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Summary

Many natural and man-made systems exhibit self-organization, where interactions among components lead to
system-wide patterns of behavior. This paper first introduces current, scientific understanding of self-organizing
systems and then identifies the main models investigated by computer scientists seeking to apply self-organization
to design large, distributed systems. Subsequently, the paper surveys research that uses models of self-organization
in wireless sensor networks to provide a variety of functions: sharing processing and communication capacity;
forming and maintaining structures; conserving power; synchronizing time; configuring software components;
adapting behavior associated with routing, with disseminating and querying for information, and with allocating
tasks; and providing resilience by repairing faults and resisting attacks. The paper closes with a summary of open
issues that must be addressed before self-organization can be applied routinely during design and deployment of
senor networks and other distributed, computer systems. Copyright © 2007 John Wiley & Sons, Ltd.
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1. Introduction

Scientists and engineers envision deploying wireless
sensors that can form networks to make and convey
measurements for many applications: measuring ocean
temperatures and currents, analyzing moisture content
in soils, gauging ground motions, assessing sunlight in
forests, and monitoring stresses in structural supports
of large buildings. What might such applications mean
for the way we design, deploy, and manage wireless
networks? The number of devices, communications
channels, and data transmissions will become too
large, varying, and uncertain to be deployed and
managed with the costly techniques in use today.
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Instead, wireless networks must become adept at
self-organization—allowing devices to reconnoiter
their surroundings, cooperate to form topologies,
and monitor and adapt to environmental changes, all
without human intervention. Self-organization applied
to wireless networks is not a new concept. Interested
readers should consult a 1986 survey by Robertazzi
and Sarachik [1]. While many problems identified
in the earlier survey still exist, the nature of wireless
networks has become more tangible and pervasive.
The current survey focuses on self-organization in
sensor networks, which did not exist in 1986.

The paper begins by considering self-organization
from two views: natural phenomenon and design

Copyright © 2007 John Wiley & Sons, Ltd.



824 K. L. MILLS

strategy. Self-organization is a natural phenomenon
of distributed systems, where components interact
on a microscopic level leading to global behaviors
that emerge on a macroscopic level. Such emergent
behaviors are unintended and thus may be undesirable.
For example, unintended self-organizing phenomena
have been observed in the Internet [2], cellular wireless
networks [3], and computing grids [4]. As a design
strategy, system components may be endowed with lo-
cal rules intended to yield desired global behaviors. The
paper identifies selected approaches to stimulate inten-
tional self-organization for allocating spectrum, band-
width, and processing capacity; for forming structures,
disseminating information, and organizing tasks; for
configuring software, synchronizing time, and conserv-
ing power; and for repairing faults and resisting attacks.
The paper also presents open questions to stimulate fur-
ther research into self-organization as a design strategy.

2. Self-Organization as Natural
Phenomenon

A system with many simple components can exhibit
behaviors of the whole that appear more organized
than behaviors of the individual components [5]. These
so-called emergent behaviors arise naturally through a
process of self-organization, which appears in complex
natural and man-made systems (e.g., biological
organisms, ecosystems, food webs, geological systems,
metabolic networks, transportation networks, and
stock markets [6–12]). Complex systems encompass
jumbles of positive and negative feedback loops that
cascade the effects of changes in each component
through an increasing number of interconnected
components. Through such interactions, system
state tends toward some coherent pattern. This is
the essence of self-organization: patterns arise from
many interactions spread over space and time. Such
patterns are known as emergent properties because
they have no meaning for individual components. For
example, gas (a collection of molecules) exhibits both
temperature and pressure, which measure strength of
interactions among molecules.

What emergent properties might be observed? One
possibility is equilibrium, where system state reaches
some fixed point. Another possibility is oscillation,
where system state cycles repeatedly through the same
series of points. A third possibility is chaos, where
system state wanders forever through a non-repeating
set of points. Some scientists have noted a tendency
for equilibrium states in certain systems to exhibit a

delicate balance, referred to as self-organized criticality
[13], where system state can be driven easily out of
equilibrium. Some natural systems exhibit punctuated
equilibria [14], where system state moves through
occasional periods of turbulence with a frequency
inversely related to magnitude. Movements among
emergent patterns are known as phase transitions [15].

