produced from the original Sn multigroup libraries MENDF5 and MENDF5G using the code 
CRSRD in April 1987.20,21 The original neutron data library MENDF5 was produced using the 
“TD-Division Weight Function,” also called “CLAW” by the processing code NJOY.22,23,24 This 
weight function is a combination of a Maxwellian thermal + 1/E + fission + fusion peak at 
14.0 MeV. The data library contains no upscatter groups or self-shielding, and is most applicable 
for fast systems. All cross-sections are for room temperature, 300°K. P0 through P4 scattering 
matrices from the original library were processed by CRSRD into angular distributions for MCNP 
using the Carter-Forest equiprobable bin treatment. When available, both total and prompt nubar 
data are provided. The edit reactions available for each ZAID are fully described in Reference 19.

Table G .3 describes the MGXSNP data library. The ZAIDs used for this library correspond to the 
source evaluation in the same manner as the ZAID for the continuous-energy and discrete data; as 
an example, the same source evaluation for natural iron was used to produce 26000.55c, 26000.55d 
and 26000.55m. For coupled neutron-photon problems, specifying a particular isotope on a 
material card will invoke the neutron set for that isotope and the corresponding photon set for that 
element. For example, an entry of “1003” on a material card will cause MCNP to use 
ZAID=1003.50m for neutron data and 1000.01g for photon data.

Table G .3 
MGXSNP: A Coupled Neutron-Photon Multigroup Data Library

ZAID
Neutron

AWR Length ZAID
Photon
AWR Length

1001.50m 0.999172 3249 1000.01g 0.999317 583
1002.55m 1.996810 3542
1003.50m 2.990154 1927
2003.50m 2.990134 1843 2000.01g 3.968217 583
2004.50m 3.968238 1629
3006.50m 5.963479 3566 3000.01g 6.881312 583
3007.55m 6.955768 3555
4007.35m 6.949815 1598 4000.01g 8.934763 557
4009.50m 8.934807 3014
5010.50m 9.926970 3557 5000.01g 10.717168 583
5011.56m 10.914679 2795
6000.50m [1] 11.896972 2933 6000.01g 11.907955 583
6012.50m [1] 11.896972 2933
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7014.50m 13.882849 3501 7000.01g 13.886438 583
7015.55m 14.871314 2743
8016.50m 15.857588 3346 8000.01g 15.861942 583
9019.50m 18.835289 3261 9000.01g 18.835197 583
11023.50m 22.792388 2982 11000.01g 22.792275 583
12000.50m 24.096375 3802 12000.01g 24.096261 583
13027.50m 26.749887 3853 13000.01g 26.749756 583
14000.50m 27.844378 3266 14000.01g 27.844241 583
15031.50m 30.707833 2123 15000.01g 30.707682 583
16032.50m 31.697571 2185 16000.01g 31.788823 583
17000.50m 35.148355 2737 17000.01g 35.148180 583
18000.35m 39.605021 2022 18000.01g 39.604489 557
19000.50m 38.762616 2833 19000.01g 38.762423 583
20000.50m 39.734053 3450 20000.01g 39.733857 583
22000.50m 47.455981 3015 22000.01g 47.455747 583
23000.50m 50.504104 2775 23000.01g 50.503856 583
24000.50m 51.549511 3924 24000.01g 51.549253 583
25055.50m 54.466367 2890 25000.01g 54.466099 583
26000.55m 55.366734 4304 26000.01g 55.366466 583
27059.50m 58.427218 2889 27000.01g 58.426930 583
28000.50m 58.182926 3373 28000.01g 58.182641 583
29000.50m 62.999465 2803 29000.01g 62.999157 583
31000.50m 69.124611 2084 31000.01g 69.124270 583
33075.35m 74.278340 2022 33000.01g 74.277979 557
36078.50m 77.251400 2108 36000.01g 83.080137 583
36080.50m 79.230241 2257
36082.50m 81.210203 2312
36083.50m 82.202262 2141
36084.50m 83.191072 2460
36086.50m 85.173016 2413
40000.50m 90.440039 2466 40000.01g 90.439594 583
41093.50m 92.108717 2746 41000.01g 92.108263 583
42000.50m 95.107162 1991 42000.01g 95.106691 583
45103.50m 102.021993 2147 45000.01g 102.021490 583
45117.90m 115.544386 2709
46119.90m 117.525231 2629 46000.01g 105.513949 557
47000.55m 106.941883 2693 47000.01g 106.941685 583
47107.50m 105.987245 2107
47109.50m 107.969736 1924
48000.50m 111.442911 1841 48000.01g 111.442363 583
50120.35m 115.995479 1929 50000.01g 117.667336 557
50998.99m 228.025301 1382
50999.99m 228.025301 1413
54000.35m 130.171713 1929 54000.01g 130.165202 557
56138.50m 136.721230 2115 56000.01g 136.146809 583
63000.35m 150.654333 1933 63000.01g 150.657141 557
63151.55m 149.623005 2976
63153.55m 151.608005 2691
64000.35m 155.898915 1929 64000.01g 155.900158 557

Table G .3  (Cont.)
MGXSNP: A Coupled Neutron-Photon Multigroup Data Library

ZAID
Neutron

AWR Length ZAID
Photon
AWR Length
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Notes:

1. The neutron transport data for ZAIDs 6012.50m and 6000.50m are the same.
2. Photon transport data are not provided for Z>94.

67165.55m 163.512997 2526  67000.01g 163.513493 583
73181.50m 179.394458 2787 73000.01g 179.393456 583
74000.55m 182.270446 4360 74000.01g 182.269548 583
74182.55m 180.386082 3687
74183.55m 181.379499 3628
74184.55m 182.371615 3664
74186.55m 184.357838 3672
75185.50m 183.365036 1968 75000.01g 184.607108 583
75187.50m 185.350629 2061
78000.35m 193.415026 1929 78000.01g 193.404225 557
79197.56m 195.274027 3490 79000.01g 195.274513 583
82000.50m 205.437162 3384 82000.01g 205.436151 583
83209.50m 207.186158 2524 83000.01g 207.185136 583
90232.50m 230.045857 2896 90000.01g 230.044724 583
91233.50m 231.039442 1970 91000.01g 229.051160 479
92233.50m 231.038833 1988 92000.01g 235.984125 583
92234.50m 232.031554 2150
92235.50m 233.025921 3164
92236.50m 234.018959 2166
92237.50m 235.013509 2174
92238.50m 236.006966 3553
92239.35m 236.997601 2147
93237.55m 235.012957 2812 93000.01g 235.011799 479
94238.50m 236.005745 2442 94000.01g [2] 241.967559 583
94239.55m 236.999740 3038
94240.50m 237.992791 3044
94241.50m 238.987218 2856
94242.50m 239.980508 2956
95241.50m 238.987196 2535
95242.50m 239.981303 2284
95243.50m 240.974535 2480
96242.50m 239.980599 1970
96244.50m 241.967311 1950

Table G .3  (Cont.)
MGXSNP: A Coupled Neutron-Photon Multigroup Data Library

ZAID
Neutron

AWR Length ZAID
Photon
AWR Length
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V. PHOTOATOMIC DATA

There are four photon transport libraries maintained by X-5 and distributed with MCNP: MCPLIB, 
MCPLIB02, MCPLIB03 and MCPLIB04.  Their lineage is summarized below. 

The official version of MCPLIB is unchanged since 1982.25 Versions of MCPLIB existed prior to 
1982. MCPLIB contains data from several sources.  For Z equal 1 to 94 (excluding Z equal 84, 85, 
87, 88, 89, 91, 93), the cross section data for incident energies from 1 keV to 100 MeV and all form 
factor data are from the ENDF/B-IV evaluation, which is available from RSICC as data package 
DLC-7e. The excluded elements are tabulated only on the energy range from 1 keV to 15 MeV and 
trace their cross-section data back to the Storm and Israel 1970 data compilation,26 which is 
available from RSICC as data package DLC-15. The form factor data for the excluded elements is 
of forgotten origin.  The fluorescence data were produced by Everett and Cashwell27 from the 
Storm and Israel 1970 data, supplemented as necessary. MCPLIB does not contain momentum 
profile (CDBD) data.

MCPLIB02 was officially released in 199328 and was created as an extension to MCPLIB. The 
form factor and fluorescence data on MCPLIB and MCPLIB02 are identical.  The cross section 
data below 10 MeV are also identical.  From the maximum energy on the original MCPLIB table 
up to 100 GeV, the cross section data are derived from EPDL89.29 Between 10 MeV and the 
highest energy of the MCPLIB data, the data are smoothly transitioned. MCPLIB02 does not 
contain momentum profile (CDBD) data.

MCPLIB03 was officially released in 200230 as another extension of the MCPLIB/MCPLIB02 
data set.  The cross section, form factor, and fluorescence data on MCPLIB02 and MCPLIB03 are 
identical.  The only change is the addition of the momentum profile (CDBD) data, derived from 
the work of Biggs, Mendelsohn and Mann.31

MCPLIB04 was officially released in 2002.32 The cross section, form factor, and fluorescence data 
are all derived from the ENDF/B-VI.8 data library that are derived from EPDL97.33 Cross section 
data are given for incident photon energies from 1 keV to 100 GeV.  Fluorescence data are derived 
from the atomic relaxation data available in ENDF/B-VI.8 but use the storage and sampling 
scheme defined by Everett and Cashwell.27 The momentum profile (CDBD) data are identical to 
the data found on MCPLIB03.30

The entries in each of the columns of Table G .4 are described as follows:

ZAID The nuclide identification number with the form ZZZAAA.nnX
where ZZZ is the atomic number.

AAA is always 000 for elemental photoatomic data. 
nn is the unique table identification number. 
X = P for continuous-energy neutron tables. 

Library Name of the library that contains the data file for that ZAID.
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Library Release Date The date the library was officially released.  This does not necessarily 
correspond to the source evaluation date; these tables contain data from 
many sources.

Length The total length of a particular photoatomic table in words.

Number of Energies The number of energy points (NE) on the grid used for the photoatomic  
cross sections for that data table. In general, a finer energy grid (or 
greater number of points) indicates a more accurate representation of 
the cross sections.

Emax The maximum incident photon energy for that data table in GeV 
(multiply by 1000 to get the value in units of MeV). For all incident 
energies greater than Emax, MCNP assumes the last cross-section value 
given.

Cross Section Source This entry indicates the source from which the cross-section data are 
derived.  There are four sources for the cross-section data: 

(1) S&I indicates data from the Storm and Israel 1970 compilation, 
(2) B-IV indicates data from ENDF/B-IV, 
(3) B-IV/89 indicates data from ENDF/B-IV merged with data 
      from EPDL89, and 
(4) B/VI.8 indicates data from ENDF/B-VI release 8.

Form Factor Source This entry indicates the source from which the form factor data are 
derived.  There are three sources for the form factor data: 

(1) Unknown indicates that data date back to unknown origins, 
(2) B/IV indicates data from ENDF/B-IV, and 
(3) B/VI.8 indicates data from ENDF/B-VI release 8.

Fluorescence Source This entry indicates the source from which the fluorescence data are 
derived.  There are two sources for the fluorescence data: 

(1) E&C indicates data from Everett and Cashwell’s original work, and
(2) B/VI.8 indicates data in the Everett and Cashwell format derived
      from ENDF/B-VI release 8.

CDBD Source This entry indicates the source from which the momentum profile 
(CDBD) data for Doppler broadening of the Compton scattered energy 
are derived.  Currently the only source for the CDBD data is Biggs, 
Mendelsohn and Mann’s 1975 compilation.
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Table G .4
Continuous-Energy Photoatomic Data Libraries Maintained by X-5

Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =    1   ******** Hydrogen ********************************************

1000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
1000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
1000.03p mcplib03 2002 722 82 100 B-IV/89 B-IV E&C BM&M
1000.04p mcplib04 2002 1898 278 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    2   ******** Helium ********************************************

2000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
2000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
2000.03p mcplib03 2002 722 82 100 B-IV/89 B-IV E&C BM&M
2000.04p mcplib04 2002 1970 290 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    3   ******** Lithium ********************************************

3000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
3000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
3000.03p mcplib03 2002 821 82 100 B-IV/89 B-IV E&C BM&M
3000.04p mcplib04 2002 2339 335 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    4   ******** Beryllium ********************************************

4000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
4000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
4000.03p mcplib03 2002 821 82 100 B-IV/89 B-IV E&C BM&M
4000.04p mcplib04 2002 2363 339 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    5   ******** Boron ********************************************

5000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
5000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
5000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
5000.04p mcplib04 2002 3116 448 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    6   ******** Carbon ********************************************

6000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
6000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
6000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
6000.04p mcplib04 2002 3152 454 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    7   ******** Nitrogen ********************************************

7000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
7000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
7000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
7000.04p mcplib04 2002 3194 461 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =    8   ******** Oxygen ********************************************

8000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
8000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
8000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
8000.04p mcplib04 2002 3272 474 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Table G .4 (Cont.)
Continuous-Energy Photoatomic Data Libraries Maintained by X-5

Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =    9   ******** Fluorine ********************************************

9000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
9000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
9000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
9000.04p mcplib04 2002 3206 463 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   10   ******** Neon ********************************************

10000.01p mcplib 1982 389 43 0.1 B-IV B-IV E&C n/a
10000.02p mcplib02 1993 623 82 100 B-IV/89 B-IV E&C n/a
10000.03p mcplib03 2002 920 82 100 B-IV/89 B-IV E&C BM&M
10000.04p mcplib04 2002 3278 475 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   11   ******** Sodium ********************************************

11000.01p mcplib 1982 401 45 0.1 B-IV B-IV E&C n/a
11000.02p mcplib02 1993 635 84 100 B-IV/89 B-IV E&C n/a
11000.03p mcplib03 2002 1031 84 100 B-IV/89 B-IV E&C BM&M
11000.04p mcplib04 2002 3995 578 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   12   ******** Magnesium ********************************************

12000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
12000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
12000.03p mcplib03 2002 1039 84 100 B-IV/89 B-IV E&C BM&M
12000.04p mcplib04 2002 3781 541 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   13   ******** Aluminum ********************************************

13000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
13000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
13000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
13000.04p mcplib04 2002 4846 702 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   14   ******** Silicon ********************************************

14000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
14000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
14000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
14000.04p mcplib04 2002 4792 693 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   15   ******** Phosphorus ********************************************

15000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
15000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
15000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
15000.04p mcplib04 2002 4498 644 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   16   ******** Sulfur ********************************************

16000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
16000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
16000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
16000.04p mcplib04 2002 4654 670 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   17   ******** Chlorine ********************************************

17000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
17000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
17000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
17000.04p mcplib04 2002 4738 684 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   18   ******** Argon ********************************************

