APPENDIX A1

The following preview satellite images show the salt crust extent of the Bonneville Salt Flats in October 1988 and October 2003. The October 1988 image is the source of the revised 1988 salt crust boundary. Preview images were obtained from the U.S. Geological Survey's Earth Explorer website,

<u>http://edcsns17.cr.usgs.gov/EarthExplorer/</u>. The source data set for the images is Thematic Mapper (TM) Landsat 4-5, and contains satellite images with a period of record from July 1982 to present. Spatial coverage that includes the Bonneville Salt Flats is shown in Figure A1.1. The latitude – longitude coordinates (degree/minute/second) from the northwest to the southeast corner of this coverage are 41/31/08 N - 114/02/35 W, and 40/38/16 N - 112/34/23 W, respectively.

To facilitate comparison of the salt crust distribution in the October 1988 and 2003 Landsat 4-5 images, their respective coverages were cropped to include the Bonneville Salt Flats and selected adjacent land marks such as Floating Island (see yellow-bounded rectangle in Figure A1.1). Comparison of Figures A1.2A and B show the effects on salt-crust area that resulted from the 1996 construction of a berm extending from the north end of the lease collection ditch to Floating Island as part of the Salt Laydown Project. This berm usually restricted the transient winter pond to the west side of the collection ditch (Figure A1.2B). Prior to the berm's construction, the winter pond had an unrestricted path that allowed it to flow around the north end of the collection ditch (Figure A1.2B).

Figure A1.1. – October 17, 1988 TM Landsat 4-5 preview imagery of the Great Salt Lake Desert, which includes Bonneville Salt Flats and Newfoundland Basin. The 1988 and 2003 images illustrated in Figures A1.2A and B were cropped to match an area similar to that shown bounded by the yellow rectangle. Scale bar is approximate.

Figure A1.2. – Comparison of cropped TM Landsat 4-5 satellite images of Bonneville Salt Flats dated October 17, 1988 (A1.2A) and October 11, 2003 (A1.2B). The visible salt crust north of I-80 in figure A1.2A is the source of the revised 1988 salt-crust boundary (also see Figure A1.1). The difference between 1988 and 2003 salt-crust area is due to the 1996 construction of a berm from the north end of the lease collection ditch to Floating Island as part of the 1997-2002 Salt Laydown Project. Bar scales are approximate.

APPENDIX A2

Table A2.1.1. – Salt-crust stratigraphic logs for bore holes D-03 through D-15B	5
Table A2.1.2 Salt-crust stratigraphic logs for bore holes D-24 through D-41	5
Table A2.1.3 Salt-crust stratigraphic logs for bore holes D-02 through D-17	6
Table A2.1.4 Salt-crust stratigraphic logs for bore holes D-18 through D-27	6
Table A2.1.5 Salt-crust stratigraphic logs for bore holes D-28 through D-43	7
Table A2.1.6 Salt-crust stratigraphic logs for bore holes D-44 through D-56	7
Table A2.1.7 Salt-crust stratigraphic logs for bore holes D-57 through D-64	8
Table A2.1.8 Salt-crust stratigraphic logs for bore holes D-65 through D-72	8
Table A2.1.9 Salt-crust stratigraphic logs for bore holes D-29 through D-54	9
Table A2.2.1. – Comparison of salt-crust thickness difference between mud-auger and UDOT-pole measurement methods (auger < pole, $n=23$; and auger = pole, $n=5$)	10
Table A2.2.2 Comparison of salt-crust thickness difference between mud-auger and UDOT-pole measurement methods (auger > pole, n=27)	11

Bore Hole	D-	·03	D-	-05	D-	-07	D	-10	D	-11	D-	12B	D-	-14	D- 1	15B
Thickness	ft	inches	ft	inches												
DCH	0.04	0.50	0.12	1.44	0.03	0.36	0.10	1.25	0.11	1.32	0.50	6.00	0.20	2.38	0.15	1.80
1st Gyp	1.46	17.5	0.38	4.56	1.27	15.24	1.17	14.00	0.14	1.68	1.24	14.88	0.18	2.13	0.50	6.00
СН			0.32	3.84		0.00	0.00		2.15	25.80	1.06	12.72	2.29	27.50	2.55	30.60
Measured	1.50	18.00	0.82	9.84	1.30	15.60	1.27	15.25	2.40	28.80	2.80	33.60	2.67	32.00	3.20	38.40
SC/Clay	1.50	18.00	1.70	20.40	1.30	15.60	1.27	15.25	2.40	28.80	2.80	33.60	2.67	32.00	3.20	38.40
STWL							0.08	1.00	0.77	9.24	1.34	16.08	1.08	13.00	0.85	10.20

Table A2.1.1. – Salt-crust stratigraphic logs for bore holes D-03 through D-15B (see Figure 4)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Bore Hole	D-	-24	D-	25	D-	30	D	-34	D	-37	D	-41
Thickness	ft	inches										
DCH	0.13	1.50	0.17	2.00	0.19	2.25	0.21	2.50	0.29	3.50	0.25	3.00
1st Gyp	0.04	0.50	0.04	0.50	0.02	0.25	0.04	0.50	0.02	0.25	0.15	1.75
СН	3.92	47.00	2.54	30.50	3.38	40.50	4.08	49.00	2.27	27.25	2.60	31.25
Measured	4.08	49.00	2.75	33.00	3.58	43.00	4.33	52.00	2.58	31.00	3.00	36.00
SC/Clay	4.08	49.00	2.75	33.00	3.58	43.00	4.33	52.00	2.58	31.00	3.00	36.00
STWL	0.98	11.75	1.92	23.00	0.65	7.75	0.25	3.00	0.25	3.00	0.42	5.00

Table A2.1.2. - Salt-crust stratigraphic logs for bore holes D-24 through D-41 (see Figure 4)