Investigations of natural and man-made dynamic
systems reveal that phase transitions occur quickly
after reaching some threshold. For example, Kuramoto
[16] shows a system of coupled oscillators remains
desynchronized until coupling strength reaches a
critical threshold after which synchronization advances
in stages. Floyd and Jacobson [2] observe network
traffic that becomes synchronized only when the
number of sources exceeds a transition threshold. Roli
and Zambonelli [17] report that a dissipative cellular
automaton exhibits macroscopic spatial structure as
soon as external stimulation reaches a threshold value
and exhibits a chaotic pattern once external stimulation
passes a higher threshold. In a study of random graphs,
Erdös and Rényi [18] identified a phase transition
occurs when the number of randomly placed links
reaches the number of nodes, after which a graph
becomes fully connected.

Why do so many natural systems exhibit self-
organizing properties? What benefits does self-
organization convey? Adaptability is a key benefit
in both short and long terms. Short-term flexibility
allows maintenance of stable operating states under
varying environmental conditions [19]. Long-term
evolution enables development of new equilibrium
states in response to shifting environmental patterns.
Evolution also increases problem-solving range [20].
Evolution implies memory, which implies learning;
thus, self-organizing systems can solve problems
that are unsolvable using other techniques [5].
Even for problems with known solutions, self-
organizing systems can devise innovative approaches
that might otherwise go undiscovered [21]. Further,
self-organizing systems exhibit the principle of least
action, which tends to minimize distance to an optimal
(stable) state [5], and thus prove efficient at solving
difficult optimization problems. Many self-organizing
systems also exhibit resilience: both robustness and
survivability. By adapting to changing conditions, self-
organizing systems can overcome failure of individual
components [22]. Over the long run, a self-organizing
system can continue to pursue system-wide goals even
beyond the lifetime of all current, system components.
Scalability is another benefit [23]. Self-organizing
systems may grow without bound because complete
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information need not be disseminated throughout the
system and processed by all components.

Detecting or measuring presence or degree of self-
organization remains subject of significant research.
Systems may self-organize in space, in time, and
in spatiotemporal combinations. Generally, self-
organization leads to increased correlation along a
dimension of measurement—implying self-similarity.
For example, self-organizing systems often organize
hierarchically, where statistical characterization of
spatial organization at all layers appears quite similar
[9]. Self-organizing systems can also show correlations
in time, such that scaled time windows yield
similar statistical characteristics [24]. Physicists often
‘transform the autocorrelation function into the Fourier
spectrum. A power-law decay for the correlations as a
function of time translates into a power-law decay of the
spectrum as a function of frequency. . . also called 1/f
noise’ [25]. Fourier transforms can reveal oscillations
by identifying specific dominant frequencies [26].
Wavelet transforms may show correlations among
spatial or temporal scales [27]. Other measures of
self-organization have been proposed. For example,
Oprisan defines [28] three measures, angular momen-
tum, contrast, and correlation, to describe the level of
aggregation within a spatial extent. Some researchers
[29] leverage thermodynamics, using decrease in
entropy to indicate increased order arising from self-
organization. Other researchers [30] apply statistical
complexity to measure changes in system order.

3. Self-Organization as Design Strategy

Noting the pervasive presence and potential benefits
of self-organization in natural systems, numerous re-
searchers investigate how models of self-organization
can be applied to design large, distributed systems. This
section introduces some representative models.

3.1. Biological Models

Scientists have uncovered evidence of self-
organization in biological processes, inspiring
computer-science researchers to investigate their
application to system design. For example, during
biological reproduction embryos form as a collection
of homogeneous cells and then develop into a complex
organism with specialized functions. This process of
multi-cellular embryogenesis uses self-coordination
to enable cells to differentiate function. Researchers
at MIT [31] are investigating use of such techniques

to enable substrates of homogeneous computers to
self-organize into differentiated structure and function.
NASA researchers [32] are also investigating embryo-
genesis as a means to adapt undifferentiated processors
on deep-space probes in order to permit changes in
spacecraft function during missions of long duration.
Nagpal [33], a researcher at Harvard, has proposed
a set of primitives, based on mechanisms from
embryogenesis, which engineers could use to cause
homogeneous processes to self-organize into desired
functionality and structure. Other researchers aim to
exploit the process that allows an undifferentiated
collection of neurons throughout the brain to self-
organize into specialized pattern recognition networks
that can distinguish and classify sensory inputs. For
example, Kohonen [34] has developed an algorithm
for self-organizing maps (SOMs) that transform a mul-
tidimensional space of inputs into a lower dimensional
lattice of neurons such that topological relationships
among the input space are reflected into the constructed
neural network. Researchers apply [35] SOMs to a
range of system-engineering challenges. Other human
biological functions also inspire design models.
Hofmeyr and Forrest [36], for example, define an
artificial immune system and describe its application to
intrusion detection in computer networks. IBM [37] has
founded an entire research program, autonomic com-
puting, based on modeling self-managing systems after
concepts inherent in the human nervous system. Regu-
latory genetic systems in living cells have been modeled
as NK Boolean networks [6] (of N logic elements each
with K inputs and one output) or probabilistic Boolean
networks [38] that self-organize into attractors com-
prising cyclic sequences of states. NK networks have
been applied to model structural dynamics in industrial
networks [39]. Evolutionary processes have also
inspired computer scientists to apply natural selection
to evolve solutions [40] to a wide range of problems
that are difficult to solve using other techniques.