18000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
18000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
18000.03p mcplib03 2002 1138 84 100 B-IV/89 B-IV E&C BM&M
18000.04p mcplib04 2002 4696 677 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   19   ******** Potassium ********************************************

19000.01p mcplib 1982 409 45 0.1 B-IV B-IV E&C n/a
19000.02p mcplib02 1993 643 84 100 B-IV/89 B-IV E&C n/a
19000.03p mcplib03 2002 1237 84 100 B-IV/89 B-IV E&C BM&M
19000.04p mcplib04 2002 5047 719 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   20   ******** Calcium ********************************************

20000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
20000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
20000.03p mcplib03 2002 1245 84 100 B-IV/89 B-IV E&C BM&M
20000.04p mcplib04 2002 5013 712 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   21   ******** Scandium ********************************************

21000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
21000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
21000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
21000.04p mcplib04 2002 5532 782 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   22   ******** Titanium ********************************************

22000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
22000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
22000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
22000.04p mcplib04 2002 5742 817 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   23   ******** Vanadium ********************************************

23000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
23000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
23000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
23000.04p mcplib04 2002 5814 829 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   24   ******** Chromium ********************************************

24000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
24000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
24000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
24000.04p mcplib04 2002 5682 807 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   25   ******** Manganese ********************************************

25000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
25000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
25000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
25000.04p mcplib04 2002 5598 793 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   26   ******** Iron ********************************************

26000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
26000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
26000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
26000.04p mcplib04 2002 5718 813 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   27   ******** Cobalt ********************************************

27000.01p mcplib 1982 417 45 0.1 B-IV B-IV E&C n/a
27000.02p mcplib02 1993 651 84 100 B-IV/89 B-IV E&C n/a
27000.03p mcplib03 2002 1344 84 100 B-IV/89 B-IV E&C BM&M
27000.04p mcplib04 2002 5436 766 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   28   ******** Nickel ********************************************

28000.01p mcplib 1982 429 47 0.1 B-IV B-IV E&C n/a
28000.02p mcplib02 1993 663 86 100 B-IV/89 B-IV E&C n/a
28000.03p mcplib03 2002 1356 86 100 B-IV/89 B-IV E&C BM&M
28000.04p mcplib04 2002 5826 831 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   29   ******** Copper ********************************************

29000.01p mcplib 1982 429 47 0.1 B-IV B-IV E&C n/a
29000.02p mcplib02 1993 663 86 100 B-IV/89 B-IV E&C n/a
29000.03p mcplib03 2002 1356 86 100 B-IV/89 B-IV E&C BM&M
29000.04p mcplib04 2002 5754 819 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   30   ******** Zinc ********************************************

30000.01p mcplib 1982 453 51 0.1 B-IV B-IV E&C n/a
30000.02p mcplib02 1993 687 90 100 B-IV/89 B-IV E&C n/a
30000.03p mcplib03 2002 1380 90 100 B-IV/89 B-IV E&C BM&M
30000.04p mcplib04 2002 6288 908 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   31   ******** Gallium ********************************************

31000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
31000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
31000.03p mcplib03 2002 1483 90 100 B-IV/89 B-IV E&C BM&M
31000.04p mcplib04 2002 6787 974 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   32   ******** Germanium ********************************************

32000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
32000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
32000.03p mcplib03 2002 1483 90 100 B-IV/89 B-IV E&C BM&M
32000.04p mcplib04 2002 7027 1014 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   33   ******** Arsenic ********************************************

33000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
33000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
33000.03p mcplib03 2002 1483 90 100 B-IV/89 B-IV E&C BM&M
33000.04p mcplib04 2002 6595 942 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   34   ******** Selenium ********************************************

34000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
34000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
34000.03p mcplib03 2002 1483 90 100 B-IV/89 B-IV E&C BM&M
34000.04p mcplib04 2002 6655 952 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   35   ******** Bromine ********************************************

35000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
35000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
35000.03p mcplib03 2002 1483 90 100 B-IV/89 B-IV E&C BM&M
35000.04p mcplib04 2002 6853 985 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   36   ******** Krypton ********************************************

36000.01p mcplib 1982 457 51 0.1 B-IV B-IV E&C n/a
36000.02p mcplib02 1993 691 90 100 B-IV/89 B-IV E&C n/a
36000.03p mcplib03 2002 1879 90 100 B-IV/89 B-IV E&C BM&M
36000.04p mcplib04 2002 7177 973 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   37   ******** Rubidium ********************************************

37000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
37000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
37000.03p mcplib03 2002 1982 90 100 B-IV/89 B-IV E&C BM&M
37000.04p mcplib04 2002 7364 987 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   38   ******** Strontium ********************************************

38000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
38000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
38000.03p mcplib03 2002 1982 90 100 B-IV/89 B-IV E&C BM&M
38000.04p mcplib04 2002 7256 969 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   39   ******** Yttrium ********************************************

39000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
39000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
39000.03p mcplib03 2002 2081 90 100 B-IV/89 B-IV E&C BM&M
39000.04p mcplib04 2002 7583 1007 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   40   ******** Zirconium ********************************************

40000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
40000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
40000.03p mcplib03 2002 2081 90 100 B-IV/89 B-IV E&C BM&M
40000.04p mcplib04 2002 7703 1027 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   41   ******** Niobium ********************************************

41000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
41000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
41000.03p mcplib03 2002 2081 90 100 B-IV/89 B-IV E&C BM&M
41000.04p mcplib04 2002 7667 1021 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   42   ******** Molybdenum ********************************************

42000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
42000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
42000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
42000.04p mcplib04 2002 7592 992 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   43   ******** Technetium ********************************************

43000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
43000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
43000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
43000.04p mcplib04 2002 7946 1051 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   44   ******** Ruthenium ********************************************

44000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
44000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
44000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
44000.04p mcplib04 2002 7988 1058 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   45   ******** Rhodium ********************************************

45000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
45000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
45000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
45000.04p mcplib04 2002 7856 1036 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   46   ******** Palladium ********************************************

46000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
46000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
46000.03p mcplib03 2002 2081 90 100 B-IV/89 B-IV E&C BM&M
46000.04p mcplib04 2002 7595 1009 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   47   ******** Silver ********************************************

47000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
47000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
47000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
47000.04p mcplib04 2002 7772 1022 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   48   ******** Cadmium ********************************************

48000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
48000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
48000.03p mcplib03 2002 2180 90 100 B-IV/89 B-IV E&C BM&M
48000.04p mcplib04 2002 7700 1010 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   49   ******** Indium ********************************************

49000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
49000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
49000.03p mcplib03 2002 2279 90 100 B-IV/89 B-IV E&C BM&M
49000.04p mcplib04 2002 8291 1092 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   50   ******** Tin ********************************************

50000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
50000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
50000.03p mcplib03 2002 2279 90 100 B-IV/89 B-IV E&C BM&M
50000.04p mcplib04 2002 8039 1050 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   51   ******** Antimony ********************************************

51000.01p mcplib 1982 461 51 0.1 B-IV B-IV E&C n/a
51000.02p mcplib02 1993 695 90 100 B-IV/89 B-IV E&C n/a
51000.03p mcplib03 2002 2378 90 100 B-IV/89 B-IV E&C BM&M
51000.04p mcplib04 2002 8414 1096 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   52   ******** Tellurium ********************************************

52000.01p mcplib 1982 473 53 0.1 B-IV B-IV E&C n/a
52000.02p mcplib02 1993 707 92 100 B-IV/89 B-IV E&C n/a
52000.03p mcplib03 2002 2390 92 100 B-IV/89 B-IV E&C BM&M
52000.04p mcplib04 2002 8162 1054 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   53   ******** Iodine ********************************************

53000.01p mcplib 1982 473 53 0.1 B-IV B-IV E&C n/a
53000.02p mcplib02 1993 707 92 100 B-IV/89 B-IV E&C n/a
53000.03p mcplib03 2002 2390 92 100 B-IV/89 B-IV E&C BM&M
53000.04p mcplib04 2002 8492 1109 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   54   ******** Xenon ********************************************

54000.01p mcplib 1982 473 53 0.1 B-IV B-IV E&C n/a
54000.02p mcplib02 1993 707 92 100 B-IV/89 B-IV E&C n/a
54000.03p mcplib03 2002 2390 92 100 B-IV/89 B-IV E&C BM&M
54000.04p mcplib04 2002 8324 1081 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   55   ******** Cesium ********************************************

55000.01p mcplib 1982 497 57 0.1 B-IV B-IV E&C n/a
55000.02p mcplib02 1993 731 96 100 B-IV/89 B-IV E&C n/a
55000.03p mcplib03 2002 2513 96 100 B-IV/89 B-IV E&C BM&M
55000.04p mcplib04 2002 8417 1080 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   56   ******** Barium ********************************************

56000.01p mcplib 1982 497 57 0.1 B-IV B-IV E&C n/a
56000.02p mcplib02 1993 731 96 100 B-IV/89 B-IV E&C n/a
56000.03p mcplib03 2002 2513 96 100 B-IV/89 B-IV E&C BM&M
56000.04p mcplib04 2002 8465 1088 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   57   ******** Lanthanum ********************************************

57000.01p mcplib 1982 497 57 0.1 B-IV B-IV E&C n/a
57000.02p mcplib02 1993 731 96 100 B-IV/89 B-IV E&C n/a
57000.03p mcplib03 2002 2612 96 100 B-IV/89 B-IV E&C BM&M
57000.04p mcplib04 2002 8744 1118 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   58   ******** Cerium ********************************************

58000.01p mcplib 1982 497 57 0.1 B-IV B-IV E&C n/a
58000.02p mcplib02 1993 731 96 100 B-IV/89 B-IV E&C n/a
58000.03p mcplib03 2002 2711 96 100 B-IV/89 B-IV E&C BM&M
58000.04p mcplib04 2002 9173 1173 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   59   ******** Praseodymium ********************************************

59000.01p mcplib 1982 497 57 0.1 B-IV B-IV E&C n/a
59000.02p mcplib02 1993 731 96 100 B-IV/89 B-IV E&C n/a
59000.03p mcplib03 2002 2612 96 100 B-IV/89 B-IV E&C BM&M
59000.04p mcplib04 2002 8750 1119 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   60   ******** Neodymium ********************************************

60000.01p mcplib 1982 509 59 0.1 B-IV B-IV E&C n/a
60000.02p mcplib02 1993 743 98 100 B-IV/89 B-IV E&C n/a
60000.03p mcplib03 2002 2624 98 100 B-IV/89 B-IV E&C BM&M
60000.04p mcplib04 2002 9362 1221 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   61   ******** Promethium ********************************************

61000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
61000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
61000.03p mcplib03 2002 2636 100 100 B-IV/89 B-IV E&C BM&M
61000.04p mcplib04 2002 9350 1219 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   62   ******** Samarium ********************************************

62000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
62000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
62000.03p mcplib03 2002 2636 100 100 B-IV/89 B-IV E&C BM&M
62000.04p mcplib04 2002 9374 1223 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   63   ******** Europium ********************************************

63000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
63000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
63000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
63000.04p mcplib04 2002 9323 1198 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   64   ******** Gadolinium ********************************************

64000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
64000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
64000.03p mcplib03 2002 2834 100 100 B-IV/89 B-IV E&C BM&M
64000.04p mcplib04 2002 9560 1221 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =   65   ******** Terbium ********************************************

65000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
65000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
65000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
65000.04p mcplib04 2002 9143 1168 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   66   ******** Dysprosium ********************************************

66000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
66000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
66000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
66000.04p mcplib04 2002 9479 1224 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   67   ******** Holmium ********************************************

67000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
67000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
67000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
67000.04p mcplib04 2002 9419 1214 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   68   ******** Erbium ********************************************

68000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
68000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
68000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
68000.04p mcplib04 2002 9233 1183 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   69   ******** Thulium ********************************************

69000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
69000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
69000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
69000.04p mcplib04 2002 9473 1223 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   70   ******** Ytterbium ********************************************

70000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
70000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
70000.03p mcplib03 2002 2735 100 100 B-IV/89 B-IV E&C BM&M
70000.04p mcplib04 2002 9539 1234 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   71   ******** Lutetium ********************************************

71000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
71000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
71000.03p mcplib03 2002 2834 100 100 B-IV/89 B-IV E&C BM&M
71000.04p mcplib04 2002 9914 1280 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   72   ******** Hafnium ********************************************

72000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
72000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
72000.03p mcplib03 2002 2834 100 100 B-IV/89 B-IV E&C BM&M
72000.04p mcplib04 2002 9932 1283 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =   73   ******** Tantalum ********************************************

73000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
73000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
73000.03p mcplib03 2002 2834 100 100 B-IV/89 B-IV E&C BM&M
73000.04p mcplib04 2002 9698 1244 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   74   ******** Tungsten ********************************************

74000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
74000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
74000.03p mcplib03 2002 2834 100 100 B-IV/89 B-IV E&C BM&M
74000.04p mcplib04 2002 9716 1247 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   75   ******** Rhenium ********************************************

75000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
75000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
75000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
75000.04p mcplib04 2002 9797 1244 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   76   ******** Osmium ********************************************

76000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
76000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
76000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
76000.04p mcplib04 2002 9977 1274 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   77   ******** Iridium ********************************************

77000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
77000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
77000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
77000.04p mcplib04 2002 9665 1222 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   78   ******** Platinum ********************************************

78000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
78000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
78000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
78000.04p mcplib04 2002 9377 1174 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   79   ******** Gold ********************************************

79000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
79000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
79000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
79000.04p mcplib04 2002 9881 1258 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   80   ******** Mercury ********************************************

80000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
80000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
80000.03p mcplib03 2002 2933 100 100 B-IV/89 B-IV E&C BM&M
80000.04p mcplib04 2002 9281 1158 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =   81   ******** Thallium ********************************************

81000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
81000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
81000.03p mcplib03 2002 3032 100 100 B-IV/89 B-IV E&C BM&M
81000.04p mcplib04 2002 10142 1285 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   82   ******** Lead ********************************************

82000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
82000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
82000.03p mcplib03 2002 3032 100 100 B-IV/89 B-IV E&C BM&M
82000.04p mcplib04 2002 10010 1263 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   83   ******** Bismuth ********************************************

83000.01p mcplib 1982 521 61 0.1 B-IV B-IV E&C n/a
83000.02p mcplib02 1993 755 100 100 B-IV/89 B-IV E&C n/a
83000.03p mcplib03 2002 3131 100 100 B-IV/89 B-IV E&C BM&M
83000.04p mcplib04 2002 10373 1307 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   84   ******** Polonium ********************************************

84000.01p mcplib 1982 467 52 0.015 DLC-15 Unknown E&C n/a
84000.02p mcplib02 1993 749 99 100 S&I/89 Unknown E&C n/a
84000.03p mcplib03 2002 3125 99 100 S&I/89 Unknown E&C BM&M
84000.04p mcplib04 2002 10247 1286 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   85   ******** Astatine ********************************************