DCH Dense-cemented halite (surface stratum of the salt crust)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Bore Hole	D-	-02	D-	·04	D-()6B	D	-08	D	-09	D	-13	D-	-16	D-	·17
Thickness	ft	inches	ft	in												
DCH	0.02	0.25	0.13	1.50	0.38	4.50	0.10	1.20	0.13	1.50	0.13	1.50	0.19	2.25	0.13	
1st Gyp	1.15	13.75	1.42	17.00	1.29	15.50	0.15	1.80	1.46	17.50	1.38	16.50	1.31	15.75	1.08	1
СН							0.27	3.20								
2nd Gyp							0.05	0.60								
Measured	1.17	14.00	1.54	18.50	1.67	20.00	0.57	6.80	1.58	19.00	1.50	18.00	1.50	18.00	1.21	1
SC/Clay	1.17	14.00	1.54	18.50	1.67	20.00	1.30	15.60	1.58	19.00	1.50	18.00	1.50	18.00	1.21	1
STWL			1.71	20.50			1.25	15.00					1.31	15.75		

Table A2.1.3. - Salt-crust stratigraphic logs for bore holes D-02 through D-17 (see Figure 4)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Bore Hole	D-	-18	D-	-19	D-	20	D	-21	D	-22	D	-23	D-	26	D-	27
Thickness	ft	inches														
DCH	0.08	1.00	0.25	3.00	0.21	2.50	0.15	1.75	0.04	0.50	0.25	3.00	0.06	0.75	0.04	0.50
1st Gyp	0.54	6.50	0.13	1.50	0.77	9.25	2.02	24.25	0.96	11.50	0.13	1.50	1.10	13.25	0.88	10.50
СН			0.13	1.50	0.98	11.75					0.31	3.75				
2nd Gyp			1.17	14.00	0.25	3.00					1.17	14.00				
Measured	0.63	7.50	1.67	20.00	2.21	26.50	2.17	26.00	1.00	12.00	1.85	22.25	1.17	14.00	0.92	11.00
SC/Clay	0.63	7.50	1.67	20.00	2.21	26.50	2.17	26.00	1.00	12.00	1.85	22.25	1.17	14.00	0.92	11.00
STWL			0.08	1.00	1.04	12.50					0.10	1.25				

Table A2.1.4. - Salt-crust stratigraphic logs for bore holes D-18 through D-27 (see Figure 4)

DCH Dense-cemented halite (surface stratum of the salt crust)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

inches

1.50

13.00

14.50

14.50

4)
4

Bore Hole	D-	28	D-	-31	D-	-32	D	-33	D	-36	D	-38	D-	-39	D-	43
Thickness	ft	inches														
DCH	0.29	3.50	0.17	2.00	0.10	1.25	0.27	3.25	0.15	1.75	0.33	4.00	0.06	0.75	0.13	1.50
1st Gyp	0.17	2.00	0.04	0.50	1.02	12.25	0.17	2.00	0.67	8.00	0.13	1.50	0.60	7.25	0.73	8.75
СН	0.42	5.00	1.58	19.00			2.40	28.75			2.15	25.75				
2nd Gyp	0.75	9.00														
Measured	1.63	19.50	1.79	21.50	1.13	13.50	2.83	34.00	0.81	9.75	2.60	31.25	0.67	8.00	0.85	10.25
SC/Clay	1.63	19.50	1.79	21.50	1.13	13.50	2.83	34.00	0.81	9.75	2.60	31.25	0.67	8.00	0.85	10.25
STWL	0.17	+2.00					0.13	+1.50			1.29	15.50			0.06	+0.75

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Bore Hole	D-	-44	D-	46	D-	48	D	-49	D	-50	D	-51	D-	-55	D-	56
Thickness	ft	inches														
DCH	0.21	2.50	0.04	0.50	0.02	0.25	0.02	0.25	0.02	0.25	0.02	0.25	0.08	1.00	0.31	3.75
1st Gyp	0.10	1.25	0.83	10.00	1.06	12.75	1.23	14.75	1.23	14.75	1.48	17.75	0.58	7.00	0.02	0.25
СН	2.02	24.25			0.08	1.00									2.67	32.00
2nd Gyp															0.71	8.50
Measured	2.33	28.00	0.88	10.50	1.17	14.00	1.25	15.00	1.25	15.00	1.50	18.00	0.67	8.00	3.71	44.50
SC/Clay	2.33	28.00	0.88	10.50	1.17	14.00	1.25	15.00	1.25	15.00	1.50	18.00	0.67	8.00	3.71	44.50
STWL	0.06	0.75	0.88	10.50	1.63	19.50	1.08	13.00							1.88	22.50

Table A2.1.6. - Salt-crust stratigraphic logs for bore holes D-44 through D-56 (see Figure 4)

DCH Dense-cemented halite (surface stratum of the salt crust)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface STWL Distance below ground level to static water level

 Table A2.1.7. - Salt-crust stratigraphic logs for bore holes D-57 through D-64 (see Figure 4)

Bore Hole	D-	57	D-	-58	D-	59	D	-60	D	-61	D	-62	D-	-63	D-	64
Thickness	ft	inches														
DCH	0.06	0.75	0.31	3.75	0.08	1.00	0.27	3.25	0.02	0.25	0.33	4.00	0.21	2.50	0.00	0.00
1st Gyp	0.71	8.50	1.90	22.75	1.04	12.50	0.13	1.50	1.19	14.25	1.17	14.00	0.10	1.25	0.67	8.00
СН							2.04	24.50					1.15	13.75		
2nd Gyp							1.48	17.75					1.04	12.50		
Measured	0.77	9.25	2.21	26.50	1.13	13.50	3.92	47.00	1.21	14.50	1.50	18.00	2.50	30.00	0.67	8.00
SC/Clay	0.77	9.25	2.21	26.50	1.13	13.50	3.92	47.00	1.21	14.50	1.50	18.00	2.50	30.00	0.67	8.00
STWL							1.17	14.00			1.58	19.00	0.83	10.00		

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Table A2.1.8	- Salt-crust	stratigrap	hic logs fo	or bore holes	D-65 through	n D-72 (see	Figure 4	1)
							— • • •	