3.2. Social Models

Recently, scientists have begun to study the organiza-
tion and function of swarms, such as birds, insects,
viruses, and molds, which exhibit self-organization,
arising from the ability of swarm members to exchange
information, either directly or indirectly. Direct
information exchange (e.g., through visual or auditory
channels) implies a synchrony in time. For example,
birds can maneuver as flocks [41] if each bird follows
three general rules: move toward the average heading
of other birds, maneuver toward the average position of
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other birds and avoid coming too close to other birds.
Similarly, large groups of fireflies can synchronize
their flashing, using visual cues and internal timing
mechanisms [42]. Indirect information exchange, or
stigmergy [43], implies that swarm members are inde-
pendently mobile; thus, information can be deposited
in space to be encountered by members arriving later.
For example, ants deposit a chemical (pheromone) to
attract other ants, which strengthen the scent attracting
additional ants. This behavior helps ants to retrieve
food and return it to the nest. As the food supply
becomes exhausted, ant visits on a trail diminish, the
scent decays, and the trail is eventually abandoned.
Similar behavior has been observed in slime molds
[44], which normally move through dirt as individual
single-celled organisms until environment conditions
deteriorate. A worsening environment leads cells to
emit a chemical that guides collective movement so that
large mold structures emerge, allowing cells to survive
until the environment improves.

3.3. Economic Models

Economies are self-organizing systems where produc-
ers and consumers interact through markets to set
prices under which to exchange goods and services.
While most readers probably associate economics with
capitalism, researchers are investigating how to design
information systems based on numerous economic
models [45–50], including self-interest, socialism,
communism, altruism, game theory, and catallaxy.

3.4. Other Models

A number of self-organizing models from physics
and chemistry have been applied [51–55] to
design computer, communications, and information
systems. Such models include electromagnetism
(attraction–repulsion), thermodynamics (entropy re-
duction), molecular equilibrium (minimizing energy
or repulsion force), diffusion (chemical gradients), and
phase-transition resistance (stabilizing system state far
from phase-transition regions).

4. Applying Self-Organization in
Wireless Networks

Self-organizing mechanisms could pay dividends in
almost any kind of wireless network. For example, self-
organization might allow adaptation to changing user
density and traffic patterns in fixed wireless networks,

where only users move. Self-organization could help
reconfigure topologies as nodes move in and out of
range in mobile ad hoc networks, where all nodes may
move. Self-organization could form an initial topology
among large numbers of sensor nodes dropped across a
geographic area, and then adjust the topology as sensors
exhaust power and replacement sensors are injected.

This paper surveys the use of self-organization in
wireless networks to accomplish specific functions:
sharing resources (processing and communication ca-
pacity); forming and maintaining structures; adapting
behavior associated with routing, with disseminating
and querying for information and with assigning
tasks and configuring software components; managing
resources (synchronizing time and conserving power);
and providing resilience by repairing faults and
resisting attacks. These functions reflect increasing
levels of abstraction: sharing physical resources,
forming collectives, shaping collective behavior,
managing collective resources, and ensuring collective
survival under duress. Vast research literature exists on
self-organization in wireless and sensor networks, with
particular concentration on topics such as topology
formation and maintenance. Few examples could
be included in this brief survey. References were
selected to achieve wide coverage of functions and
broad representation across various models of self-
organization.

4.1. Resource Sharing

Nodes in a wireless network must share a number
of resources, such as electromagnetic spectrum,
transmission bandwidth, and processing capacity. The
task becomes difficult when the number of nodes
and traffic demands are unknown or fluctuate. Self-
organization can be used to discover participants and
demands, to determine how best to allocate resources,
to monitor changes, and to reallocate resources as
needed.