85000.01p mcplib 1982 479 54 0.015 DLC-15 Unknown E&C n/a
85000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
85000.03p mcplib03 2002 3137 101 100 S&I/89 Unknown E&C BM&M
85000.04p mcplib04 2002 10463 1322 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   86   ******** Radon ********************************************

86000.01p mcplib 1982 533 63 0.1 B-IV B-IV E&C n/a
86000.02p mcplib02 1993 767 102 100 B-IV/89 B-IV E&C n/a
86000.03p mcplib03 2002 3143 102 100 B-IV/89 B-IV E&C BM&M
86000.04p mcplib04 2002 10325 1299 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   87   ******** Francium ********************************************

87000.01p mcplib 1982 479 54 0.015 S&I Unknown E&C n/a
87000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
87000.03p mcplib03 2002 3236 101 100 S&I/89 Unknown E&C BM&M
87000.04p mcplib04 2002 10532 1317 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   88   ******** Radium ********************************************

88000.01p mcplib 1982 479 54 0.015 S&I Unknown E&C n/a
88000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
88000.03p mcplib03 2002 3236 101 100 S&I/89 Unknown E&C BM&M
88000.04p mcplib04 2002 10346 1286 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Z   =   89   ******** Actinium ********************************************

89000.01p mcplib 1982 479 54 0.015 S&I Unknown E&C n/a
89000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
89000.03p mcplib03 2002 3335 101 100 S&I/89 Unknown E&C BM&M
89000.04p mcplib04 2002 10133 1234 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   90   ******** Thorium ********************************************

90000.01p mcplib 1982 533 63 0.1 B-IV B-IV E&C n/a
90000.02p mcplib02 1993 767 102 100 B-IV/89 B-IV E&C n/a
90000.03p mcplib03 2002 3341 102 100 B-IV/89 B-IV E&C BM&M
90000.04p mcplib04 2002 10565 1306 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   91   ******** Protactinium ********************************************

91000.01p mcplib 1982 479 54 0.015 S&I Unknown E&C n/a
91000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
91000.03p mcplib03 2002 3434 101 100 S&I/89 Unknown E&C BM&M
91000.04p mcplib04 2002 10670 1307 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   92   ******** Uranium ********************************************

92000.01p mcplib 1982 533 63 0.1 B-IV B-IV E&C n/a
92000.02p mcplib02 1993 767 102 100 B-IV/89 B-IV E&C n/a
92000.03p mcplib03 2002 3440 102 100 B-IV/89 B-IV E&C BM&M
92000.04p mcplib04 2002 10808 1330 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   93   ******** Neptunium ********************************************

93000.01p mcplib 1982 479 54 0.015 S&I Unknown E&C n/a
93000.02p mcplib02 1993 761 101 100 S&I/89 Unknown E&C n/a
93000.03p mcplib03 2002 3434 101 100 S&I/89 Unknown E&C BM&M
93000.04p mcplib04 2002 11120 1382 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   94   ******** Plutonium ********************************************

94000.01p mcplib 1982 533 63 0.1 B-IV B-IV E&C n/a
94000.02p mcplib02 1993 767 102 100 B-IV/89 B-IV E&C n/a
94000.03p mcplib03 2002 3341 102 100 B-IV/89 B-IV E&C BM&M
94000.04p mcplib04 2002 10451 1287 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   95   ******** Americium ********************************************

95000.04p mcplib04 2002 10640 1302 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   96   ******** Curium ********************************************

96000.04p mcplib04 2002 10421 1249 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   97   ******** Berkelium ********************************************

97000.04p mcplib04 2002 10478 1275 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =   98   ******** Californium ********************************************

98000.04p mcplib04 2002 10634 1301 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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Library Release Length Emax CS FF Fluor. CDBD
ZAID Name Date Words NE (GeV) Source Source Source Source

Z   =   99   ******** Einsteinium ********************************************

99000.04p mcplib04 2002 11126 1383 100 B-VI.8 B-VI.8 B-VI.8 BM&M

Z   =  100   ******** Fermium ********************************************

100000.04p mcplib04 2002 10916 1348 100 B-VI.8 B-VI.8 B-VI.8 BM&M
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LA150U is the only photonuclear data library supported by X-5.  It is derived from work done at 
Los Alamos National Laboratory in the Nuclear Physics Group (LANL/T-16). 

The entries in each of the columns of Table G .5 are described as follows:

ZAID The nuclide identification number with the form ZZZAAA.nnX
where ZZZ is the atomic number

AAA is the mass number (000 for elements). 
nn is the unique table identification number. 
X=U for continuous-energy photonuclear tables. 

Atomic Weight Ratio The atomic weight ratio (AWR) is the ratio of the atomic mass of the 
nuclide to a neutron, as contained in the original evaluation and used 
in the NJOY processing of the evaluation.

Library Name of the library that contains the data file for that ZAID.

Evaluation Date The date the evaluation was officially released. 

Source The source from which the evaluated data was obtained.  The 
abbreviation LANL/T-16 indicates that the data were produced by the 
Nuclear Physics Group (T-16) at Los Alamos National Laboratory.

Length The total length of a particular photonuclear table in words.

Number of Energies The number of energy points (NE) on the grid used for the 
photonuclear cross sections for that data table. In general, a finer 
energy grid with a greater number of points provides a more accurate 
representation of the cross sections.

Emax The maximum incident photon energy in MeV for that data table. For 
all incident energies greater than Emax, MCNP assumes the last cross 
section value given.

CP “yes” indicates that secondary charged-particles data are present; “no” 
indicates that such data are not present.
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Table G .5
Continuous-Energy Photonuclear Data Libraries Maintained by X-5

Library Eval. Length Emax
ZAID AWR Name Date Source (words) NE (MeV) CP

Z   =    1   ******** Hydrogen ********************************************
** H-2 **
1002.24u 1.9963 la150u 2001 LANL/T-16 3686 35 30 No

Z   =    6   ******** Carbon ********************************************
** C-12 **
6012.24u 11.89691 la150u 1999 LANL/T-16 50395 98 150  Yes

Z   =    8   ******** Oxygen ********************************************
** O-16 **
8016.24u 15.85316 la150u 1999 LANL/T-16 72930 95 150 Yes

Z   =   13   ******** Aluminum ********************************************
** Al-27 **
13027.24u 26.74975 la150u 1999 LANL/T-16 68599 52 150  Yes

Z   =   14   ******** Silicon ********************************************
** Si-28 **
14028.24u 27.737 la150u 1999 LANL/T-16 70693 60 150 Yes

Z   =   20   ******** Calcium ********************************************
** Ca-40 **
20040.24u 39.736 la150u 1998 LANL/T-16 67051 54 150 Yes

Z   =   26   ******** Iron ********************************************
** Fe-56 **
26056.24u 55.454 la150u 1998 LANL/T-16 64043 50 150 Yes

Z   =   29   ******** Copper ********************************************
** Cu-63 **
29063.24u 62.389 la150u 1999 LANL/T-16 73548 57 150 Yes

Z   =   73   ******** Tantalum ********************************************
** Ta-181 **
73181.24u 179.4 la150u 1999 LANL/T-16 85094 50 150 Yes

Z   =   74   ******** Tungsten ********************************************
** W-184 **
74184.24u 182.3707 la150u 1998 LANL/T-16 78439 51 150 Yes

Z   =   82   ******** Lead ********************************************

** Pb-206 **
82206.24u 204.2 la150u 1998 LANL/T-16 78186 49 150 Yes

** Pb-207 **
82207.24u 205.2 la150u 1998 LANL/T-16 78259 52 150 Yes

** Pb-208 **
82208.24u 206.19 la150u 1998 LANL/T-16 77099 51 150 Yes
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VII. DOSIMETRY DATA

The tally multiplier (FM) feature in MCNP allows users to calculate quantities of the form:
C ∫ φ (E) R(E) dE, where C is a constant, φ(E) is the fluence (n/cm2), and R(E) is a response 
function. If R(E) is a cross section, and with the appropriate choice of units for C [atom/b⋅cm], the 
quantity calculated becomes the total number of some type of reaction per unit volume. If the tally 
is made over a finite time interval, it becomes a reaction rate per unit volume. In addition to using 
the standard reaction cross-section information available in our neutron transport libraries, 
dosimetry or activation reaction data can also be used as a response function. Often only dosimetry 
data is available for rare nuclides.

A full description of the use of dosimetry data can be found in Reference 34. This memorandum 
also gives a listing of all reaction data that is available for each ZAID. There have been no major 
revisions of the LLNL/ACTL data since LLLDOS was produced. Users need to remember that 
dosimetry data libraries are appropriate only when used as a source of R(E) for FM tally 
multipliers. Dosimetry data libraries cannot be used as a source of data for materials through which 
actual transport is required. Table G .6 lists the available dosimetry data libraries for use with 
MCNP, the evaluation source and date, and the length of the data in words.  

Table G .6 
Dosimetry Data Libraries for MCNP Tallies

ZAID AWR Library Source  Date Length 

Z =  1  ******************* Hydrogen *************************************

1001.30y 1.00782 llldos LLNL/ACTL <1983 209
1002.30y 2.01410 llldos LLNL/ACTL <1983 149
1003.30y 3.01605 llldos LLNL/ACTL <1983 27

Z =  2  ****************** Helium ***************************************

2003.30y 3.01603 llldos LLNL/ACTL <1983 267

Z =  3  ******************* Lithium **************************************

3006.24y 5.96340 531dos ENDF/B-V 1978 735
3006.26y 5.96340 532dos ENDF/B-V 1977 713
3006.30y 6.01512 llldos LLNL/ACTL <1983 931
3007.26y 6.95570 532dos ENDF/B-V 1972 733
3007.30y 7.01601 llldos LLNL/ACTL <1983 201

Z =  4  ******************* Beryllium ************************************

4007.30y 7.01693 llldos LLNL/ACTL <1983 253
4009.30y 9.01218 llldos LLNL/ACTL <1983 335

Z =  5  ****************** Boron ****************************************

5010.24y 9.92690 531dos ENDF/B-V 1979 769
5010.26y 9.92690 532dos ENDF/B-V 1976 589
5010.30y 10.01290 llldos LLNL/ACTL <1983 381
5011.30y 11.00930 llldos LLNL/ACTL <1983 119
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Z =  6  ****************** Carbon ***************************************

6012.30y 12.00000 llldos LLNL/ACTL <1983 97
6013.30y 13.00340 llldos LLNL/ACTL <1983 479
6014.30y 14.00320 llldos LLNL/ACTL <1983 63

Z =  7  ******************* Nitrogen *************************************

7014.26y 13.88300 532dos ENDF/B-V 1973 1013
7014.30y 14.00310 llldos LLNL/ACTL <1983 915

Z =  8  ****************** Oxygen ***************************************

8016.26y 15.85800 532dos ENDF/B-V 1973 95
8016.30y 15.99490 llldos LLNL/ACTL <1983 215
8017.30y 16.99910 llldos LLNL/ACTL <1983 239

Z =  9  ************** Fluorine *************************************

9019.26y 18.83500 532dos ENDF/B-V 1979 31
9019.30y 18.99840 llldos LLNL/ACTL <1983 517

Z = 11  ***************** Sodium ***************************************

11023.30y 22.98980 llldos LLNL/ACTL <1983 621

Z = 12  ************** Magnesium ************************************

12023.30y 22.99410 llldos LLNL/ACTL <1983 333
12024.26y 23.98500 532dos ENDF/B-V 1979 165
12024.30y 23.98500 llldos LLNL/ACTL <1983 309
12025.30y 24.98580 llldos LLNL/ACTL <1983 309
12026.30y 25.98260 llldos LLNL/ACTL <1983 321
12027.30y 26.98430 llldos LLNL/ACTL <1983 309

Z = 13  ***************** Aluminum *************************************

13026.30y 25.98690 llldos  LLNL/ACTL <1983 447
13027.24y 26.75000 531dos ENDF/B-V 1973 1165
13027.26y 26.75000 532dos ENDF/B-V 1973 1753
13027.30y 26.98150 llldos LLNL/ACTL <1983 491

Z = 14  ******************* Silicon **************************************

14027.30y 26.98670 llldos LLNL/ACTL <1983 401
14028.30y 27.97690 llldos LLNL/ACTL <1983 377
14029.30y 28.97650 llldos LLNL/ACTL <1983 389
14030.30y 29.97380 llldos LLNL/ACTL <1983 395
14031.30y 30.97540 llldos LLNL/ACTL <1983 337

Table G .6  (Cont.)
Dosimetry Data Libraries for MCNP Tallies

ZAID AWR Library Source  Date Length 
10/3/05 G–61



APPENDIX G - MCNP DATA LIBRARIES
DOSIMETRY DATA
Z = 15  ******************* Phosphorus ***********************************

15031.26y 30.70800 532dos ENDF/B-V 1977 65
15031.30y 30.97380 llldos LLNL/ACTL <1983 263

Z = 16  ******************* Sulfur ***************************************

16031.30y 30.97960 llldos  LLNL/ACTL <1983 393
16032.24y 31.69740 531dos ENDF/B-V 1979 145
16032.26y 31.69700 532dos ENDF/B-V 1977 35
16032.30y 31.97210 llldos LLNL/ACTL <1983 417
16033.30y 32.97150 llldos LLNL/ACTL <1983 435
16034.30y 33.96790 llldos LLNL/ACTL <1983 437
16035.30y 34.96900 llldos LLNL/ACTL <1983 339
16036.30y 35.96710 llldos LLNL/ACTL <1983 293
16037.30y 36.97110 llldos LLNL/ACTL <1983 279

Z = 17  ******************* Chlorine *************************************

17034.30y 33.97380 llldos LLNL/ACTL <1983 401
17035.30y 34.96890 llldos LLNL/ACTL <1983 459
17036.30y 35.96830 llldos LLNL/ACTL <1983 563
17037.30y 36.96590 llldos LLNL/ACTL <1983 407
7038.30y 37.96800 llldos LLNL/ACTL <1983 33

Z = 18  ****************** Argon ****************************************

18036.30y 35.96750 llldos LLNL/ACTL <1983 309
18037.30y 36.96680 llldos LLNL/ACTL <1983 311
18038.30y 37.96270 llldos LLNL/ACTL <1983 311
18039.30y 38.96430 llldos LLNL/ACTL <1983 337
18040.26y 39.61910 532dos ENDF/B-V 1979 3861
18040.30y 39.96240 llldos LLNL/ACTL <1983 347
18041.30y 40.96450 llldos LLNL/ACTL <1983 317
18042.30y 41.96300 llldos LLNL/ACTL <1983 291
18043.30y 42.96570 llldos LLNL/ACTL <1983 295