Bore Hole	D-	-65	D-	66	D-	67b	D-	-68	D	-69	D	-70	D-	71	D-	72
Thickness	ft	inches														
DCH	0.13	1.50	0.25	3.00	0.15	1.75	0.06	0.75	0.17	2.00	0.06	0.75	0.02	0.25	0.08	1.00
1st Gyp			1.50	18.00			0.94	11.25	0.17	2.00	1.44	17.25	0.85	10.25	0.38	4.50
СН	1.15	13.75			2.56	30.75			0.25	3.00			0.29	3.50	0.21	2.50
2nd Gyp	0.79	9.50			0.50	6.00			0.50	6.00					0.92	11.00
СН									1.04	12.50						
Measured	2.06	24.75	1.75	21.00	3.21	38.50	1.00	12.00	2.13	25.50	1.50	18.00	1.17	14.00	1.58	19.00
SC/Clay	2.06	24.75	1.75	21.00	3.21	38.50	1.00	12.00	2.13	25.50	1.50	18.00	1.17	14.00	1.58	19.00
STWL	1.79	21.50	0.17	+2.00	0.75	9.00	0.75	9.00	0.42	5.00			1.38	16.50	1.71	20.50

DCH Dense-cemented halite (surface stratum of the salt crust)

Gyp Gypsum

CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface

STWL Distance below ground level to static water level

Bore Hole	D-	-29	D-	35	D-	-42	D	-45	D	-52	D	-53	D-	-54
Thickness	ft	inches												
DCH	0.10	1.25	0.21	2.50	0.21	2.50	0.33	4.00	0.21	2.50	0.33	4.00	0.08	1.00
1st Gyp	0.06	0.75	0.04	0.50	0.13	1.50	0.08	1.00	0.17	2.00	0.08	1.00	0.08	1.00
СН	0.50	6.00	1.17	14.00	0.50	6.00	0.08	1.00	0.63	7.50	0.13	1.50	0.13	1.50
2nd Gyp	0.08	1.00	0.13	1.50	0.17	2.00	0.08	1.00	0.17	2.00	0.08	1.00	0.08	1.00
СН	1.33	16.00	0.13	1.50	0.63	7.50	0.21	2.50	0.17	2.00	0.33	4.00	1.08	13.00
3 rd Gyp	1.13	13.50	0.13	1.50	0.25	3.00	0.08	1.00	0.17	2.00	0.17	2.00	0.08	1.00
СН			1.04	12.50	1.46	17.50	0.08	1.00	0.58	7.00	0.50	6.00	0.29	3.50
4 th Gyp			1.83	22.00	1.67	20.00	0.13	1.50	0.67	8.00	0.25	3.00	0.13	1.50
СН							0.67	8.00			1.13	13.50	0.13	1.50
5 th Gyp							0.13	1.50			0.71	8.50	0.08	1.00
СН							1.13	13.50					0.75	9.00
6 th Gyp							1.63	19.50					0.71	8.50
Measured	3.21	38.50	4.67	56.00	5.00	60.00	4.63	55.50	2.75	33.00	3.71	44.50	3.63	43.50
SC/Clay	3.21	38.50	4.67	56.00	5.00	60.00	4.63	55.50	2.75	33.00	3.71	44.50	3.63	43.50
STWL	0.42	5.00	0.63	7.50	0.50	6.00	0.54	6.50	0.42	5.00	0.46	5.50	0.33	4.00

Table A2.1.9. - Salt-crust stratigraphic logs for bore holes D-29 through D-54 (see Figure 4)

Gyp Gypsum CH Coarse halite

Measured Total salt crust measured

SC/Clay Distance below ground level to salt crust/clay interface STWL Distance below ground level to static water level

UTM_F	UTM-N	Bore	Auger	Pole	A-P,	A-P,	Location on Salt Crust
0 I M-L	01101-10	Hole#	Auger	1010	in.	ft.	Election on Sait Crust
264843.95	4519159.10	D-26	14.0	20.4	-6.4	-0.53	Thin salt crust, E margin (0.75 in DCH, 13.25 in gyp)
258806.53	4519028.32	D-37	31.3	34.8	-3.5	-0.29	Thick salt crust, W margin (3.5 in DCH, 0.25 in gyp, 27.25 in CH)
262352.54	4522327.37	D-23	22.3	25.2	-3.0	-0.25	Thin salt crust, W margin (3.0 in DCH, 1.5 in gyp, 3.75 in CH, 14.0 in gyp)
267644.08	4523412.73	D-70	18.0	20.4	-2.4	-0.20	Thin salt crust, E margin (0.75 in DCH, 17.25 in gyp)
							Thick salt crust, 2003 Track (E 7-mi) (2.5 in DCH, 0.5 in gyp, 14.0 in CH, 4.5 in CH&gyp, 12.5 in CH,
261313.67	4518449.85	D-35	56.0	58.2	-2.2	-0.18	22.0 in 4th gyp,)
259833.75	4520329.35	D-33	34.0	36.0	-2.0	-0.17	Thick salt crust, W margin (3.25 in DCH, 2.0 in gyp, 28.75 CH)
264345.80	4519792.88	D-65	24.8	26.4	-1.7	-0.14	Thick salt crust, E margin (1.5 in DCH, 13.75 CH, 9.5 in gyp)
267416.49	4526308.55	D-72	19.0	20.4	-1.4	-0.12	Thin salt crust, N end International Track (1.0 in DCH, 4.0 in gyp, 2.5 in CH, 11.0 in gyp)
262049.90	4522723.73	D-68	12.0	13.2	-1.2	-0.10	Thin salt crust, W margin (0.75 in DCH, 11.25 in gyp)
262768.62	4516590.66	D-36	9.8	10.8	-1.1	-0.09	Thin salt crust, E margin (1.75 in DCH, 8.0 in gyp)
264571.93	4516908.69	D-32	13.5	14.4	-0.9	-0.08	Thin salt crust, E margin (1.25 in DCH, 12.25 in gyp)
264040.96	4517584.38	D-59	13.5	14.4	-0.9	-0.08	Thin salt crust, E margin (1.0 in DCH, 12.5 in gyp)
263630.10	4523312.39	D-69	25.5	26.4	-0.9	-0.07	Thick salt crust, International Track
259637.77	4520571.04	D-66	21.0	21.6	-0.6	-0.05	Thin salt crust, W margin (3.0 in DCH, 18.0 in gyp)
262545.79	4514295.37	D-39	8.0	8.4	-0.4	-0.03	Thin salt crust, E margin (0.75 in DCH, 7.25 in gyp)
253730.47	4515068.88	D-48	14.0	14.4	-0.4	-0.03	Thin salt crust, W margin (0.25 in DCH, 12.75 in gyp, 1.0 in CH)
264392.92	4524946.95	D-71	14.0	14.4	-0.4	-0.03	Thin salt crust, W margin (0.25 in DCH, 10.25 in gyp, 3.5 in CH)
263336.50	4523667.59	D-19	20.0	20.4	-0.4	-0.03	Thin salt crust, W margin (3.0 in DCH, 14.0 in gyp)
265073.15	4516275.43	D-57	9.3	9.6	-0.4	-0.03	Thin salt crust, E margin (0.75 in DCH, 8.5 in gyp)
256419.07	4516865.08	D-43	10.3	10.6	-0.3	-0.03	Thin salt crust, W margin (1.5 in DCH, 8.75 in gyp)
265657.75	4525934.81	D-10	15.3	15.6	-0.3	-0.02	Thin salt crust, W margin (1.25 in DCH, 14.0 in gyp)
263572.55	4518175.72	D-31	21.5	21.6	-0.1	-0.01	Thick salt crust, E margin (2.0 in DCH, 19.0 in CH)
262309.35	4517181.71	D-58	26.5	26.6	-0.1	-0.01	Thick salt crust, E margin (3.75 in DCH, 22.75 in gyp)
267755.56	4527184.52	D-03	18.0	18.0	0.0	0.00	Thin salt crust, W margin (0.5 in DCH, 17.5 in gyp)
266637.08	4524670.25	D-12B	33.6	33.6	0.0	0.00	Thick salt crust, International Track
266378.76	4522409.64	D-16	18.0	18.0	0.0	0.00	Thin salt crust, E margin (2.25 in DCH, 15.75 in gyp)
266106.07	4520157.42	D-22	12.0	12.0	0.0	0.00	Thin salt crust, E margin (0.5 in DCH, 11.5 in gyp)
257546.45	4518036.65	D-62	18.0	18.0	0.0	0.00	Thin salt crust, W limb Salduro Loop (4.0 in DCH, 14.0 in gyp)