4.1.1. Processing

Most sensor networks require nodes not only to act as
data sources and sinks but also as relays that forward
packets among neighboring nodes. Assuming nodes
have finite power, tradeoffs arise between network
throughput (which should be as high as possible)
and lifetime (which should be as long as possible).
Complete cooperation with forwarding minimizes
a node’s lifetime, while completely uncooperative
behavior drives throughput to zero. Srinivasan et al.
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[56] describe a game-theoretic algorithm, based on
Generous Tit-For-Tat, designed to drive a system
of nodes to Nash equilibrium where each node
achieves the best possible tradeoff between throughput
and lifetime. Assuming each node understands its
maximum forwarding rate and maintains a history of
experiences regarding the rate at which its forwarding
requests are honored, a node will reject a forwarding
request beyond its maximum rate (outside healthy
operating bounds) or if the node is forwarding more
packets than another node is forwarding for it. This
latter condition allows a small amount of excess
forwarding—representing the generous portion of the
algorithm.

Typical energy-aware routing schemes maintain
a list of possible routes and then forward packets
with a uniform probability among them. Willig
and colleagues [57] observe that sensor networks
may contain nodes with a range of capabilities,
including differences in available power, and argue that
network lifetime could be increased if more-capable
nodes handled more work. To enable asymmetric
load assignment, Willig et al. define an altruistic
(friendly neighbor) approach, where nodes periodically
announce their capabilities, location, and address,
along with a time for which a node is willing to
forward packets. The assumption is that only nodes
with rich power sources would announce. The cost of
forwarding packets over self-declared altruistic nodes
is then discounted, thus increasing the probability
of relaying packets through those nodes. Simulation
results show that this altruistic approach yields
significant improvement in both network lifetime and
response time when compared to a typical energy-
aware routing scheme.

4.1.2. Communication channel

Kompella and Snoeren [58] present a distributed
algorithm that allows individual sensors sharing a
channel to independently adjust transmit power and
rate to conserve energy without significantly degrading
channel capacity or fairness on oversubscribed
channels. The authors observe that when channel load
is low then messages can be sent more slowly (i.e., at
lower power) without building up an excessive queue,
while high load requires messages to be sent more
quickly to avoid excessive queuing. They define a self-
organizing approach were nodes sharing a channel
snoop on transmissions and use measured transmission
rates to estimate the message load at each node. Once
each node has sent at least one message, then all nodes

can converge to a similar estimate of the channel load
and each can then independently adjust transmission
speed to ensure that all queued packets get an equal
share of the channel.

Duque et al. [59] describe an approach, based
on self-organizing maps, to allocate spectrum to
connections in a dynamically changing cellular
network. Given a set of network measurements
(e.g., cell interference and channel compatibility),
Kohonen’s algorithm [34] is used to construct a
mapping into equivalence classes where all radio relays
in a partition have similar interference situations.
Subsequently, an iterative algorithm searches for
variations in channel assignments that optimize
network performance for a given interference situation.
The maps are then distributed to radio relays, where
continuous monitoring allows relays to switch channel
assignments to match changes in the interference
situation.

Ho et al. [29] describe a self-organizing algorithm
that allows radio relays in a cellular network to create
and dynamically adjust cell sizes (i.e., transmission
ranges) to maintain maximum coverage with minimum
interference. Each relay will periodically listen for
neighboring relays. Hearing a neighbor arrive or
signoff stimulates a relay to conduct an expanding-
ring search to calculate its distance from all
reachable relays. Subsequently, the relay computes and
distributes a new cell size, then waits for the next
listening period. Ho uses an entropy-based complexity
metric to reveal critical characteristics about the delay
between listening periods. Below a threshold, the
network never achieves full coverage. Above the
threshold, the probability of achieving full coverage
increases with delay. Beyond a second threshold, the
network always achieves full coverage.

4.2. Structure Formation and Maintenance

Typically, sensor networks are deployed incrementally
without central planning and must adapt to changes in
node density, while simultaneously minimizing power
consumption and meeting performance objectives.
Designing and deploying static topologies cannot
satisfy this challenging combination of requirements.
For this reason, numerous researchers [e.g., 60–
62] investigate approaches that allow nodes to self-
organize into efficient, clustered topologies and to
maintain essential cluster properties in response to
changing node populations. In selected cases, networks
contain mobile sensors, which researchers consider
how best to position.
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4.2.1. Sensor placement

Some sensors are mounted on mobile platforms, which
permit the option to enhance sensor coverage after
initial deployment. Wong and colleagues [51] propose
a technique that allows mobile sensors to reposition
themselves based on computing virtual attraction and
repulsion forces exerted by other sensors and obstacles.
To conserve energy, sensor movements are bounded
within a limited range. The algorithm uses only local
information to reposition sensors to improve coverage
with minimum movement. Force between nodes is
relative to distance; nodes that appear too close exert
repulsion and nodes that appear too distant exert
attraction. A node computes the relative influence from
all surrounding forces in order to select a new position.
To limit movement, nodes engage in an exponential
back-off procedure to determine the order in which
each node updates its position.