Z = 19  ******************* Potassium ************************************

19038.30y 37.96910 llldos LLNL/ACTL <1983 603
19039.30y 38.96370 llldos LLNL/ACTL <1983 405
19040.30y 39.96400 llldos  LLNL/ACTL <1983 675
19041.26y 40.60990 532dos ENDF/B-V 1979 33
19041.30y 40.96180 llldos LLNL/ACTL <1983 369
19042.30y 41.96240 llldos LLNL/ACTL <1983 343
19043.30y 42.96070 llldos LLNL/ACTL <1983 277
19044.30y 43.96160 llldos LLNL/ACTL <1983 275
19045.30y 44.96070 llldos LLNL/ACTL <1983 283
19046.30y 45.96200 llldos LLNL/ACTL <1983 283

Table G .6  (Cont.)
Dosimetry Data Libraries for MCNP Tallies

ZAID AWR Library Source  Date Length 
G–62 10/3/05



APPENDIX G - MCNP DATA LIBRARIES
DOSIMETRY DATA
Z = 20  ****************** Calcium **************************************

20039.30y 38.97070 llldos LLNL/ACTL <1983 601
20040.30y 39.96260 llldos LLNL/ACTL <1983 309
20041.30y 40.96230 llldos LLNL/ACTL <1983 313
20042.30y 41.95860 llldos LLNL/ACTL <1983 285
20043.30y 42.95880 llldos LLNL/ACTL <1983 295
20044.30y 43.95550 llldos LLNL/ACTL <1983 269
20045.30y 44.95620 llldos LLNL/ACTL <1983 271
20046.30y 45.95370 llldos LLNL/ACTL <1983 255
20047.30y 46.95450 llldos LLNL/ACTL <1983 243
20048.30y 47.95250 llldos LLNL/ACTL <1983 239
20049.30y 48.95570 llldos LLNL/ACTL <1983 229

Z = 21  ***************** Scandium ************************************* 

21044.30y 43.95940 llldos LLNL/ACTL <1983 313
21044.31y 43.95940 llldos LLNL/ACTL <1983 311
21045.24y 44.56790 531dos ENDF/B-V 1979 20179
21045.26y 44.56790 532dos ENDF/B-V 1979 20211
21045.30y 44.95590 llldos LLNL/ACTL <1983 547
21046.30y 45.95520 llldos LLNL/ACTL <1983 323
21046.31y 45.95520 llldos LLNL/ACTL <1983 323
21047.30y 46.95240 llldos LLNL/ACTL <1983 331
21048.30y 47.95220 llldos LLNL/ACTL <1983 325

Z = 22  ******************* Titanium *************************************

22045.30y 44.95810 llldos LLNL/ACTL <1983 449
22046.24y 45.55780 531dos ENDF/B-V 1977 53
22046.26y 45.55780 532dos ENDF/B-V 1977 53
22046.30y 45.95260 llldos LLNL/ACTL <1983 391
22047.24y 46.54800 531dos ENDF/B-V 1977 209
22047.26y 46.54800 532dos ENDF/B-V 1977 209
22047.30y 46.95180 llldos  LLNL/ACTL <1983 419
22048.24y 47.53600 531dos ENDF/B-V 1977 145
22048.26y 47.53600 532dos ENDF/B-V 1977 177
22048.30y 47.94790 llldos LLNL/ACTL <1983 415
22049.30y 48.94790 llldos LLNL/ACTL <1983 409
22050.26y 49.57000 532dos  ENDF/B-V 1979 33
22050.30y 49.94480 llldos LLNL/ACTL <1983 345
22051.30y 50.94660 llldos LLNL/ACTL <1983 389

Z = 23  ****************** Vanadium *************************************

23047.30y 46.95490 llldos LLNL/ACTL <1983 209
23048.30y 47.95230 llldos LLNL/ACTL <1983 399
23049.30y 48.94850 llldos LLNL/ACTL <1983 423
23050.30y 49.94720 llldos LLNL/ACTL <1983 407
23051.30y 50.94400 llldos LLNL/ACTL <1983 357
23052.30y 51.94480 llldos LLNL/ACTL <1983 401
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Z = 24  ***************** Chromium *************************************

24049.30y 48.95130 llldos LLNL/ACTL <1983 377
24050.26y 49.51650 532dos ENDF/B-V 1979 7405
24050.30y 49.94600 llldos LLNL/ACTL <1983 435
24051.30y 50.94480 llldos LLNL/ACTL <1983 377
24052.26y 51.49380 532dos ENDF/B-V 1979 27
24052.30y 51.94050 llldos LLNL/ACTL <1983 417
24053.30y 52.94060 llldos LLNL/ACTL <1983 425
24054.30y 53.93890 llldos LLNL/ACTL <1983 461
24055.30y 54.94080 llldos  LLNL/ACTL <1983 419
24056.30y 55.94070 llldos LLNL/ACTL <1983 297

Z = 25  ****************** Manganese ************************************

25051.30y 50.94820 llldos LLNL/ACTL <1983 417
25052.30y 51.94560 llldos LLNL/ACTL <1983 379
25053.30y 52.94130 llldos LLNL/ACTL <1983 425
25054.30y 53.94040 llldos LLNL/ACTL <1983 391
25055.24y 54.46610 531dos ENDF/B-V 1977 119
25055.30y 54.93800 llldos LLNL/ACTL <1983 435
25056.30y 55.93890 llldos LLNL/ACTL <1983 423
25057.30y 56.93830 llldos  LLNL/ACTL <1983 419
25058.30y 57.93970 llldos LLNL/ACTL <1983 285

Z = 26  ****************** Iron *****************************************

26053.30y 52.94530 llldos LLNL/ACTL <1983 387
26054.24y 53.47620 531dos ENDF/B-V 1979 517
26054.26y 53.47600 532dos ENDF/B-V 1978 21563
26054.30y 53.93960 llldos LLNL/ACTL <1983 457
26055.30y 54.93830 llldos LLNL/ACTL <1983 373
26056.24y 55.45400 531dos ENDF/B-V 1978 449
26056.26y 55.45400 532dos ENDF/B-V 1978 581
26056.30y 55.93490 llldos LLNL/ACTL <1983 415
26057.30y 56.93540 llldos LLNL/ACTL <1983 447
26058.24y 57.43560 531dos ENDF/B-V 1979 7077
26058.26y 57.43560 532dos ENDF/B-V 1979 7097
26058.30y 57.93330 llldos LLNL/ACTL <1983 431
26059.30y 58.93490 llldos LLNL/ACTL <1983 397
26060.30y 59.93400 llldos LLNL/ACTL <1983 285

Z = 27  ****************** Cobalt ***************************************

27057.30y 56.93630 llldos LLNL/ACTL <1983 629
27058.30y 57.93580 llldos LLNL/ACTL <1983 531
27058.31y 57.93580 llldos LLNL/ACTL <1983 569
27059.30y 58.93320 llldos LLNL/ACTL <1983 657
27060.30y 59.93380 llldos LLNL/ACTL <1983 435
27060.31y 59.93380 llldos LLNL/ACTL <1983 499
27061.30y 60.93250 llldos LLNL/ACTL <1983 613
27062.30y 61.93400 llldos LLNL/ACTL <1983 463
27062.31y 61.93400 llldos LLNL/ACTL <1983 519
27063.30y 62.93360 llldos LLNL/ACTL <1983 339
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27064.30y 63.93580 llldos LLNL/ACTL <1983 323

Z = 28  ******************* Nickel ***************************************

28057.30y 56.93980 llldos LLNL/ACTL <1983 441
28058.24y 57.43760 531dos ENDF/B-V 1977 411
28058.26y 57.43760 532dos ENDF/B-V 1978 4079
28058.30y 57.93530 llldos LLNL/ACTL <1983 509
28059.30y 58.93430 llldos LLNL/ACTL <1983 513
28060.24y 59.41590 531dos ENDF/B-V 1977 435
28060.26y 59.41590 532dos ENDF/B-V 1978 479
28060.30y 59.93080 llldos LLNL/ACTL <1983 503
28061.30y 60.93110 llldos LLNL/ACTL <1983 489
28062.26y 61.39630 532dos ENDF/B-V 1978 3847
8062.30y 61.92830 llldos LLNL/ACTL <1983 459
28063.30y 62.92970 llldos LLNL/ACTL <1983 375
28064.30y 63.92800 llldos LLNL/ACTL <1983 397
28065.30y 64.93010 llldos LLNL/ACTL <1983 345

Z = 29  ****************** Copper ***************************************

29062.30y 61.93260 llldos LLNL/ACTL <1983 507
29063.24y 62.93000 531dos ENDF/B-V 1978 3375
29063.26y 62.93000 532dos ENDF/B-V 1978 3615
29063.30y 62.92960 llldos LLNL/ACTL <1983 513
29064.30y 63.92980 llldos LLNL/ACTL <1983 437
29065.24y 64.92800 531dos ENDF/B-V 1978 49
29065.26y 64.92800 532dos ENDF/B-V 1978 49
29065.30y 64.92780 llldos LLNL/ACTL <1983 563
29066.30y 65.92890 llldos LLNL/ACTL <1983 397

Z = 30  ****************** Zinc *****************************************

30064.30y 63.92910 llldos LLNL/ACTL <1983 555
30066.30y 65.92600 llldos LLNL/ACTL <1983 561
30067.30y 66.92710 llldos LLNL/ACTL <1983 411
30068.30y 67.92480 llldos LLNL/ACTL <1983 643
30070.30y 69.92530 llldos LLNL/ACTL <1983 619

Z = 31  ****************** Gallium **************************************

31069.30y 68.92560 llldos LLNL/ACTL <1983 197
31071.30y 70.92470 llldos  LLNL/ACTL <1983 419

Z = 32  ***************** Germanium ************************************

32070.30y 69.92420 llldos LLNL/ACTL <1983 405
32072.30y 71.92210 llldos LLNL/ACTL <1983 423
32073.30y 72.92350 llldos LLNL/ACTL <1983 431
32074.30y 73.92120 llldos LLNL/ACTL <1983 629
32076.30y 75.92140 llldos LLNL/ACTL <1983 623
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Z = 33  ******************* Arsenic **************************************

33075.30y 74.92160 llldos LLNL/ACTL <1983 987

Z = 34  ****************** Selenium *************************************

34074.30y 73.92250 llldos LLNL/ACTL <1983 159
34076.30y 75.91920 llldos LLNL/ACTL <1983 177
34080.30y 79.91650 llldos LLNL/ACTL <1983 205
34082.30y 81.91670 llldos LLNL/ACTL <1983 223

Z = 35  ****************** Bromine **************************************

35079.30y 78.91830 llldos LLNL/ACTL <1983 263
35081.30y 80.91630 llldos LLNL/ACTL <1983 695

Z = 37  ****************** Rubidium *************************************

37085.30y 84.91180 llldos LLNL/ACTL <1983 193
37087.30y 86.90920 llldos LLNL/ACTL <1983 199

Z = 38  ******************* Strontium ************************************

38084.30y 83.91340 llldos LLNL/ACTL <1983 163
38086.30y 85.90930 llldos LLNL/ACTL <1983 33

Z = 39  ************** Yttrium **************************************

39089.30y 88.90590 llldos  LLNL/ACTL <1983 419

Z = 40  ****************** Zirconium ************************************

40089.30y 88.90890 llldos LLNL/ACTL <1983 321
40090.26y 89.13200 532dos ENDF/B-V 1976 37
40090.30y 89.90470 llldos LLNL/ACTL <1983 385
40091.30y 90.90560 llldos LLNL/ACTL <1983 407
40092.26y 91.11200 532dos ENDF/B-V 1976 3821
40092.30y 91.90500 llldos LLNL/ACTL <1983 431
40093.30y 92.90650 llldos LLNL/ACTL <1983 371
40094.26y 93.09600 532dos ENDF/B-V 1976 5255
40094.30y 93.90630 llldos LLNL/ACTL <1983 417
40095.30y 94.90800 llldos LLNL/ACTL <1983 375
40096.30y 95.90830 llldos LLNL/ACTL <1983 57
40097.30y 96.91090 llldos LLNL/ACTL <1983 339

Z = 41  ****************** Niobium **************************************

41091.30y 90.90700 llldos LLNL/ACTL <1983 491
41091.31y 90.90700 llldos LLNL/ACTL <1983 491
41092.30y 91.90720 llldos LLNL/ACTL <1983 285
41092.31y 91.90720 llldos LLNL/ACTL <1983 285
41093.30y 92.90640 llldos LLNL/ACTL <1983 493
41094.30y 93.90730 llldos LLNL/ACTL <1983 331
41095.30y 94.90680 llldos LLNL/ACTL <1983 333
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41096.30y 95.90810 llldos LLNL/ACTL <1983 335
41097.30y 96.90810 llldos LLNL/ACTL <1983 339
41098.30y 97.91030 llldos LLNL/ACTL <1983 341
41100.30y 99.91420 llldos LLNL/ACTL <1983 349

Z = 42  ***************** Molybdenum ***********************************

42090.30y 89.91390 llldos LLNL/ACTL <1983 261
42091.30y 90.91180 llldos LLNL/ACTL <1983 281
42092.26y 91.21000 532dos ENDF/B-V 1980 7815
42092.30y 91.90680 llldos LLNL/ACTL <1983 537
42093.30y 92.90680 llldos LLNL/ACTL <1983 429
42093.31y 92.90680 llldos LLNL/ACTL <1983 461
42094.30y 93.90510 llldos LLNL/ACTL <1983 443
42095.30y 94.90580 llldos LLNL/ACTL <1983 523
42096.30y 95.90470 llldos LLNL/ACTL <1983 501
42097.30y 96.90600 llldos LLNL/ACTL <1983 427
42098.26y 97.06440 532dos ENDF/B-V 1980 6489
42098.30y 97.90540 llldos LLNL/ACTL <1983 421
42099.30y 98.90770 llldos LLNL/ACTL <1983 445
42100.26y 99.04920 532dos ENDF/B-V 1980 4971
42100.30y 99.90750 llldos LLNL/ACTL <1983 427
42101.30y 100.91000 llldos LLNL/ACTL <1983 447

Z = 43  ****************** Technetium ***********************************

43099.30y 98.90620 llldos LLNL/ACTL <1983 469
43099.31y 98.90620 llldos LLNL/ACTL <1983 469

Z = 45  ***************** Rhodium **************************************

45103.30y 102.90600 llldos LLNL/ACTL <1983 275

Z = 46  ****************** Palladium ************************************

46110.30y 109.90500 llldos LLNL/ACTL <1983 417

Z = 47  ******************* Silver ***************************************

47106.30y 105.90700 llldos LLNL/ACTL <1983 263
47106.31y 105.90700 llldos LLNL/ACTL <1983 265
47107.30y 106.90500 llldos LLNL/ACTL <1983 517
47108.30y 107.90600 llldos LLNL/ACTL <1983 275
47108.31y 107.90600 llldos LLNL/ACTL <1983 275
47109.30y 108.90500 llldos LLNL/ACTL <1983 583
47110.30y 109.90600 llldos LLNL/ACTL <1983 277
47110.31y 109.90600 llldos LLNL/ACTL <1983 281