Table A2.2.1. – Comparison of salt-crust thickness difference between mud-auger and UDOT-pole measurement methods (auger < pole, n=23; and auger = pole, n=5)

UTM-E & UTM-N Universal Transverse Mercator coordinates (easting and northing, respectively), NAD 27 datum

A-P Auger minus Pole thickness measurement (expressed in both feet and inches)

DCH Dense-cemented halite

CH Coarse halite

gyp gypsum

UTM-F	UTM-N	Bore	Auger	Pole	A-P,	A-P,	Location on Salt Crust
01ML	0 mm ry	Hole#	nuger	1010	in.	ft.	
266880.06	4521778.82	D-17	14.5	14.4	0.1	0.01	Thin salt crust, E margin (1.5 in DCH, 13.0 in gyp)
265843.57	4517899.38	D-61	14.5	14.4	0.1	0.01	Thin salt crust, E margin (0.25 in DCH, 14.25 in gyp)
261589.23	4520696.48	D-29	38.5	38.4	0.1	0.01	Thick salt crust, International Track
265339.22	4518530.30	D-27	11.0	10.8	0.2	0.02	Thin salt crust, E margin (0.5 in DCH, 10.5 in gyp)
266600.14	4519529.26	D-64	8.0	7.8	0.2	0.02	Thin salt crust, E margin (0.0 in DCH, 8.0 in gyp)
260973.73	4521494.42	D-28	19.5	19.2	0.3	0.03	Thick salt crust, W margin
255138.12	4515888.11	D-46	10.5	10.2	0.3	0.03	Thin salt crust, W limb Salduro Loop (1.0 in DCH, 10.0 in gyp)
261811.22	4517816.09	D-60	47.0	46.2	0.8	0.07	Thick salt crust, 2003 Track (E 7-mi)
265604.77	4520788.24	D-21	26.0	25.2	0.8	0.07	Thin salt crust, E margin (1.75 in DCH, 24.25 in gyp)
263076.13	4518806.39	D-63	30.0	28.8	1.2	0.10	Thick salt crust, 2003 Track (E 7-mi)
257785.10	4517717.96	D-41	36.0	34.8	1.2	0.10	Thick salt crust, W limb Salduro Loop
261606.18	4515467.17	D-38	31.3	30.0	1.3	0.10	Thick salt crust, E limb Salduro Loop
264122.08	4522676.37	D-67B	38.5	37.2	1.3	0.11	Thick salt crust, International Track
268391.37	4525076.46	D-09	19.0	17.6	1.4	0.11	Thin salt crust, E margin (1.5 in DCH, 17.5 in gyp)
263308.04	4515912.26	D-55	8.0	6.6	1.4	0.12	Thin salt crust, E margin (1.0 in DCH, 7.0 in gyp)
256811.82	4516368.25	D-44	28.0	26.4	1.6	0.13	Thick salt crust, W limb Salduro Loop
253993.66	4514754.90	D-49	15.0	13.2	1.8	0.15	Thin salt crust, W limb Salduro Loop (0.25 in DCH, 14.75 in gyp)
252997.41	4514403.12	D-50	15.0	13.2	1.8	0.15	Thin salt crust, W limb Salduro Loop (0.25 in DCH, 14.75 in gyp)
265383.25	4523683.26	D-15B	38.0	36.0	2.0	0.17	Thick salt crust, International Track
265111.41	4521419.42	D-20	26.5	24.0	2.5	0.21	Thick salt crust, 2003 Track (E 7-mi)
261114.04	4516098.31	D-56	44.5	42.0	2.5	0.21	Thick salt crust, E limb Salduro Loop
263845.28	4520429.16	D-25	33.0	30.0	3.0	0.25	Isopach High-Thick salt crust, 2003 Track (E 7-mi)
262578.58	4519440.14	D-30	43.0	39.6	3.4	0.28	Thick salt crust (between Isopach highs @ D-25 & D-35)
264852.50	4524365.65	D-14	32.0	27.6	4.4	0.37	Isopach High-Thick salt crust (2.38 in DCH, 2.13 in gyp, 27.5 in CH)
253306.11	4514024.25	D-51	18.0	13.2	4.8	0.40	Thin salt crust, W limb Salduro Loop (0.25 in DCH, 17.75 in gyp)
260320.15	4519709.37	D-34	52.0	40.8	11.2	0.93	Isopach High-Thick salt crust, International Track
262848.70	4521688.18	D-24	49.0	36.0	13.0	1.08	Isopach High-Thick salt crust, International Track