Low et al. [63] consider problems arising when
mobile sensors with limited sensory range are deployed
sparsely relative to territory and without certain
knowledge regarding location of potential targets.
Some means must be found to direct sensor movement
in order to provide adequate coverage of targets
while limiting interference from an excess of sensors
within the same area. Low proposes an ant-based,
task-allocation scheme that enables mobile sensors to
organize into coalitions matched to the distribution of
targets across areas. Each robot measures two average
delays, one for encounters with other robots and one
for encounters with targets, and computes their ratio,
which represents task demand as observed by the
robot. Robots within the same vicinity will periodically
exchange ratios, along with the number of targets
currently under observation. Using this information
each robot conducts a probabilistic trial to determine
its dominance over other robots. Winning such trials
enhances a robot’s tendency to remain in the area, while
losing enhances tendency to leave. Periodically, robots
conduct another probabilistic trial (which considers
distances between areas) to determine whether to leave
the current area.

4.2.2. Server placement

Parunak and Brueckner [64] consider server placement
and selection in networks where power-constrained
or mobile nodes cause continuous topology changes.
They propose an approach, based on stimergic
learning, that allows a server population to maintain
the minimum necessary number of nodes at locations

appropriate to serve a client population and that
allows clients to learn where to direct service requests.
Servers implement a reinforcement-learning algorithm
where they extend their lifetime based on the number
of client transactions arriving within a measurement
interval. Clients share with direct neighbors a history
of interactions with servers. Histories, reinforced based
on positive and negative server interactions, decay
over time in order to give more weight to recent
interactions. Clients eliminate memory of any server
that reaches a threshold of negative performance.
Simulation results show that stimergic learning leads
to significant power conservation without significantly
reducing performance.

4.3. Behavior Shaping

Once deployed, sensor networks perform a range
of functions: some generic (e.g., routing), some
application-dependent (e.g., information dissemina-
tion and querying), and some situation-dependent
(e.g., task assignment or software configuration).
The dynamic nature of sensor networks prevents a
priori design of optimal behaviors to implement such
functions. For this reason, researchers investigate self-
organizing techniques that could enable a network to
shape its own behaviors based on environment and
need.

4.3.1. Routing

Nodes within sensor networks appear with new deploy-
ments and disappear due to power exhaustion, periods
of inactivity, and vulnerability to destruction. Such
dynamics, coupled with desire to conserve power while
limiting packet latency, present difficult challenges
for routing algorithms. Servetto and Barrenechea [65]
investigate how interacting particle systems (modeled
as probabilistic walks on random graphs) might yield
efficient multi-path routing in networks with many
fixed sensors that power themselves off and on at
random times in order to conserve power. Servetto
defines a distributed algorithm where each node
computes local parameters for a random walk such
that the global network will exhibit two properties:
short routes and evenly distributed packet-forwarding
demands. In computing its parameters, each node uses
local information augmented only by information from
one-hop neighbors and from packets transiting the
node.

Tang et al. [66] consider a unique problem associated
with medical sensors implanted in human subjects.
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Since radio frequency communication produces
electromagnetic fields that can be absorbed by (and
heat) human tissue, they propose a thermal-aware
routing protocol that avoids hot spots. Temperature is
estimated for points in a grid by using a continuous-
time, differential, (Pennes) bioheat equation. Next
routing hops for packets are selected based on
temperature rather than shortest path. If a packet cannot
advance (due to temperature constraints), then the
packet is returned to the previous hop, which tries
another path or returns the packet to its previous
hop. Packets destined for a hot spot will be buffered
until estimated temperature drops, and packets that
cannot be delivered within a deadline are discarded.
Simulation results show that thermal-aware routing
yields a smaller maximum and average temperature
increase and induces less traffic congestion than
shortest-path routing—though shortest-path routing
gives lower packet latencies.