Z = 48  ***************** Cadmium **************************************

48106.30y 105.90600 llldos LLNL/ACTL <1983 177
48111.30y 110.90400 llldos LLNL/ACTL <1983 317
48112.30y 111.90300 llldos LLNL/ACTL <1983 221
48116.30y 115.90500 llldos LLNL/ACTL <1983 231
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Z = 49  ****************** Indium ***************************************

49113.30y 112.90400 llldos LLNL/ACTL <1983 861
49115.24y 113.92000 531dos ENDF/B-V 1978 26009
49115.26y 113.92000 532dos ENDF/B-V 1978 26009
49115.30y 114.90400 llldos LLNL/ACTL <1983 1265

Z = 50  ****************** Tin ******************************************

50112.30y 111.90500 llldos LLNL/ACTL <1983 789
50114.30y 113.90300 llldos LLNL/ACTL <1983 435
50115.30y 114.90300 llldos LLNL/ACTL <1983 389
50116.30y 115.90200 llldos LLNL/ACTL <1983 603
50117.30y 116.90300 llldos LLNL/ACTL <1983 313
50118.30y 117.90200 llldos LLNL/ACTL <1983 745
50119.30y 118.90300 llldos LLNL/ACTL <1983 311
50120.26y 118.87200 532dos ENDF/B-V 1974 12881
50120.30y 119.90200 llldos LLNL/ACTL <1983 309
50122.26y 120.85600 532dos ENDF/B-V 1974 1891
50122.30y 121.90300 llldos LLNL/ACTL <1983 275
50124.26y 122.84100 532dos ENDF/B-V 1974 1693
50124.30y 123.90500 llldos LLNL/ACTL <1983 485

Z = 51  ****************** Antimony *************************************

51121.30y 120.90400 llldos LLNL/ACTL <1983 811
51123.30y 122.90400 llldos LLNL/ACTL <1983 1013

Z = 53  ******************* Iodine ***************************************

53127.24y 125.81400 531dos ENDF/B-V 1972 115
53127.26y 125.81400 532dos ENDF/B-V 1980 14145
53127.30y 126.90400 llldos LLNL/ACTL <1983 221

Z = 55 ********************* Cesium ************************************

55133.30y 132.90500 llldos LLNL/ACTL <1983 215

Z = 57  ****************** Lanthanum ************************************

57139.26y 137.71300 532dos ENDF/B-V 1980 15475

Z = 58  ****************** Cerium ***************************************

58140.30y 139.90500 llldos LLNL/ACTL <1983 427
58142.30y 141.90900 llldos LLNL/ACTL <1983 265

Z = 59  ****************** Praseodymium *********************************

59141.30y 140.90800 llldos LLNL/ACTL <1983 215
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Z = 60  ***************** Neodymium ************************************

60142.30y 141.90800 llldos LLNL/ACTL <1983 207
60148.30y 147.91700 llldos LLNL/ACTL <1983 255
60150.30y 149.92100 llldos LLNL/ACTL <1983 259

Z = 62  ****************** Samarium *************************************

62144.30y 143.91200 llldos LLNL/ACTL <1983 189
62148.30y 147.91500 llldos LLNL/ACTL <1983 245
62152.30y 151.92000 llldos LLNL/ACTL <1983 237
62154.30y 153.92200 llldos LLNL/ACTL <1983 247

Z = 63  ****************** Europium *************************************

63151.30y 150.92000 llldos LLNL/ACTL <1983 731
63153.30y 152.92100 llldos LLNL/ACTL <1983 565

Z = 64  ****************** Gadolinium ***********************************

64150.30y 149.91900 llldos LLNL/ACTL <1983 237
64151.30y 150.92000 llldos LLNL/ACTL <1983 241

Z = 66  ****************** Dysprosium ***********************************

66164.26y 162.52000 532dos ENDF/B-V 1967 581

Z = 67  ***************** Holmium **************************************

67163.30y 162.92900 llldos LLNL/ACTL <1983 533
67164.30y 163.93000 llldos LLNL/ACTL <1983 327
67164.31y 163.93000 llldos LLNL/ACTL <1983 327
67165.30y 164.93000 llldos LLNL/ACTL <1983 589
67166.30y 165.93200 llldos LLNL/ACTL <1983 333
67166.31y 165.93200 llldos LLNL/ACTL <1983 333

Z = 69  ****************** Thulium **************************************

69169.30y 168.93400 llldos LLNL/ACTL <1983 453

Z = 71  ****************** Lutetium *************************************

71173.30y 172.93900 llldos LLNL/ACTL <1983 587
71174.30y 173.94000 llldos LLNL/ACTL <1983 417
71174.31y 173.94000 llldos LLNL/ACTL <1983 465
71175.30y 174.94100 llldos  LLNL/ACTL <1983 559
71176.30y 175.94300 llldos LLNL/ACTL <1983 621
71176.31y 175.94300 llldos LLNL/ACTL <1983 637
71177.30y 176.94400 llldos LLNL/ACTL <1983 573
71177.31y 176.94400 llldos LLNL/ACTL <1983 573

Table G .6  (Cont.)
Dosimetry Data Libraries for MCNP Tallies

ZAID AWR Library Source  Date Length 
10/3/05 G–69



APPENDIX G - MCNP DATA LIBRARIES
DOSIMETRY DATA
Z = 72  ****************** Hafnium **************************************

72174.30y 173.94000 llldos LLNL/ACTL <1983 147
72175.30y 174.94100 llldos LLNL/ACTL <1983 121
72176.30y 175.94100 llldos LLNL/ACTL <1983 153
72177.30y 176.94300 llldos LLNL/ACTL <1983 157
72178.30y 177.94400 llldos LLNL/ACTL <1983 153
72179.30y 178.94600 llldos LLNL/ACTL <1983 433
72180.30y 179.94700 llldos LLNL/ACTL <1983 409
72181.30y 180.94900 llldos LLNL/ACTL <1983 365
72183.30y 182.95400 llldos LLNL/ACTL <1983 373

Z = 73  ****************** Tantalum *************************************

73179.30y 178.94600 llldos LLNL/ACTL <1983 629
73180.30y 179.94700 llldos LLNL/ACTL <1983 523
73180.31y 179.94700 llldos LLNL/ACTL <1983 435
73181.30y 180.94800 llldos LLNL/ACTL <1983 715
73182.30y 181.95000 llldos LLNL/ACTL <1983 435
73182.31y 181.95000 llldos LLNL/ACTL <1983 447
73183.30y 182.95100 llldos LLNL/ACTL <1983 425
73184.30y 183.95400 llldos LLNL/ACTL <1983 371
73186.30y 185.95900 llldos LLNL/ACTL <1983 377

Z = 74  ****************** Tungsten *************************************

74179.30y 178.94700 llldos LLNL/ACTL <1983 263
74180.30y 179.94700 llldos LLNL/ACTL <1983 397
74181.30y 180.94800 llldos LLNL/ACTL <1983 263
74182.30y 181.94800 llldos LLNL/ACTL <1983 415
74183.30y 182.95000 llldos LLNL/ACTL <1983 499
74184.30y 183.95100 llldos LLNL/ACTL <1983 443
74185.30y 184.95300 llldos LLNL/ACTL <1983 267
74186.30y 185.95400 llldos LLNL/ACTL <1983 413
74187.30y 186.95700 llldos LLNL/ACTL <1983 279
74188.30y 187.95800 llldos LLNL/ACTL <1983 271

Z = 75  ****************** Rhenium **************************************

75184.30y 183.95300 llldos LLNL/ACTL <1983 331
75184.31y 183.95300 llldos LLNL/ACTL <1983 335
75185.30y 184.95300 llldos LLNL/ACTL <1983 373
75186.30y 185.95500 llldos LLNL/ACTL <1983 381
75187.30y 186.95600 llldos LLNL/ACTL <1983 547
75188.30y 187.95800 llldos LLNL/ACTL <1983 339
75188.31y 187.95800 llldos LLNL/ACTL <1983 341

Z = 77  ******************* Iridium  *************************************

77191.30y 190.96100 llldos LLNL/ACTL <1983 237
77193.30y 192.96300 llldos LLNL/ACTL <1983 243
77194.30y 193.96500 llldos LLNL/ACTL <1983 421
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Z = 78  ******************** Platinum *************************************

78190.30y 189.96000 llldos LLNL/ACTL <1983 151
78192.30y 191.96100 llldos LLNL/ACTL <1983 153
78193.30y 192.96300 llldos LLNL/ACTL <1983 123
78193.31y 192.96300 llldos LLNL/ACTL <1983 123
78194.30y 193.96300 llldos LLNL/ACTL <1983 211
78195.30y 194.96500 llldos LLNL/ACTL <1983 157
78196.30y 195.96500 llldos LLNL/ACTL <1983 157
78197.30y 196.96700 llldos LLNL/ACTL <1983 427
78197.31y 196.96700 llldos LLNL/ACTL <1983 129
78198.30y 197.96800 llldos LLNL/ACTL <1983 183
78199.30y 198.97100 llldos LLNL/ACTL <1983 99
78199.31y 198.97100 llldos LLNL/ACTL <1983 99

Z = 79  ****************** Gold *****************************************

79193.30y 192.96400 llldos LLNL/ACTL <1983 209
79194.30y 193.96500 llldos LLNL/ACTL <1983 261
79195.30y 194.96500 llldos LLNL/ACTL <1983 261
79196.30y 195.96700 llldos LLNL/ACTL <1983 265
79196.31y 195.96700 llldos LLNL/ACTL <1983 265
79197.30y 196.96700 llldos LLNL/ACTL <1983 307
79198.30y 197.96800 llldos LLNL/ACTL <1983 265
79199.30y 198.96900 llldos LLNL/ACTL <1983 269
79200.30y 199.97100 llldos LLNL/ACTL <1983 39

Z = 80  ****************** Mercury **************************************

80202.30y 201.97100 llldos LLNL/ACTL <1983 381
80203.30y 202.97300 llldos LLNL/ACTL <1983 379
80204.30y 203.97300 llldos LLNL/ACTL <1983 365

Z = 81  ******************* Thallium *************************************

81202.30y 201.97200 llldos LLNL/ACTL <1983 377
81203.30y 202.97200 llldos LLNL/ACTL <1983 375
81204.30y 203.97400 llldos LLNL/ACTL <1983 373
81205.30y 204.97400 llldos LLNL/ACTL <1983 369

Z = 82  ****************** Lead *****************************************

82203.30y 202.97300 llldos LLNL/ACTL <1983 257
82204.30y 203.97300 llldos LLNL/ACTL <1983 405
82205.30y 204.97400 llldos LLNL/ACTL <1983 257
82206.30y 205.97400 llldos LLNL/ACTL <1983 347
82207.30y 206.97600 llldos LLNL/ACTL <1983 333
82208.30y 207.97700 llldos LLNL/ACTL <1983 263
82209.30y 208.98100 llldos LLNL/ACTL <1983 279
82210.30y 209.98400 llldos LLNL/ACTL <1983 351

Table G .6  (Cont.)
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Z = 83  ****************** Bismuth **************************************

83208.30y 207.98000 llldos LLNL/ACTL <1983 409
83209.30y 208.98000 llldos LLNL/ACTL <1983 551
83210.30y 209.98400 llldos LLNL/ACTL <1983 421
83210.31y 209.98400 llldos  LLNL/ACTL <1983 421

Z = 84  ****************** Polonium *************************************

84210.30y 209.98300 llldos LLNL/ACTL <1983 441

Z = 90  ****************** Thorium **************************************

90230.30y 230.03300 llldos LLNL/ACTL <1983 209
90231.30y 231.03600 llldos LLNL/ACTL <1983 599
90232.30y 232.03800 llldos LLNL/ACTL <1983 347
90233.30y 233.04200 llldos LLNL/ACTL <1983 561
90234.30y 234.04400 llldos LLNL/ACTL <1983 37

Z = 91  ******************** Protactinium *********************************

91231.26y 229.05000 532dos ENDF/B-V 1978 2861
91233.26y 231.03800 532dos ENDF/B-V 1978 73
91233.30y 233.04000 llldos LLNL/ACTL <1983 361

Z = 92  ****************** Uranium **************************************

92233.26y 231.04300 532dos ENDF/B-V 1978 75
92233.30y 233.04000 llldos LLNL/ACTL <1983 461
92234.30y 234.04100 llldos LLNL/ACTL <1983 393
92235.30y 235.04400 llldos LLNL/ACTL <1983 4629
92236.30y 236.04600 llldos LLNL/ACTL <1983 395
92237.30y 237.04900 llldos LLNL/ACTL <1983 609
92238.30y 238.05100 llldos LLNL/ACTL <1983 3103
92239.30y 239.05400 llldos LLNL/ACTL <1983 825
92240.30y 240.05700 llldos LLNL/ACTL <1983 389

Z = 93  ****************** Neptunium ************************************

93237.30y 237.04800 llldos LLNL/ACTL <1983 629

Z = 94  ****************** Plutonium ************************************

94237.30y 237.04800 llldos LLNL/ACTL <1983 487
94238.30y 238.05000 llldos LLNL/ACTL <1983 459
94239.30y 239.05200 llldos LLNL/ACTL <1983 497
94240.30y 240.05400 llldos LLNL/ACTL <1983 479
94241.30y 241.05700 llldos LLNL/ACTL <1983 559
94242.30y 242.05900 llldos LLNL/ACTL <1983 505
94243.30y 243.06200 llldos LLNL/ACTL <1983 511

Table G .6  (Cont.)
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Z = 95  ****************** Americium ************************************

95241.30y 241.05700 llldos LLNL/ACTL <1983 673
95242.30y 242.06000 llldos LLNL/ACTL <1983 473
95243.30y 243.06100 llldos LLNL/ACTL <1983 431

Z = 96  ****************** Curium ***************************************

96242.30y 242.05900 llldos LLNL/ACTL <1983 467
96243.30y 243.06100 llldos LLNL/ACTL <1983 465
96244.30y 244.06300 llldos LLNL/ACTL <1983 483
96245.30y 245.06500 llldos LLNL/ACTL <1983 465
96246.30y 246.06700 llldos LLNL/ACTL <1983 491
96247.30y 247.07000 llldos LLNL/ACTL <1983 491
96248.30y 248.07200 llldos LLNL/ACTL <1983 495

Z = 97  ******************* Berkelium ************************************

97249.30y 249.07500 llldos LLNL/ACTL <1983 545

Z = 98  ******************* Californium **********************************

98249.30y 249.07500 llldos LLNL/ACTL <1983 491
98250.30y 250.07600 llldos LLNL/ACTL <1983 335
98251.30y 251.08000 llldos LLNL/ACTL <1983 485
98252.30y 252.08200 llldos LLNL/ACTL <1983 467
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APPENDIX H - FISSION SPECTRA CONSTANTS 
AND FLUX-TO-DOSE FACTORS

Appendix H is divided into two sections:  fission spectra constants to be used with the SP input 
card and ANSI standard flux-to-dose conversion factors to be used with the DE and DF input cards.