Table A2.2.2. - Comparison of salt-crust thickness difference between mud-auger and UDOT-pole measurement methods (auger > pole, n=27)

UTM-E & UTM-N Universal Transverse Mercator coordinates (easting and northing, respectively), NAD 27 datum

A-P Auger minus Pole thickness measurement (expressed in both feet and inches)

DCH Dense-cemented halite

CH Coarse halite

gyp gypsum

APPENDIX A3

INTRODUCTION	- 1
TABLE A3.1. – RESULTS OF ARCGIS GEOSTATISTICAL WIZARD CROSS VALIDATION ON 2003 BOREHOLES D-02 THROUGH D-45	3
TABLE A3.2. – RESULTS OF ARCGIS GEOSTATISTICAL WIZARD CROSSVALIDATION ON 2003 BOREHOLES D-46 THROUGH D-72	4
TABLE A3.3. – PREDICTION ERRORS FROM CROSS VALIDATION OF 2003 BORE-HOLE SAMPLES	4

INTRODUCTION

Kriging Algorithms

Ordinary Kriging produces interpolation values by assuming a constant but unknown mean value, allowing local influences due to nearby neighboring values. Because the mean is unknown, there are few assumptions. This makes ordinary kriging particularly flexible, but perhaps less powerful than other methods.

Simple Kriging produces interpolation values by assuming a constant but known mean value, allowing local influences due to nearby neighboring values. Because the mean is known, it is slightly more powerful than ordinary kriging, but in many situations the selection of a mean value is not obvious (Environmental Systems Research Institute 1991-2002).

Selected Kriging Algorithm and Methodology

The statistical method used to create each isopach map was ordinary kriging, which was accomplished in the following steps (Johnston and others 2001):

- The borehole data were examined with the Geostatistical Analyst "Explore Data" function, which helped identify the type of data distribution (normal or skewed) and any global trends:
 - 1988 and 2003 bore-hole data distributions were marginally normal with respective skewness values of 0.62 and 0.88.
 - Respective mean and median values of both the 1988 and 2003 salt-crust thickness measurements showed reasonable agreement, but the median was less than the mean in both data sets (thus positive skewness of data resulted).
 - Trend analysis of both 1988 and 2003 bore-hole data indicated a strong global trend from southwest to northeast that could be described using a second-order polynomial function; this trend exists because BSF salt crust is lens-shaped in cross section and has a long axis that trends northeast-southwest.
- Ordinary kriging using a spherical model was performed with the Geostatistical Analyst "Geostatistical Wizard," and the global trend was removed by selecting the trend removal second-order function.
- After detrending, examination of the semivariogram surfaces from both sets of borehole data (1988 and 2003) showed presence of directional autocorrelation or anisotropy (unlike the global trend which is due to fixed effects such as topography, the cause of anisotropy is usually unknown, and is modeled as random error).
- To better fit a model to the 1988 and 2003 data, the Anisotropy option of the Geostatistical Analyst was used, which calculates the semivariogram model in

different directions and estimates the optimum parameters required to account for the observed anisotropy.

- After these parameters were input to the Geostatistical Wizard to calculate the semivariogram model, the final product was a kriged continuous surface of thickness values for each of the 1988 and 2003 bore-hole thickness data sets.
- Cross validation of the 1988 and 2003 data sets was performed to examine the degree of matching between the measured and predicted salt crust thickness measurements at each bore-hole location for the 1988 and 2003 kriged surfaces.

Examples of cross validation results for the 2003 auger borehole data sets are shown in the tables that follow.