4.3.2. Information dissemination

Information-dissemination protocols push data from
sources (e.g., sensors) toward destinations for which
information could be relevant. For example, sensors
within various rooms in a building might push changing
temperatures toward a fire-alarm controller. Such
protocols should conserve energy, provide low latency,
and tolerate node and link failures. Intanagonwiwat
et al. [67] propose a directed-diffusion protocol where
information, represented as attribute-value pairs, is
drawn toward consumers that express an interest. A
data consumer periodically sends to its neighbors a
task consisting of a time-to-live, an event rate, and a
list of attribute-value pairs. Nodes cache each received
interest, along with one or more gradients, where each
gradient defines a direction of flow and a desired event
rate associated with one neighbor. Interests diffuse
through a network as nodes forward received interests
to neighbors. Typically, a consumer will disseminate
a request for events to be received at a slow rate.
Subsequently, the consumer evaluates the quality and
timeliness of received events and then reinforces one
particular neighbor by disseminating interest in a
higher event rate. The reinforcement diffuses toward
nodes providing desired data. Directed diffusion adapts
automatically to failures in sensor nodes. Simulation
results show that directed diffusion yields lower
energy use and lower delay than a typical flooding
algorithm.

Wischhof et al. [68] describe an ambitious project
to develop a self-organizing system where information

about traffic conditions propagates, using an epidemic
model, among cars moving along a highway. Some cars
are assumed to be equipped with special gear (e.g.,
global-positioning system, wireless radio hardware and
computer connected to in-car sensors). Each equipped
car conducts a repeated cycle of reception, analysis,
and transmission. During reception, a car receives
information from any cars within radio range. Based
on received information, a car updates its own traffic
picture during an analysis phase, and subsequently
transmits its updated traffic picture to cars within range.
Given that cars are moving relative to each other
in various directions, traffic information propagates
throughout the roadway.

4.3.3. Information query

Query protocols allow consumers to pull data from
relevant sources, e.g., an intrusion-alarm controller
within a building might periodically check readings
maintained by motion sensors attached to various doors
and windows. Wang et al. [52] consider a specific
application where sensors are used to determine a
target’s location. Given an estimate of location, they
wish to choose a sensor to query in order to increase
estimate accuracy. They propose querying the sensor
with information that would yield the largest reduction
in uncertainty, represented as entropy associated with
the probability distribution of the target’s location.
Simulation results show that entropy-based, sensor
selection, with its lower computational demand,
works nearly as effectively as more computationally
demanding approaches.

Braginsky and Estrin [69] consider routing queries
in sensor networks without a suitable geographical
organization. For example, one might search for
concentrations of a particular chemical or for acoustic
events matching a specific signature, rather than seek
information about a particular room or location. They
propose rumor routing, which propagates queries using
a random walk and allows network nodes to learn
routes (through discovery agents) to various events in
the network, and to optimize those paths over time.
Once a (random-walk) query intersects with a path
to an event of interest, the random walk ceases and
the query follows the previously discovered path. The
protocol is designed so that both discovery agents and
queries have a limited time-to-live. The number of
discovery agents is also a design parameter. The goal
of rumor routing is to provide a tunable (energy cost vs.
discovery probability) design alternative to flooding of
events or queries.
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4.3.4. Task assignment

Sensor networks may require a subset of nodes to
host or provide particular services, such as translating
between incompatible protocols or aggregating,
caching or filtering data. Deciding which nodes should
perform particular functions may require consideration
of the capabilities or state of individual nodes, the
network topology and variations in demand. These
factors suggest the need to dynamically assign tasks,
roles, or services to specific nodes and then to
reassign them as conditions change. Itao and colleagues
[70] investigate biologically inspired models for
autonomous components to establish cooperative
relationships to provide network services. Components
discover other components and exchange sets of
traits, such as identity, type, and capabilities. Each
component maintains a relationship record for other
discovered components to track the number and
utility of interactions. When requested to provide a
service, a component may enlist other components
as needed based on their capabilities and on the
strength of existing relationships. Users reward service
providers based upon satisfaction received; the reward
function is used to increase relationship strengths
among components that cooperate to provide a
service.

4.3.5. Software configuration

Wireless nodes may operate in a heterogeneous
environment where channel conditions and protocols
vary with place and time. This suggests need for nodes
to sense the environment and reconfigure platform
software as necessary. Such reconfiguration may
involve dynamically loading and unloading appropriate
software modules or tuning parameter settings to
achieve desired performance. Suzuki and Yamamoto
[71] describe an approach, modeled after the immune
system, allowing system configuration policies to
be determined dynamically and continuously based
on measured system conditions. Pathological system
conditions (e.g., server overload) are recognized
as antigens that stimulate antibodies (e.g., policies
for thread management, caching, and transport
protocol) based on antigen concentrations. Positive
and negative reinforcement signals drive evolution
of antibody generation as system conditions vary.
Simulation results show that dynamic reconfiguration
provides superior throughput when compared against a
default, static configuration selected to match nominal
operating conditions.