I. CONSTANTS FOR FISSION SPECTRA

The following is a list of recommended parameters for use with the MCNP source fission spectra 
and the SP input card described in Chapter 3.  The constants for neutron-induced fission are taken 
directly from the ENDF/B-V library. For each fissionable isotope, constants are given for either the 
Maxwell spectrum or the Watt spectrum, but not both.  The Watt fission spectrum is preferred to 
the Maxwell fission spectrum. The constants for spontaneously fissioning isotopes are supplied by 
Madland of Group T–16.  If you desire constants for isotopes other than those listed below, contact 
X–5.  Note that both the Watt and Maxwell fission spectra are approximations.  A more accurate 
representation has been developed by Madland in T–16.  If you are interested in this spectrum, 
contact X–5.

A. Constants for the Maxwell Fission Spectrum (Neutron-induced)

Incident Neutron
Energy (MeV) a(MeV)

n + 233Pa Thermal 1.3294
1 1.3294
14 1.3294

n + 234U Thermal 1.2955
1 1.3086
14 1.4792

n + 236U Thermal 1.2955
1 1.3086
14 1.4792

n + 237U Thermal 1.2996
1 1.3162
14 1.5063

n + 237Np Thermal 1.315
1 1.315
14 1.315

f E( ) CE1/2 E/a–( )exp=
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n + 238Pu Thermal 1.330
1 1.330
14 1.330

n + 240Pu Thermal 1.346
1 1.3615
14 1.547

n + 241Pu Thermal 1.3597
1 1.3752
14 1.5323

n + 242Pu Thermal 1.337
1 1.354
14 1.552

n + 241Am Thermal 1.330
1 1.330
14 1.330

n + 242mPu Thermal 1.330
1 1.330
14 1.330

n + 243Am Thermal 1.330
1 1.330
14 1.330

n + 242Cm Thermal 1.330
1 1.330
14 1.330

n + 244Cm Thermal 1.330
1 1.330
14 1.330

n + 245Cm Thermal 1.4501
1 1.4687
14 1.6844

n + 246Cm Thermal 1.3624
1 1.4075
14 1.6412

Incident Neutron
Energy (MeV) a(MeV)
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B. Constants for the Watt Fission Spectrum

1. Neutron-Induced Fission

2. Spontaneous Fission

II. FLUX-TO-DOSE CONVERSION FACTORS

This section presents several flux-to-dose rate conversion factor sets for use on the DE and DF tally 
cards to convert from calculated particle flux to human biological dose equivalent rate.  These sets 
of conversion factors are not the only ones in existence, nor are they recommended by this 

Incident Neutron 
Energy (MeV) a(MeV) b(MeV–1)

n + 232Th Thermal 1.0888 1.6871
1 1.1096 1.6316
14 1.1700 1.4610

n + 233U Thermal 0.977 2.546
1 0.977 2.546
14 1.0036 2.6377

n + 235U Thermal 0.988 2.249
1 0.988 2.249
14 1.028 2.084

n + 238U Thermal 0.88111 3.4005
1 0.89506 3.2953
14 0.96534 2.8330

n + 239Pu Thermal 0.966 2.842
1 0.966 2.842
14 1.055 2.383

a(MeV) b(MeV–1)
240Pu 0.799 4.903
242Pu 0.833668 4.431658
242Cm 0.891 4.046
244Cm 0.906 3.848
252Cf 1.025 2.926

f E( ) C  E/a–( )  bE( )1/2sinhexp=
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publication.  Rather, they are presented for convenience should you decide that one is appropriate 
for your use. The original publication cited or other sources should be consulted to determine if 
they are appropriate for your application. 

Although the various conversion factor sets differ from one another, it seems to be the consensus 
of the health physics community that they do not differ significantly from most health physics 
applications where accuracies of ±20% are generally acceptable. Some of the differences in the 
various sets are attributable to different assumptions about source directionality, phantom 
geometry, and depth of penetration.  The neutron quality factors, derived primarily from animal 
experiments, are also somewhat different.

Be aware that conversion factor sets are subject to change based on the actions of various national 
and international organizations such as the National Council on Radiation Protection and 
Measurements (NCRP), the International Commission on Radiological Protection (ICRP), the 
International Commission on Radiation Units and Measurements (ICRU), the American National 
Standards Institute (ANSI), and the American Nuclear Society (ANS).  Changes may be based on 
the reevaluation of existing data and calculations or on the availability of new information. 
Currently, a revision of the 1977 ANSI/ANS1 conversion factors is underway and the ICRP and 
NCRP are considering an increase in the neutron quality factors by a factor of 2 to 2.5.

In addition to biological dose factors, a reference is given for silicon displacement kerma factors 
for potential use in radiation effects assessment of electronic semiconductor devices.  The use of 
these factors is subject to the same caveats stated above for biological dose rates.

A. Biological Dose Equivalent Rate Factors

In the following discussions, dose rate will be used interchangeably with biological dose equivalent 
rate.  In all cases the conversion factors will contain the quality factors used to convert the absorbed 
dose in rads to rem. The neutron quality factors implicit in the conversion factors are also tabulated 
for information.  For consistency, all conversion factors are given in units of rem/h per unit flux 
(particles/cm2-s) rather than in the units given by the original publication.  The interpolation mode 
chosen should correspond to that recommended by the reference.  For example, the ANSI/ANS 
publication recommends log-log interpolation; significant differences at interpolated energies can 
result if a different interpolation scheme is used.

1. Neutrons

The NCRP-382 and ICRP-213 neutron flux-to-dose rate conversion factors and quality factors are 
listed in Table H .1.  Note that the 1977 ANSI/ANS factors referred to earlier were taken from 
NCRP-38 and therefore are not listed separately.

2. Photons

The 1977 ANSI/ANS1 and the ICRP-213 photon flux-to-dose rate conversion factors are given in 
Table H .2.  No tabulated photon conversion factors have been provided by the NCRP as far as can 
be determined. Note that the 1977 ANSI/ANS and the ICRP-21 conversion factor sets differ 
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significantly (>20%) below approximately 0.7 MeV.  Maximum disagreement occurs at ~0.06 
MeV, where the ANSI/ANS value is about 2.3 times larger than the ICRP value.

B. Silicon Displacement Kerma Factors

Radiation damage to or effects on electronic components are often of interest.  Of particular interest 
are the absorbed dose in rads and silicon displacement kerma factors.  The absorbed dose may be 
calculated for a specific material by using the FM tally card discussed in Chapter 3 with an 
appropriate constant C to convert from the MCNP default units to rads. The silicon displacement 
kermas, however, are given as a function of energy, similar to the biological conversion factors.  
Therefore, they may be implemented  on the DE and DF cards. One source of these kerma factors 
and a discussion of their significance and use can be found in Reference 4.

Table H.1 
Neutron Flux-to-Dose Rate Conversion Factors and Quality Factors

NCRP-38, ANSI/ANS-6.1.1-1977*

*Extracted from American National Standard ANSI/ANS-6.1.1-1977 with permission of the 
publisher, the American Nuclear Society.

ICRP-21

Energy, E
(MeV)

DF(E)
(rem/hr)/(n/cm2-s)

Quality
Factor

DF(E)
(rem/hr)/(n/cm2-s)

Quality
Factor

2.5E–08 3.67E–06   2.0 3.85E–06 2.3
1.0E–07 3.67E–06 2.0 4.17E–06 2.0
1.0E–06 4.46E–06 2.0 4.55E–06 2.0
1.0E–05 4.54E–06 2.0 4.35E–06 2.0
1.0E–04 4.18E–06 2.0 4.17E–06 2.0
1.0E–03 3.76E–06 2.0 3.70E–06 2.0
1.0E–02 3.56E–06 2.5 3.57E–06 2.0
1.0E–01 2.17E–05 7.5 2.08E–05 7.4
5.0E–01 9.26E–05 11.0 7.14E–05 11.0
1.0 1.32E–04 11.0 1.18E–04 10.6
2.0 1.43E–04 9.3
2.5 1.25E–04 9.0
5.0 1.56E–04 8.0 1.47E–04 7.8
7.0 1.47E–04 7.0
10.0 1.47E–04 6.5 1.47E–04 6.8
14.0 2.08E–04 7.5
20.0 2.27E–04 8.0 1.54E–04 6.0
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Table H.2 
Photon Flux-to-Dose Rate Conversion Factors

ANSI/ANS–6.1.1–1977 ICRP-21

Energy, E
(MeV)

DF(E)
(rem/hr)/(p/cm2-s)

Energy, E
(MeV)

DF(E)
(rem/hr)/(p/cm2-s)

0.01 3.96E–06 0.01 2.78E–06
0.03 5.82E–07 0.015 1.11E–06
0.05 2.90E–07 0.02 5.88E–07
0.07 2.58E–07 0.03 2.56E–07
0.1 2.83E–07 0.04 1.56E–07
0.15 3.79E–07 0.05 1.20E–07
0.2 5.01E–07 0.06 1.11E–07
0.25 6.31E–07 0.08 1.20E–07
0.3 7.59E–07 0.1 1.47E–07
0.35 8.78E–07 0.15 2.38E–07
0.4 9.85E–07 0.2 3.45E–07
0.45 1.08E–06 0.3 5.56E–07
0.5 1.17E–06 0.4 7.69E–07
0.55 1.27E–06 0.5 9.09E–07
0.6 1.36E–06 0.6 1.14E–06
0.65 1.44E–06 0.8 1.47E–06
0.7 1.52E–06 1. 1.79E–06
0.8 1.68E–06 1.5 2.44E–06
1.0 1.98E–06 2. 3.03E–06
1.4 2.51E–06 3. 4.00E–06
1.8 2.99E–06 4. 4.76E–06
2.2 3.42E–06 5. 5.56E–06
2.6 3.82E–06 6. 6.25E–06
2.8 4.01E–06 8. 7.69E–06
3.25 4.41E–06 10. 9.09E–06
3.75 4.83E–06
4.25 5.23E–06
4.75 5.60E–06
5.0 5.80E–06
5.25 6.01E–06
5.75 6.37E–06
6.25 6.74E–06
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1. ANS-6.1.1 Working Group, M. E. Battat (Chairman), “American National Standard Neutron 
and Gamma-Ray Flux-to-Dose Rate Factors,” ANSI/ANS-6.1.1-1977 (N666), American 
Nuclear Society, LaGrange Park, Illinois (1977).

2. NCRP Scientific Committee 4 on Heavy Particles, H. H. Rossi, chairman, “Protection 
Against Neutron Radiation,” NCRP-38, National Council on Radiation Protection and 
Measurements (January 1971).

3. ICRP Committee 3 Task Group, P. Grande and M. C. O’Riordan, chairmen, “Data for 
Protection Against Ionizing Radiation from External Sources:  Supplement to ICRP 
Publication 15,” ICRP-21, International Commission on Radiological Protection, Pergamon 
Press (April 1971).

4. ASTM Committee E-10 on Nuclear Technology and Applications, “Characterizing Neutron 
Energy Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for 
Radiation-Hardness Testing of Electronics,” American Society for Testing and Materials 
Standard E722-80, Annual Book of ASTM Standards (1980).

6.75 7.11E–06
7.5 7.66E–06
9.0 8.77E–06
11.0 1.03E–05
13.0 1.18E–05
15.0 1.33E–05

Table H.2 
Photon Flux-to-Dose Rate Conversion Factors

ANSI/ANS–6.1.1–1977 ICRP-21

Energy, E
(MeV)

DF(E)
(rem/hr)/(p/cm2-s)

Energy, E
(MeV)

DF(E)
(rem/hr)/(p/cm2-s)
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MCNP MANUAL INDEX
Absorption Cards
MCNP MANUAL INDEX

A

Absorption
Estimators, 2-171
Neutron, 2-34, 2-171

Accounting Arrays, E-35
Accuracy, 2-110
Accuracy, Factors Affecting, 2-111
ACE format, 2-17, 2-18, G-75
Adjoint option, 2-24, 3-125
Ambiguity

Cell, 2-10
Surfaces, 2-7, 2-9, 2-10

Analog Capture, 2-34, 3-127
Angular Bins, 3-93
Angular Distribution

Functions for point detectors, 2-104
Sampling of, 2-36

Area calculation, 2-8, 2-187
AREA card, 3-25
Arrays, 3-26
Asterisk, 3-11, 3-12, 3-31, 3-80, 3-86

Tally, 3-80
Atomic

Density, 3-9
Fraction, 3-118
Mass, 3-118
Number, 3-118
Weight (AWTAB) card, 3-123

Auger Electrons, 2-63, 2-78
Axisymmetric Surfaces

Defined by Points, 3-15

B

BBREM card, 3-52
Biasing

Cone, 2-153
Continuous, 2-153
Direction, 2-153
Energy, 3-52
Source, 2-152, 3-61

Bin limit control, 2-105
Binning

By detector cell, 2-107
By multigroup particle type, 2-107
By particle charge, 2-107
By source distribution, 2-107
By the number of collisions, 2-107

Bins
Angular, 3-93
Cell, 3-81
Energy, 3-80
Multiplier, 3-80
Surface, 3-81
Tally, 3-80

Blank Line delimiter, 3-2
BOX, 3-18, 3-21
Bremsstrahlung, 2-77

Biasing (BBREM), 3-52
Model, 2-57

C

Capture
Analog, 2-34, 3-127
Implicit, 2-34
Neutron, 2-28, 2-34

Card Format, 3-4
Horizontal Input Format, 3-4
Vertical Input Format, 3-5

Cards
AREA, 3-25
Atomic Weight (AWTAB), 3-123
Bremsstrahlung Biasing (BBREM), 3-52
Cell, 3-2, 3-9 to 3-11
Cell Importance (IMP), 3-34
Cell Transformation (TRCL), 3-28
Cell Volume (VOL), 3-24
Cell-by-cell energy cutoff (ELPT), 3-136
Cell-flagging (CFn), 3-101
CFn, 3-101
CMn, 3-101
Cn, 3-93
Comment, 3-4
Computer time cutoff, 3-138
Coordinate Transformation (TRn), 3-30 to 