								0
Borehole#	UTM-E	UTM-N	Measured	Predicted	StdError	Error	Stdd_Error	NormValue
D-02	268978.89	4526512.30	1.17	1.59	0.431	0.420	0.973	1.159
D-03	267755.56	4527184.52	1.50	1.35	0.440	-0.146	-0.331	-0.451
D-04	268054.98	4526801.68	1.54	1.45	0.420	-0.087	-0.208	-0.372
D-05	268547.04	4526187.00	1.70	1.31	0.374	-0.388	-1.038	-1.159
D-06B	269051.13	4525548.17	1.67	1.23	0.491	-0.442	-0.901	-1.027
D-07	266914.26	4526948.55	1.30	1.39	0.510	0.086	0.168	0.036
D-08	267914.59	4525672.95	1.30	1.90	0.431	0.596	1.382	2.019
D-09	268391.37	4525076.46	1.58	1.65	0.438	0.066	0.151	0.000
D-10	265657.75	4525934.81	1.27	1.64	0.514	0.369	0.717	0.757
D-11	266150.26	4525315.25	2.40	2.31	0.466	-0.087	-0.187	-0.257
D-12B	266637.08	4524670.25	2.80	2.21	0.499	-0.586	-1.173	-1.315
D-13	267797.71	4523219.96	1.50	1.31	0.394	-0.189	-0.480	-0.619
D-14	264852.50	4524365.65	2.67	2.31	0.464	-0.363	-0.782	-0.967
D-15B	265383.25	4523683.26	3.20	2.93	0.502	-0.267	-0.532	-0.663
D-16	266378.76	4522409.64	1.50	2.06	0.499	0.561	1.125	1.407
D-17	266880.06	4521778.82	1.21	1.27	0.466	0.055	0.119	-0.036
D-18	267376.11	4521155.48	0.63	0.66	0.546	0.026	0.048	-0.109
D-19	263336.50	4523667.59	1.67	1.52	0.451	-0.153	-0.338	-0.491
D-20	265111.41	4521419.42	2.21	2.41	0.497	0.199	0.400	0.372
D-21	265604.77	4520788.24	2.17	1.43	0.465	-0.738	-1.588	-1.638
D-22	266106.07	4520157.42	1.00	1.22	0.466	0.224	0.481	0.491
D-23	262352.54	4522327.37	1.85	2.12	0.433	0.273	0.632	0.663
D-24	262848.70	4521688.18	4.08	2.92	0.498	-1.162	-2.332	-2.445
D-25	263845.28	4520429.16	2.75	3.01	0.498	0.265	0.532	0.575
D-26	264843.95	4519159.10	1.17	1.51	0.464	0.340	0.734	0.911
D-27	265339.22	4518530.30	0.92	1.26	0.467	0.340	0.728	0.806
D-28	260973.73	4521494.42	1.63	2.09	0.508	0.463	0.911	1.091
D-29	261589.23	4520696.48	3.21	3.75	0.511	0.536	1.048	1.315
D-30	262578.58	4519440.14	3.58	3.76	0.499	0.176	0.352	0.333
D-31	263572.55	4518175.72	1.79	1.46	0.460	-0.332	-0.722	-0.911
D-32	264571.93	4516908.69	1.13	1.01	0.480	-0.123	-0.256	-0.411
D-33	259833.75	4520329.35	2.83	2.39	0.393	-0.444	-1.130	-1.233
D-34	260320.15	4519709.37	4.33	3.42	0.530	-0.906	-1.710	-1.796
D-35	261313.67	4518449.85	4.67	4.47	0.548	-0.202	-0.368	-0.533
D-36	262768.62	4516590.66	0.81	1.58	0.469	0.767	1.635	2.445
D-37	258806.53	4519028.32	2.58	2.96	0.513	0.381	0.743	0.967
D-38	261606.18	4515467.17	2.60	2.25	0.513	-0.349	-0.681	-0.806
D-39	262545.79	4514295.37	0.67	0.88	0.652	0.207	0.318	0.257
D-41	257785.10	4517717.96	3.00	2.25	0.435	-0.750	-1.725	-2.019
D-42	259271.78	4515821.17	5.00	4.57	0.611	-0.426	-0.697	-0.857
D-43	256419.07	4516865.08	0.85	1.46	0.493	0.605	1.228	1.512
D-44	256811.82	4516368.25	2.33	2.11	0.485	-0.222	-0.457	-0.575
D-45	258512.81	4514211.49	4.63	4.50	0.633	-0.126	-0.198	-0.295

Table A3.1. - Results of ArcGIS Geostatistical Wizard Cross Validation on 2003 boreholes D-02 through D-45

UTM Universal Transverse Mercator coordinates (easting and northing); NAD 27 datum. StdError Standard error; StddError Standard-deviation error

Borehole#	UTM-E	UTM-N	Measured	Predicted	StdError	Error	Stdd_Error	NormValue
D-46	255138.12	4515888.11	0.88	0.92	0.554	0.041	0.073	-0.073
D-48	253730.47	4515068.88	1.17	0.88	0.431	-0.288	-0.668	-0.757
D-49	253993.66	4514754.90	1.25	1.45	0.427	0.205	0.480	0.451
D-50	252997.41	4514403.12	1.25	0.79	0.486	-0.465	-0.956	-1.091
D-51	253306.11	4514024.25	1.50	1.63	0.457	0.128	0.281	0.220
D-52	256311.85	4514408.74	2.75	3.55	0.627	0.798	1.272	1.796
D-53	260277.94	4514556.36	3.71	3.85	0.596	0.142	0.238	0.146
D-54	257507.71	4515471.38	3.63	3.78	0.579	0.147	0.254	0.183
D-55	263308.04	4515912.26	0.67	0.84	0.500	0.170	0.339	0.295
D-56	261114.04	4516098.31	3.71	3.63	0.500	-0.078	-0.156	-0.220
D-57	265073.15	4516275.43	0.77	-0.09	0.591	-0.863	-1.460	-1.512
D-58	262309.35	4517181.71	2.21	2.46	0.461	0.246	0.534	0.619
D-59	264040.96	4517584.38	1.13	1.04	0.465	-0.094	-0.202	-0.333
D-60	261811.22	4517816.09	3.92	3.62	0.475	-0.300	-0.630	-0.709
D-61	265843.57	4517899.38	1.21	0.52	0.517	-0.686	-1.328	-1.407
D-62	257546.45	4518036.65	1.50	2.07	0.451	0.572	1.267	1.638
D-63	263076.13	4518806.39	2.50	2.70	0.464	0.195	0.421	0.411
D-64	266600.14	4519529.26	0.67	0.62	0.514	-0.049	-0.095	-0.146
D-65	264345.80	4519792.88	2.06	2.00	0.464	-0.058	-0.124	-0.183
D-66	259637.77	4520571.04	1.75	2.18	0.436	0.434	0.995	1.233
D-67B	264122.08	4522676.37	3.21	3.30	0.499	0.088	0.176	0.073
D-68	262049.90	4522723.73	1.00	1.31	0.481	0.308	0.640	0.709
D-69	263630.10	4523312.39	2.13	2.48	0.427	0.351	0.823	1.027
D-70	267644.08	4523412.73	1.50	1.58	0.382	0.081	0.213	0.109
D-71	264392.92	4524946.95	1.17	1.55	0.520	0.381	0.732	0.857
D-72	267416.49	4526308.55	1.58	1.79	0.416	0.214	0.513	0.533

Table A3.2. - Results of ArcGIS Geostatistical Wizard Cross Validation on 2003 boreholes D-46 through D-72

UTM Universal Transverse Mercator coordinates (easting and northing); NAD 27 datum. StdError Standard error; StddError Standard-deviation error

Mean	0.00129
Root-Mean-Square	0.4094
Average Standard Error	0.49
Mean Standardized	0.003245
Root-Mean-Square Standardized	0.8376
n	69