4.4. Resource Management

Some critical resource management operations under-
lie many functions in sensor networks. For example,
organizing a transmission schedule to limit interference
requires that neighboring nodes have a synchronized
notion of period and phase. Similarly, choosing sleep
and wake periods for a node demands sufficient inter-
node synchrony. Alternating sleep and wake periods
provide one means of conserving power. Several other
options may also be implemented to extend network
lifetime.

4.4.1. Synchronization

Werner-Allen and colleagues [72] describe an
algorithm for time synchronization based on a
mathematical model representing the method used
by fireflies to synchronize spontaneously. Further,
these researchers provide an analysis, simulation, and
implementation of the algorithm in the context of a
multi-hop sensor network with asymmetric links and
message losses. Results with a 24-node test bed achieve
synchronization of about 130 ms (median) within less
than 5 min.

Hong et al. [73] describe and characterize an
algorithm, based on pulse-coupled oscillators, for
reaching consensus regarding detection of a binary
event in a distributed sensor network. The algorithm
encodes a locally detected event as a linear function of
a perturbation aimed to shift the pulse time of a local
oscillator, which influences coupled oscillators to shift
their own pulse times. The positive feedback loops that
develop drive the entire system of coupled oscillators
to pulse simultaneously, representing consensus that
an event is detected. Failure to pulse represents
consensus that no event is detected. Mathematical
arguments, supported by numerical simulations,
indicate the approach scales efficiently and reaches
certain consensus as the number of sensors increases.

4.4.2. Power conservation

Most designs for wireless sensor networks consider
techniques to reduce energy consumption. Two
fundamental techniques include powering off radios
and limiting transmission power. Chen and colleagues
[46] observe that all nodes need not be powered on at
all times in networks with sufficient density—in fact
they argue that powering on too many nodes creates
interference and diminishes network capacity. They
define an algorithm, akin to communism, allowing
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nodes to make local decisions about when to sleep
and when to wake and begin forwarding. Whenever
a node discovers two neighbors cannot communicate,
the node delays before volunteering to forward packets.
Nodes with more power delay for a shorter time, as do
nodes that would connect more neighbors. This allows
nodes with best ability and greatest utility to power
on, allowing less capable and less beneficial nodes to
remain dormant.

Conner et al. [74] investigate two complementary
algorithms to increase the lifespan of sensor networks.
One algorithm systematically adjusts a network
topology to shift forwarding burden to energy-
rich nodes, while the other algorithm enables non-
forwarding nodes to sleep most of the time without
missing packets. The topology-control algorithm,
which adjusts based on periodic probing, favors
selecting fewer forwarding nodes that are more richly
connected, leading to a shallow network where most
nodes can be reached within a hop or two. The node-
scheduling algorithm allows a node at power up to
discover (via snooping) the current schedule during
which other nodes send short messages indicating any
intention to send a data packet. The new node can then
select an open spot in the schedule. To send a data
message, a node first announces an intention to send
at a particular time (avoiding known conflicts) to a
particular destination, which will then know when to
wake up to receive the transmission. This algorithm
assumes that data transmissions are relatively rare and
that power savings may be traded for higher latency.

Kubisch et al. [75] compare two node-local
algorithms for adapting transmission power within
fixed, wireless sensor networks. One algorithm requires
nodes to periodically broadcast probe packets and
to listen for acknowledgments from neighboring
nodes. Failure to receive a sufficient number of
acknowledgments stimulates a node to increase
transmit power and retry. Receiving too many
acknowledgments causes a node to decrease transmit
power and retry. Receiving a target number of
acknowledgments terminates a probe period and
establishes a level for transmission power. The
second algorithm includes in each acknowledgment
the number of neighbors that can be reached by the
respondent. The probe issuer computes a mean number
of neighbors that it should be able to reach. If the
mean is too small, then transmit power is increased
and another probe is sent. If the mean is too large, then
transmit power is decreased and another probe issued.
Simulation results find that using these algorithms
leads to network lifetimes within a lifetime or two

of the global optimum that might be achieved using
centralized computations.