3-32
Cosine (Cn), 3-93
Criticality Source (KCODE), 3-76
Cross-Section File (XSn) Card, 3-123
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Cards Cards
CTME, 3-138
CUT, 3-135
DCBN, 3-142
DDn, 3-108
DE, 3-99
DE / DF, H-3
Debug Information (DBCN) card, 3-142
Defaults, 3-7, 3-157
Designators, 3-7
Detector Contribution (PDn) card, 3-51
Detector Diagnostics (DDn), 3-108
Detector (F5), 3-82
DF, 3-99
Dose, 3-99
DRXS, 3-121
DSn, 3-65
DXC (DXTRAN Contribution) card, 3-51
DXTRAN (DXT), 3-110
ELPT, 3-136
En, 3-92
Energy Multiplier (EMn), 3-100
Energy Physics Cutoff (PHYS) card, 3-127 

to 3-132
Energy Splitting and Roulette

(ESPLT) card, 3-35
Energy-normed tally plots, B-27
Exponential Transform (EXT) card, 3-40
FCn, 3-91
File creation (FILES) card, 3-144
FILES, 3-144
FILL, 3-29
Fission Turnoff (NONU) card, 3-122
Floating Point Array (RDUM) card, 3-139
FMESH card, 3-114
FMn, 3-95
Fna, 3-80
Forced collision card (FCL), 3-42
Free-Gas Thermal Temperature (TMP) 

card, 3-132
FSn, 3-102
FTn, 3-112
FUn, 3-105
General Source (SDEF) card, 3-53
History Cutoff (NPS) card, 3-137
IDUM card, 3-138
IMP, 3-34
Integer Array (IDUM) card, 3-138

KCODE card, 3-76
KSRC, 3-77
Lattice (LAT) card, 3-28
Lost Particle (LOST) card, 3-141
Material Specification Cards, 3-117
Material Void (VOID) card, 3-124
Material (Mm) card, 3-118
Mesh Tally (FMESH), 3-114
Message Block, 3-1
MGOPT card, 3-125
Mm, 3-118
MODE card, 3-24
MPLOT card, 3-147
MPN Card, 3-120
MTm card, 3-134
Multigroup Adjoint Transport Option 

(MGOPT) card, 3-125
NONU, 3-122
NOTRN card, 3-137
NPS, 3-137
Output Print Tables (PRINT) card, 3-145, 

3-147
Particle Track Output (PTRAC) card, 

3-148 to 3-152
PDn card, 3-51
Perturbation (PERTn) Card, 3-152 to 3-156
Photon Weight (PWT) Card, 3-39
Photon-Production Bias (PIKMT) card, 

3-124
PHYS card, 3-127 to 3-132
PIKMT card, 3-124
Plot tally while problem is running 

(MPLOT) card, 3-147
PRDMP card, 3-139
Print and Dump Cycle (PRDMP) card, 

3-139
PRINT card, 3-145, 3-147
Problem Type (MODE) card, 3-24
PTRAC card, 3-148 to 3-152
PWT card, 3-39
RDUM card, 3-139
Repeated Structures cards, 3-25 to 3-32
Ring detector, 3-82
SBn card, 3-61
SCn, 3-66
SDEF, 3-53
SDn card, 3-104
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Cell Continuous biasing, 2-153
Segment Divisor (SDn) card, 3-104
SFn card, 3-102
SIn card, 3-61
Source Bias (SBn) card, 3-61
Source Comment (SCn) card, 3-66
Source Information (SIn) card, 3-61
Source Points for KCODE Calculation 

(KSRC) card, 3-77
Source Probability (SPn) Card, 3-61
Special Treatments for Tallies (FTn), 3-112
SPn card, 3-61
SSR, 3-71
SSW, 3-69
Summary of MCNP Input Cards, 3-157
Surface, 3-11 to 3-23
Surface Source Read (SSR) card, 3-71
Surface Source Write (SSW) card, 3-69
Surface-Flagging (SFn) card, 3-102
S(α,β) Material (MTm) card, 3-134
Tally Cards

Tally Comment (FCn) card, 3-91
Tally Energy card (En), 3-92
Tally Fluctuation (TFn) card, 3-107
Tally Multiplier (FMn) card, 3-95
Tally Segment (FSn card), 3-102
Tally Specification, 3-79
Tally Time (Tn) card, 3-92
Tally (Fna) cards, 3-80

TALLYX (FUn) Input card, 3-105
TALNP card, 3-147
TFn, 3-107
Thermal Times (THTME) card, 3-133
THTME card, 3-133
Time Multiplier (TMn) card, 3-100
Title, 3-2
TMn card, 3-100
TMP card, 3-132
Tn, 3-92
Total Fission (TOTNU) card, 3-122
TRCL, 3-28
TRn, 3-30 to 3-32
TSPLT card, 3-37
Vector Input (VECT) card, 3-42
VOID card, 3-124
VOL, 3-24
Weight Window Generator (WWG), 3-47
WWG, 3-47

X, 3-15
XSn Card, 3-123
Y, 3-15
Z, 3-15

Cell
Ambiguities, 2-10
Bins, 3-81
Complement, 2-8
Flux (F4) tally, 3-80
Tally, 3-80

Cell Based Weight Window Bounds (WWN), 
3-44

Cell cards, 3-2, 3-9 to 3-11
Cell Importance (IMP) card, 3-34
Cell Transformation (TRCL) card, 3-28
Cell Volume (VOL) card, 3-24
Shorthand Cell Specification, 3-11

Cell-by-cell Energy Cutoff (ELPT) Card, 
3-136

Cell-Flagging Card, 3-101
Central Limit Theorem, 2-112
CFn Card, 3-101
Change current tally reference vector, 2-106
Characteristic X-rays, 2-78
Charge Deposition Tally, 3-80
CMn Card, 3-101
Cn card, 3-93
Code development, 3-132
Coherent photon scattering

Detailed physics treatment, 2-61
Coherent scattering

turning off, 2-62, 2-64
Coincident detectors, 2-103
Collision Nuclide Cross-section, 2-28
Comment cards, 3-4

Source (SCn), 3-66
Tally, 3-91

Complement Operator, 2-8
Compton Scattering

Detailed physics treatment, 2-59
Simple physics treatment, 2-58

Computer Time Cutoff, 3-138
Cone, 2-9
Cone biasing, 2-153
Confidence Intervals, 2-112
Continue-Run, 3-2 to 3-3, 3-143
Continuous biasing, 2-153
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Continuous-Energy data, 2-16 Electron Transport, 2-67
Continuous-Energy data, 2-16
Coordinate pairs, 3-15
Coordinate Transformation (TRn) card, 3-30 to 

3-32
Correlated sampling, 2-163
Cosine

bins, 2-18, 3-86, 3-93
multiplier, 3-101
(Cn) card, 3-93

Criticality, 2-163, 3-137, 3-140, 3-154
Criticality Source (KCODE) card, 3-76
Cross-Sections, 2-14

Collision Nuclide, 2-28
Default, 2-19
Evaluations, 3-117
File (XSn) Card, 3-123
Library Identifier, 3-118
Neutron, 3-118

CTME card, 3-138
Cumulative Tally, 5-61
Current Tally, 2-84, 3-105
CUT card, 3-135
Cutoffs

Cell-by-cell energy (ELPT), 3-136
Computer time, 3-138
Electron, 3-136
Energy, 3-135
Energy Physics (PHYS) card, 3-127 to 

3-132
History, 3-137
Neutron, 3-135
Photon, 3-136
SWTM, 3-136
Time, 2-69, 2-140, 3-135
Weight, 3-135

D

Data arrays, 3-23, 3-26
Data Cards (also see Cards), 3-23
DBCN card, 3-142
DDn Card, 3-108
DE / DF cards, H-3, 3-99
Debug Information Card, 3-142
Debug Prints, 3-141
Debugging, 3-109, 3-124, 3-132, 3-143
Default Values, INP File, 3-7

Defaults, Card, 3-157
Delayed Neutron (Data), G-11
Density, Atomic, 3-9
Dependent source distribution card, 3-65
Detailed physics, 2-3, 2-7, 2-57, 3-129, D-8

Treatment, 2-59
Detectors

Diagnostics card, 3-108
Point, 3-82
Reflecting/white/periodic surfaces, 2-101
Ring, 3-82
S(α,β) thermal treatment, 2-104
Tallies, 2-5, D-6
(F5) tallies, 2-80, 3-82

Dimension Declarators, 3-30
Direct vs. total contribution, 2-104
Direction Biasing, 2-153
Discrete Reaction Cross-Section Card, 3-121
Discrete-Reaction data, 2-16
Doppler Broadening

Neutron, 2-29
Photon, 2-61

Dose Energy Card, 3-99
Dose Function Card, 3-99
DRXS Card, 3-121
DSn Card, 3-65
Dump cycle, 3-139
DXC Card, 3-51
DXTRAN, 2-12, 2-156 to 2-163

Contribution Card (DXC), 3-51
Sphere, 2-6, D-7, D-8
Warnings, 3-74
(DXT) card, 3-110

E

Elastic/Inelastic Scattering, 2-35
Elastic cross-section adjusting, 2-29
Energy from elastic scattering, 2-39

Electron
Cutoffs, 3-136
Interaction data, 2-23

Electron Transport, 2-67
Angular Deflections, 2-76
Bremsstrahlung, 2-77
Condensed Random Walk, 2-69
Energy Straggling, 2-72
Index-4 10/3/05



MCNP MANUAL INDEX
Electrons, from photons, 2-57 Free Gas
Knock-On Electrons, 2-79
Multigroup, 2-79
Steps, 2-68
Stopping Power, 2-70

Electrons, from photons, 2-57
Elements, 3-118
ELPT Card, 3-136
EMAX, 3-130
EMn Card, 3-100
En card, 3-92
ENDF Emission Laws, 2-41
Energy

Biasing, 3-52
Bins, 3-80
Cutoffs, 3-135
Distribution sampling, 2-36
From elastic scattering, 2-39
Multiplier, 2-45
Multiplier (EMn) Card, 3-100
Physics Cutoff (PHYS) card, 3-127 to 

3-132
Roulette, 2-142, 3-35
Spectra

Evaporation, 3-64
Gaussian fusion, 3-64
Maxwell fission, 3-64
Muir velocity Gaussian fusion, 3-64
Watt fission, 3-64

Splitting, 2-142, 3-35
Tally, 3-92
Tally, F6 tally, 3-80

Entropy, 2-179, 3-77
Errors

Geometry, 3-8
Input, 3-7

ESPLT card, 3-35
Evaporation energy spectrum, 3-64
Event log, 3-8, 3-143

Printing, 3-142
Examples

Macrobody surfaces, 3-18
Surfaces by points, 3-16

Exponential transform, 3-10, 3-40
EXT card, 3-40

F

F1 (surface current) Tally, 3-80
F2 (surface flux) Tally, 3-80
F4 (cell flux) Tally, 3-80
F4, F6, F7 Tally Equivalence, 2-89
F5 (detector) flux tally, 3-80
F6 Neutrons, 2-88
F6 Photons, 2-88
F6 (cell energy) tally, 3-80
F7 Neutrons, 2-89
F7 (cell fission energy) Tally, 3-80
F8 (detector pulse energy) Tally, 3-80
Facets, 3-21
Fatal error message, 3-7
FATAL option, 3-7
FCL card, 3-42
FCn card, 3-91
Figure of Merit, 2-116, 3-35, 3-108, 3-140
File Creation (FILES) Card, 3-144
FILES (file creation) card, 3-144
FILL card, 3-29
Fission, 3-122

Neutron Multiplicity, 2-50
Spectra, 3-64
Turnoff (NONU) card, 3-122

Flagging, 2-105
Cell, 3-101
Surface, 3-102

Floating Point Array (RDUM) card, 3-139
Fluorescence, 2-57, 2-62
Flux at a Detector, 2-91
Flux Image Radiographs, 2-97

FIC, 3-82
FIP, 3-83
FIR, 3-82

Flux Tallies, 2-85
FMESH card, 3-114
FMn

card, 3-95
Reactions, G-1

FOM (also see Figure of Merit), 3-108
Forced collisions, 2-6, 2-136, 2-139, 2-151 to 

2-152, 3-42, D-8
Fraction, Atomic, 3-118
Free Gas

Thermal temperature (TMP) card, 3-132
10/3/05 Index-5



MCNP MANUAL INDEX
FSn (tally segment) card, 3-102 KSRC card, 3-77
Thermal treatment, 2-28
FSn (tally segment) card, 3-102
FTn card, 3-112
FUn (TALLYX input) card, 3-105
Fusion Energy Spectrum (D-D), 3-64

G

Gas, Material Specification, 3-118
Gaussian Distribution

Position, 3-65
Time, 3-65

Gaussian energy broadening, 2-106
Gaussian fusion energy spectrum, 3-64
General Plane Defined by Three Points, 3-17
General Source (SDEF) card, 3-53
Geometry

Cone, 2-9
Surfaces, 2-9
Torus, 2-9

Geometry Cards, 3-24 to 3-32
AREA, 3-25
FILL, 3-29
LAT, 3-28
Repeated structures cards, 3-25 to 3-32
TRCL, 3-28
TRn, 3-30 to 3-32
Universe (U), 3-26
VOL, 3-24

Geometry Errors, 3-8
Geometry splitting, 2-6, 2-139, 2-140, D-8
Giant Dipole Resonance, 2-64

H

HEX, 3-19, 3-22
History

Cutoff (NPS) card, 3-137
Monte Carlo method, 2-1

History, Particle
Flow, 2-5, D-7

Horizontal Input Format, 3-4
HSRC, 3-77
HTGR Modeling, 3-32

I

IDUM array, 3-138
IDUM card, 3-138
IMP card, 3-34
Implicit Capture, 2-34
Importance, 3-7, 3-26, 3-34

Theory of, 2-146
Zero, 3-8, 3-12, 3-35, 3-44, 3-77, 3-85

Incoherent Photon Scattering
Detailed physics treatment, 2-59

Inelastic Scattering, 2-35, 2-39
Initiate-run, 3-1, 3-2, 3-3, 3-135
INP File, 3-1

Card Format, 3-4
Continue-Run, 3-2 to 3-3
Default Values, 3-7
Geometry Errors, 3-8
Initiate-Run, 3-2
Input Error Messages, 3-7
Message Block, 3-1
Particle Designators, 3-7

Installation, TC-1
Integer Array (IDUM) card, 3-138
Integers, 8 byte

DBCN, 3-142
DBUG, 3-142
MPLOT, 3-147
NPS, 3-137
PRDMP, 3-139
PTRAC, 3-148
RAND, 3-141

Interpolate (nI), 3-4
IPTAL Array, 3-106, E-31

J

Jerks/g, 3-80
Jump (nJ), 3-5

K

KCODE card, 3-76
Klein-Nishina, 2-58, 2-59, 2-60
KSRC card, 3-77
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Lattice card, 3-28 Particle
L