Table A3.3. - Prediction Errors from cross validation of 2003 borehole samples

APPENDIX A4

1120) ui	20) at the solution 100 g/L emonde contour to bole hole "o at the center of the Donnevine Suit Fluis (after Notari C. 1720 and 1727) (see Figure 11).											
Bore			Surface	DTW	DTW		Bri	ne Chem	istry, g/I		1	
hole	UTM-E	UTM-N	Elev., ft ¹	ft BGL	Elev., ft	TDS	Cl	K_2O	MgO	SO_4	CaO	Log
209	288,783.81	4,432,867.60	4254.0	3.5	4250.5	216.9	123.0	3.1	ND	ND	ND	Barren flat. Clay to 8.5 ft.
208	288,825.97	4,434,469.86	4252.0	4.0	4248.0	ND	118.0	3.8	ND	2.0	ND	Barren flat. Clay to 6.0 ft; caved.
207	288,868.14	4,436,114.28	4250.0	3.5	4246.5	ND	129.0	4.0	ND	2.0	ND	Barren flat. Clay to 4.5 ft; caved.
206	288,910.30	4,437,674.37	4249.0	3.5	4245.5	ND	125.0	4.6	ND	2.0	ND	Barren flat. Clay to 7.0 ft; caved.
192	288,952.47	4,439,192.30	4249.0	4.5	4244.5	ND	107.0	4.2	ND	2.0	ND	Barren flat. Clay to 8.5 ft.
129	288,734.25	4,444,869.94	4247.0	3.0	4244.0	ND	114.0	3.5	ND	ND	ND	Barren flat. Clay to 7.0 ft; caved.
219	279,212.44	4,449,143.15	4239.0	2.0	4237.0	ND	130.0	3.7	ND	2.0	ND	Barren flat. Clay to 8.5 ft.
224	271,454.14	4,459,051.84	4229.0	4.0	4225.0	193.9	110.5	2.9	7.3	3.6	ND	Scattered dunes. Clay to 10.0 ft
223	273,056.40	4,459,009.67	4229.0	6.5	4222.5	ND	132.0	3.4	ND	2.0	ND	Barren flat. Clay to 8.5 ft.
232	270,598.65	4,468,967.22	4227.0	4.0	4223.0	ND	138.0	3.9	ND	ND	ND	Barren flat. Clay to 8.5 ft.
55	260,188.69	4,478,965.84	4227.5	1.5	4226.0	257.0	144.5	5.0	4.3	2.8	ND	Barren flat. Clay to 4.0 ft; caved.
54	260,505.10	4,488,648.06	4224.0	2.0	4222.0	ND	121.0	5.3	ND	ND	ND	Barren flat. Clay to 8.5 ft.
246	252,721.36	4,498,551.76	4217.0	0.5	4216.5	199.3	114.5	4.6	ND	ND	ND	Scattered brush. Clay to 5.0 ft; caved.
3	250,063.50	4,514,055.96	4214.0	2.5	4211.5	283.5	165.9	5.5	5.7	5.2	ND	Barren [mud]flat. Clay to 8 ft.
5	253,227.62	4,513,644.62	4213.0	0.3	4212.8	335.5	189.5	12.2	10.6	4.1	ND	Salt flat. Salt to 1.5 ft; clay to 8 ft.
8	258,037.09	4,513,328.21	4213.0	0.3	4212.7	336.7	198.7	14.9	12.1	4.8	ND	Salt flat. Salt to 3.5 ft; clay to 6 ft; caved.

Table A4.1. – Summary of bore-hole groundwater elevations (DTW) and brine chemistry from 16 bore holes on a 54-mile south-to-north transect that extended from bore hole #209 at the southern 100 g/L chloride contour to bore hole #8 at the center of the Bonneville Salt Flats (after Nolan c. 1926 and 1927) (see Figure 11).

¹Surface elevations estimated from bore-hole locations (Nolan 1927, plate 3) replotted on U.S. Geological Survey 7.5 minute topographic maps

DTW Depth to water

BGL Below ground level

TDS Total dissolved solids

ND No data

- Calculate groundwater gradient from bore-hole #209 to #8 within 100 g/L chloride contour associated with Bonneville Salt Flats (975 square-mile area designated as GSLD-BSF*), where:
 - Elevation difference between bore holes #209 & #8 (4254.0 & 4213.0 ft, respectively) = 41 feet
 - Estimated distance between bore holes #209 & #8 = 54 miles or 285,120 feet

Groundwater gradient =
$$\frac{41.0 \ ft}{54 \ mi}$$
 = 0.76 *ft / mi*

Equation 2

Groundwater gradient =
$$\frac{41.0 \ ft}{285,120 \ ft} = 0.14 \times 10^{-3}$$

- Calculate Total Dissolved Solids (TDS) concentration gradient from bore hole #209 to #8 within 100 g/L chloride contour associated with Bonneville Salt Flats (975 square-mile area designated as GSLD-BSF*), where:
 - TDS difference between bore holes #209 & #8 (216.9 & 336.7 g/L, respectively) = 119.8 g/L
 - Estimated distance between bore holes #209 & #8 = 54 miles

Equation 3

TDS concentration gradient =
$$\frac{119.8 \text{ g}/L}{54 \text{ mi}}$$
 = 2.2 g/L/mi