4.5. Resilience

Given potential for sensor networks to be deployed in
critical applications, issues arise regarding resiliency in
the face of failures and attacks. Gupta and Younis [76]
propose a method to recover sensors from a cluster with
a failed cluster head. Their method does not require
network-wide re-clustering. Fault detection depends
upon cluster heads periodically exchanging vectors
indicating perceived status of other cluster heads.
Each cluster head uses these vectors to determine a
consensus view of failed cluster heads. The interval
between vector exchanges expands multiplicatively
over time when all cluster heads appear operational
and contracts linearly during periods when some cluster
heads appear suspect. Variation in the vector-exchange
cycle lowers overhead for stable topologies, yet
improves responsiveness during periods of instability.
Fault recovery depends upon the initial technique
adopted for cluster formation, where the protocol has
cluster heads identify all sensors within radio range and
then partition that set into primary and backup cluster
members. The partitioning places sensors into the
primary set based on minimizing communication cost.
During recovery, sensors in backup sets are reassigned
to the primary set of the cluster head that offers the
lowest communication cost.

Potential attacks against sensor networks come in
a variety of forms, such as injecting false sensor
reports and draining network power. Ye et al. [77]
investigate a statistical mechanism to detect and drop
false information within a large, dense, sensor network
where elected nodes aggregate and forward readings
collected by nearby sensors. The mechanism requires
that each data sink possess an indexed collection
of keys partitioned into disjoint sets and that each
sensor is randomly assigned a subset of index-key pairs
from one partition. Any sensor report is forwarded
along with a message hash generated based on one
of the keys (key index also forwarded) within the
sensor. An aggregating node forwards a sensor report
along with one hash and key index in each of some
number of key partitions. While flowing through the
network, probability increases that a report transits
a node that shares one of the keys used to generate
one of the hashes. In such a case, the transit node
can verify the hash and could detect a forged report
because a compromised node is unable to correctly
forge all hashes for an aggregated report. Analysis
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and simulation results suggest that the proposed
mechanism could drop between 80% and 90% of
injected false reports within 10 forwarding hops with an
overhead of only 14 bytes per sensor report. Dropping
false reports early would reduce energy consumption
and extend the network lifetime by a factor of two.

Yu and Liu [78] propose a self-organizing scheme
that encourages nodes to cooperate and simultaneously
to resist attacks aimed to degrade performance and
shorten network lifetime. Assuming that node identities
may not be spoofed, the scheme requires that every sent
packet be acknowledged and that acknowledgments
for packets ripple back along the transmission route
from destination to source. Forwarding packets and
receiving acknowledgments cause updates to a balance
sheet indicating the net difference between the utility
a node contributes to each of its neighbors and the
utility each neighbor contributes to the node. Nodes
continue to forward packets for neighbors unless the
net negative utility falls below some threshold. Route
discovery is augmented to include information about
the relative net utility between a node and all other
nodes on particular paths. Packets will not be forwarded
along routes without sufficient net utility to ensure
delivery. Over time, cooperating nodes reinforce their
net utilities and malicious nodes are shunned.

5. Open Issues

Researchers have yet to experiment with self-
organizing designs that can simultaneously address
multiple dimensions of performance, security, and
robustness. One wonders how (or whether) a complete
set of design objectives might be satisfied within a self-
organizing framework? Do some underlying principles
unify all approaches to self-organization? If so, what
are those principles? Do selected mechanisms and
models work best for specific problems? What are the
implications of combining various mechanisms within
the same system design? Will interaction effects arise?
How could such effects be identified and mitigated?

Phase transitions pose another area of concern.
Many natural systems tend to self-organize to critical
equilibrium of a fragile nature. Could self-organizing
networks exhibit similar propensity? Recall that
Krishnamachari [55] reported phase transitions in
wireless networks, identifying a critical threshold
of node density that leads to global connectivity.
Below the threshold a network will not connect;
above the threshold a network generates interference
and wastes energy. Krishnamachari suggests that

phase-transition analysis could help to select design
parameters that enable a self-organizing wireless
network to reach a desirable operating point. But what
about the possibility for changing conditions to disturb
equilibrium and induce periods of instability, or to drive
a system into oscillation or chaos? Can such conditions
be forecast, analyzed and resisted?

Overall, the picture appears cloudy with regard to
self-organization in wireless sensor networks. Further
research is needed to develop techniques to measure,
analyze, and visualize macroscopic behavior. Without
an ability to understand global consequences of
particular design decisions, deploying self-organizing
networks could prove to be risky.
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