Lattice card, 3-28
Lattice Tally, 3-81, 3-85
Lattice Tally Enhancements, 3-116
Lethargy-normed tally plots, B-27
Lost Particle (LOST) card, 3-141
Lost particles, 3-9, 3-141

M

Macrobodies, 3-18
BOX, 3-18, 3-21
Facets, 3-21
HEX, 3-19, 3-22
RCC, 3-19, 3-22
RHP, 3-19, 3-22
RPP, 3-18, 3-21
SPH, 3-19, 3-22

Mass
Atomic, 3-118
Density, 3-95, B-7

Material Card
Fraction, 3-118
ZAID, 3-118

Material number, 3-9, 3-10, 3-95, 3-96, 3-97, 
3-118, 3-124, 3-149, 3-152

Material Specification Card, 3-117
Material Void (VOID) card, 3-124
Material (Mm) card, 3-118
Maxwell fission energy spectrum, 3-64
MCNP Input, 3-1
MCNP Structure, 2-4, D-6
Means,Variances,Standard Deviations, 2-109
MESH Card, 3-48
Mesh Tally, 2-83
Mesh tally (FMESH), 3-114
Mesh-Based Weight Window

(MESH) card, 3-48
Message Block, INP File, 3-1
MGOPT card, 3-125
Mm card (also see Material Card), 3-118
MODE card, 3-24
Monte Carlo Method History, 2-1
MPLOT card, 3-147
MPN Card, 3-120

MTm card, 3-134
Muir velocity

Gaussian fusion energy spectrum, 3-64
Multigroup Adjoint Transport

Option Card, 3-125
Multigroup Tables, 2-24
Multipliers and modification, 2-105
Multiply (xM), 3-4

N

Neutron
Absorption, 2-34, 2-171
Capture, 2-28, 2-34
Cross-sections, 3-118
Cutoffs, 3-135
Dosimetry cross sections, 2-23
Interaction data, 2-16
Interactions, 2-27
Spectra, F-20
Thermal S(α,β) tables, 2-24

Neutron Emission
Delayed, 2-52
Prompt, 2-52

nI (also see Interpolate), 3-4
nJ (also see Jump), 3-5
Normal, surface, 3-94
NOTRN card, 3-137
NPS card, 3-137
nR (repeat), 3-4
Nuclide identifier, 3-118

O

Output
Print Tables (PRINT) Card, 3-145, 3-147

P

Pair Production
Detailed physics treatment, 2-63
Simple physics treatment, 2-58

Parentheses, 3-9, 3-81, 3-95
Particle

Designators, 3-7
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Particle Track Output Response function, 3-85, 3-96, 3-99, 3-100
History flow, 2-5, D-7
Tracks, 2-27
Weight, 2-25

Particle Track Output
(PTRAC) card, 3-148 to 3-152

Periodic boundaries, 2-7, 2-13, 3-31
Limitations, 2-14

Perturbation (PERTn) Card, 3-152 to 3-156
Photoelectric Effect

Detailed physics treatment, 2-62
Simple physics treatment, 2-58

Photon
Cross-sections, F-38
Cutoffs, 3-136
Generation, optional, 2-31
Interaction Data, 2-20
Interaction Treatment, 2-57
Production Bias (PIKMT) card, 3-124
Production Method

30 x 20, 2-33
Expanded, 2-33

Scattering, 2-33
Spectra, F-20
Weight (PWT) Card, 3-39

Photon Physics Treatment
Detailed, 2-59
Simple, 2-57

Photonuclear Data
4th entry on PHYS card, 2-66
Nuclide Selector, 3-120

Photonuclear Physics, 2-64
PHYS, 3-127
PHYS Card, 2-57, 2-59, 3-127 to 3-132

Electrons, 3-130 to 3-132
Neutrons, 3-127 to 3-128
Photons, 3-128 to 3-129

PIKMT card, 3-124
Pinhole Camera Flux Tally, 3-83
Pinhole Image Tally (FIP), 2-98
Plot tally while problem is running

(MPLOT) Card, 3-147
Plotting, 2-188 to 2-191, 3-8, 3-9, 3-10, 3-140, 

3-148
Plus, 3-11, 3-81, 3-86
Point detectors, 2-91, 3-82

Cautions, 2-64
Contributions (NOTRN) Card, 3-137

Power law source distribution, 3-65
PRDMP card, 3-139
Precision, 2-108, 2-110

Factors Affecting, 2-111
Print and Dump Cycle (PRDMP) card, 3-139
PRINT Card, 3-145
Print cycle, 3-139
Problem

Cutoff Cards, 3-135 to 3-138
Title card, 3-2
Type (MODE) card, 3-24

Prompt ν, 3-74, 3-122
PTRAC card, 3-148 to 3-152
Pulse Height Tallies, 2-89
Pulse Height Tally

Variance Reduction, 3-87
Weight, 2-26
(F8), 3-85

PWT card, 2-31, 2-32, 3-39

Q

Quasi-deuteron photon absorption, 2-65

R

Radiograph Image Tallies
FIC, 2-97
FIR, 2-97

Radiography Tallies, 2-97, 3-82
RAND Card, 3-141
RCC, 3-19, 3-22
RDUM array, 3-138
RDUM card, 3-139
Reflecting surface, 2-12, 3-11, 3-27, 3-79, 

3-85, 3-111, 3-128
Repeat (nR), 3-4
Repeated Structures

Tally, 3-85
Repeated structures, 3-10, 3-11, 3-88, 3-89, 

3-90, 3-105, 3-143, 3-146
Cards, 3-25 to 3-32
Geometry, 2-9
Source, 3-59
Tally, 3-88

Response function, 3-85, 3-96, 3-99, 3-100
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RHP, 3-19, 3-22 Surface Source Read (SSR) card, 3-71
RHP, 3-19, 3-22
Ring detectors, 2-94, 3-82

Cautions, 2-64
Ring detector card, 3-82

RPP, 3-18, 3-21
Russian roulette, 2-6, 2-32, 2-140, 3-109, D-8
Russian roulette (also see Energy roulette), 

2-142

S

Sampling Angular Distributions, 2-36
SBn card, 3-61
Scattering

Elastic, 2-35, 2-39
Inelastic, 2-35, 2-39
Photon, 2-33
S(α, β), 2-29
S(α, β) Treatment, 2-28

SCn card, 3-66
SDEF card, 3-53
SDn card, 3-104
Segment Divisor (SDn) card, 3-104
Segmenting card, 3-102
Sense, 2-7, 3-12, 3-94, 5-114, E-44
SFn (surface flagging) card, 3-102
Simple physics treatment, 2-7, 2-57, D-8
SIn card, 3-61
Source

Bias (SBn) card, 3-61
Comment (SCn) card, 3-66
Dependent source distribution

(DSn card), 3-65
Direction Biasing, 2-153
Energy biasing, 3-52
Fission, 3-64
Fusion, 3-64
Information (SIn) card, 3-61
Probability (SPn) Card, 3-61
SDEF (General Source) card, 3-53
SOURCE subroutine, 3-78
Specification, 3-52
Spectra, 3-64
SRCDX subroutine, 3-78
SSR card, 3-71
SSW card, 3-69
Surface, 3-26, 3-31, 3-50, 3-52, 3-57, 3-69, 

3-71
weight minimum cutoff, 3-136

Source Biasing, 2-152
Space-energy dependence, 2-142
SPDTL, 3-116
Special Treatments, 2-106
Special Treatments for Tallies

(FTn) card, 3-112
SPH, 3-19, 3-22
Splitting, 2-142
Splitting (also see Energy Splitting), 3-33
SPn card, 3-61
SSR card, 3-71
SSW card, 3-69
Steradian, 3-101
Stochastic Geometry, 3-32
Storage Limitations, 3-160
Subroutine Usage, D-6
Subroutines

SOURCE, 3-78
SRCDX, 3-78

Summary of MCNP Input Cards, 3-157
Superimposed Importance Mesh for Mesh-

Based Weight Window Generator 
(MESH) card, 3-48

Superimposed Mesh Tally (FMESH), 3-114
Surface

Bins, 3-81
Coordinate pairs, 3-15
Current (F1) Tally, 3-80
Flux (F2) Tally, 3-80
Mnemonics, 3-11, 3-13, 3-23
Normal, 3-94
Reflecting, 3-11
Source, 3-26, 3-31, 3-50, 3-52, 3-57, 3-69, 

3-71
White boundaries, 2-13, 3-11, 3-12

Surface Area card, 3-25
Surface Cards, 3-11 to 3-23

Axisymmetric Surfaces
Defined by Points, 3-15

General Plane
Defined by Three Points, 3-17

Surfaces Defined by Equations, 3-11
Surfaces Defined by Macrobodies, 3-18

Surface Flux (F2), 2-86
Surface Source Read (SSR) card, 3-71
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Surface Source Write (SSW) card, 3-69 User modification, 2-108
Surface Source Write (SSW) card, 3-69
Surface-Flagging (SFn) Card, 3-102
Surfaces, 2-9

Periodic boundaries, 2-13, 3-31
SWTM, 3-136
S(α, β) scattering, 2-28, 2-29

T

Tally
and DXTRAN, 3-110
Asterisk, 3-80
Bins, 3-80
Cell, 3-80
Cell flux (F4), 3-80
Charge deposition (+F8E) Tally, 3-80
Comment (FCn) card, 3-91
Detector, 2-5, D-6
Detector diagnostics (DDn) card, 3-108
Detector flux (F5), 2-80, 3-80, 3-82
Dose, 3-99
F1(surface current), 3-80
F2 (surface flux), 3-80
F4 (cell flux), 3-80
F6 (cell avg. energy deposition), 3-80
F7 (cell fission energy deposition), 3-80
F8 (detector pulse energy

distribution), 3-80
Fluctuation (TFn) card, 3-107
FMESH, 3-114
Fna cards, 3-80
FTn (special treatments) card, 3-112
Lattice, 3-85
Mesh Tally, 2-83, 3-114
Multiplier (FMn) card, 3-95
Pulse height, 3-85
Radiography, 3-82
Repeated Structures, 3-85, 3-88
Segment (FSn) card, 3-102
Special treatments (FTn) card, 3-112
Specification cards, 3-79 to 3-114
Surface current (F1), 3-80
Surface Flux (F2), 3-80
Time (Tn) card, 3-92
Types, 3-80
Union, 3-81
Units, 3-80

Weight, 3-80
Tally output format, 2-108
TALLYX

Subroutine, 3-105, 3-106
(FUn) Input card, 3-105

TALNP card, 3-147
Temperature, 3-10, 3-121, 3-127
TFn card, 3-107
Thermal

Scattering treatment, 2-54
Temperature, 3-132
Times (THTME) card, 3-133
Treatment, 3-127

Thomson scattering, 2-58
Detailed physics treatment, 2-61

THTME card, 3-133
Time

Cutoff, 2-69, 2-140, 3-135
Multiplier (TMn) card, 3-100

Time convolution, 2-106
Time Splitting (TSPLT) card, 3-37
Title card, 3-2
TMn card, 3-100
TMP card, 2-30, 3-132
Tn card, 3-92
Torus, 2-9, 3-13, 3-14
Total Fission (TOTNU) card, 3-122
TOTNU card, 2-50
TOTNU (Total ν card), 3-122
Track Length Cell Energy

Deposition Tallies, 2-87
Track Length Estimate of Cell Flux (F4), 2-85
Transformation, 3-28
TRCL card, 3-28
TRn card, 3-30 to 3-32
TSPLT card, 3-37

U

Universe, 3-25
Universe (U) card, 3-26
Unresolved neutron resonances, 2-55
Unresolved Resonance (Data), G-11
URAN, 3-32
User Data Arrays, 3-138 to 3-139
User modification, 2-108
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Variance Reduction, 2-134 to 2-163 ZZZAAA (also see ZAID), 2-15
V

Variance Reduction, 2-134 to 2-163
and Accuracy, 2-134
and Efficiency, 2-135
DXTRAN, 2-156
Energy Cutoff, 2-139, 3-135
Energy roulette, 2-142
Energy splitting, 2-142
Exponential transform, 3-10, 3-40
Forced collisions, 2-151 to 2-152, 3-42
Geometry splitting, 2-140
Introduction, 2-134
Modified Sampling Methods, 2-139
Partially-Deterministic Methods, 2-139
Population Control Methods, 2-139
Russian roulette, 2-140
Schemes for detectors, 2-102
Techniques, 2-139
Time cutoff, 2-140, 3-135
Truncation Methods, 2-139
Weight cutoff, 3-135

Variance Reduction Cards, 3-34 to 3-52
BBREM, 3-52
Detector Contribution (PDn) card, 3-51
DXC, 3-51
DXTRAN (DXT) card, 3-110
ESPLT, 3-35
EXT, 3-40
FCL, 3-42
IMP, 3-34
MESH, 3-48
PDn, 3-51
PWT, 3-39
Weight Window Cards, 3-43 to 3-47
Weight Window Generation Cards, 3-46 to 

3-51
WWE, 3-44
WWG, 3-47
WWGE, 3-47
WWN, 3-44
WWP, 3-45

Vector Input (VECT) card, 3-42
Velocity sampling, 2-29
Vertical Input Format, 3-5
VOID card, 3-124
VOL card, 3-24

W

Warning Messages, 3-7
Watt fission energy spectrum, 3-64
Watt fission spectrum, 3-77
WC1, 3-128, 3-135, 3-136
WC2, 3-135
Weight cutoff, 3-135
Weight Window

Cards, 3-43 to 3-47
Energies or Times (WWE), 3-44
Generation Cards, 3-46 to 3-51
Generation Energies or Times

(WWGE), 3-47
Generator (WWG) card, 3-47
Parameter Card (WWP), 3-45

White Boundaries, 2-13, 3-11, 3-12
WWE Card, 3-44
WWG Card, 3-47
WWGE Card, 3-47
WWN Card, 2-32, 3-44
WWP Card, 3-45

X

X Card, 3-15
xM (also see Multiply), 3-4
XSn Card, 3-123

Y

Y Card, 3-15

Z

Z Card, 3-15
ZA, 3-120
ZAID, 2-24, 3-118, 3-121

and S(α,β), 3-134
and the AWTAB card, 3-123

ZA,ZB,ZC, E-44
Zero Importance, 3-8, 3-12, 3-35, 3-44, 3-77, 

3-85
ZZZAAA (also see ZAID), 2-15
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#n (Complement Operator), 2-8 +, 3-11, 3-81, 3-86
Symbols

#n (Complement Operator), 2-8
( ), 3-9, 3-81, 3-95
*, 3-11, 3-12, 3-31, 3-80, 3-86
+, 3-11, 3-81, 3-86
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