*GSLD-BSF = Great Salt Lake Desert, Bonneville Salt Flats

APPENDIX A5

TABLE A5.1 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 69BOREHOLES DRILLED IN OCTOBER, 2003, USING THE MUD-AUGER-MEASUREMENTMETHOD AND 2003 SALT-CRUST BOUNDARY; SEE FIGURE 8B.METHOD AND 2003 SALT-CRUST BOUNDARY; SEE FIGURE 8B.
TABLE A5.2 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 55 OF 69BOREHOLES DRILLED IN OCTOBER, 2003, USING THE UDOT POLE-MEASUREMENTMETHOD AND 2003 SALT-CRUST BOUNDARY; SEE FIGURE 8A.22
TABLE A5.3 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 118BOREHOLES DRILLED IN 1988 USING THE UDOT POLE-MEASUREMENT METHOD(BROOKS, 1991) AND REVISED 1988 SALT-CRUST BOUNDARY (OCTOBER 1988 LANDSAT4-5); SEE FIGURE 9B.23
TABLE A5.4 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 118 BOREHOLES DRILLED IN 1988 USING THE UDOT POLE-MEASUREMENT METHOD AND THE 1988 SALT-CRUST BOUNDARY DEFINED BY BROOKS (1991, P. 8)
TABLE A5.5 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR THE 4SQUARE-MILE AREA EXCLUDED BY BROOKS (1991, P. 5-8); SEE FIGURE 2
TABLE A5.6 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 1-FOOT THICKNESS CONTOUR (SEE FIGURE 8B);SALT-CRUST THICKNESS WAS DETERMINED BY THE MUD AUGER-MEASUREMENTMETHOD
TABLE A5.7 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 2-FOOT THICKNESS CONTOUR (SEE FIGURE 8B);SALT-CRUST THICKNESS WAS DETERMINED BY THE MUD-AUGER-MEASUREMENTMETHOD
TABLE A5.8 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 3-FOOT THICKNESS CONTOUR (SEE FIGURE 8B);SALT-CRUST THICKNESS WAS DETERMINED BY THE MUD-AUGER-MEASUREMENTMETHOD
TABLE A5.9. – DISTRIBUTION OF 2003 SALT-CRUST VOLUME WITHIN SELECTEDTHICKNESS CONTOURS; VOLUME BASED ON MUD-AUGER-MEASUREMENT METHOD.28
TABLE A5.10 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 1-FOOT THICKNESS CONTOUR (SEE FIGURE 9A);SALT-CRUST THICKNESS WAS DETERMINED BY THE UDOT POLE-MEASUREMENTMETHOD
TABLE A5.11 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 2-FOOT THICKNESS CONTOUR (SEE FIGURE 9A);SALT-CRUST THICKNESS WAS DETERMINED BY THE UDOT POLE-MEASUREMENTMETHOD
TABLE A5.12 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 2003SALT-CRUST AREA WITHIN THE 3-FOOT THICKNESS CONTOUR (SEE FIGURE 9A);SALT-CRUST THICKNESS WAS DETERMINED BY THE UDOT POLE-MEASUREMENTMETHOD
TABLE A5.13. – DISTRIBUTION OF 2003 SALT-CRUST VOLUME WITHIN SELECTEDTHICKNESS CONTOURS; VOLUME BASED ON UDOT POLE-MEASUREMENT METHOD. 31
TABLE A5.14 VOLUME AND AREA OUTPUT FROM ARCGIS 3D ANALYST ¹ , FOR 1988SALT-CRUST AREA WITHIN THE 1-FOOT THICKNESS CONTOUR (SEE FIGURE 9B);SALT-CRUST THICKNESS WAS DETERMINED BY THE UDOT POLE-MEASUREMENTMETHOD

TABLE A5.18. – DISTRIBUTION OF 1988 SALT-CRUST VOLUME WITHIN SELECTEDTHICKNESS CONTOURS; VOLUME BASED ON UDOT POLE-MEASUREMENT METHOD. 35

Table A5.1. - Volume and area output from ArcGIS 3D Analyst¹, for 69 boreholes drilled in October, 2003, using the mud-auger-measurement method and 2003 salt-crust boundary; see Figure 8B.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	99,547,261.49 m
3D Area:	99,547,268.02 m
Volume:	75,795,632.33 m ³

¹Dataset is FY04TSC69clip, and output file is FY04TSC_69AareavolB.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 1

75,795,632
$$m^3 \times \frac{35.31 \ ft^3}{1 \ m^3} \times \frac{1 \ acre - ft}{43,560 \ ft^3} = 61,440 \ acre - ft$$

Equation 2

99,547,261
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 38.43 \ mi^2$$

Conversion of acre-feet to tons:

$$61,440 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 146.9 \times 10^6 \ tons$$

Table A5.2. - Volume and area output from ArcGIS 3D Analyst¹, for 55 of 69 boreholes drilled in October, 2003, using the UDOT pole-measurement method and 2003 salt-crust boundary; see Figure 8A.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	99,664,905.35 m
3D Area:	99,664,910.41 m
Volume:	70,716,309.70 m ³

¹Dataset is FY04_55pclip, and output file is FY04TSC_55Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness

which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 4

70,716,310
$$m^3 \times \frac{35.31 ft^3}{1 m^3} \times \frac{1 \, acre - ft}{43,560 ft^3} = 57,323 \, acre - ft$$

Equation 5

99,664,905
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 38.48 \ mi^2$$

Conversion of acre-feet to tons:

57,323 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 137.1 \times 10^6 \ tons$$

Table A5.3. - Volume and area output from ArcGIS 3D Analyst¹, for 118 boreholes drilled in 1988 using the UDOT pole-measurement method (Brooks, 1991) and revised 1988 salt-crust boundary (October 1988 Landsat 4-5); see Figure 9B.

Type:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	118,931,558.06 m
3D Area:	118,931,565.02 m
Volume:	73,567,651.91 m ³

¹Dataset is FY88118clipLS, and output file is FY88TSC_118bh_100188LS5bdryB_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 7

73,567,952
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ ft}}{43,560 \text{ ft}^3} = 59,635 \text{ acre} - \text{ ft}$$

Equation 8

118,931,558
$$m^2 \times \frac{1 \, acre}{4,047 \, m^2} \times \frac{1 \, mi^2}{640 \, acre} \equiv 45.9 \, mi^2$$

Conversion of acre-feet to tons:

Equation 9

$$59,635 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 142.6 \times 10^6 \ tons$$

.

Table A5.4. - Volume and area output from ArcGIS 3D Analyst¹, for 118 boreholes drilled in 1988 using the UDOT pole-measurement method and the 1988 salt-crust boundary defined by Brooks (1991, p. 8).

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	109,135,970.35 m
3D Area:	109,135,977.15 m
Volume:	66,694,975.57 m ³

¹Dataset is FY88118clip88, and output file is FY88TSC_118Pareavol88bdry.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 10

66,694,976
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ft}}{43,560 \text{ ft}^3} \equiv 54,063 \text{ acre} - \text{ft}$$

109,135,970
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} = 42.1 \ mi^2$$

Table A5.5. - Volume and area output from ArcGIS 3D Analyst¹, for the 4 square-mile area excluded by Brooks (1991, p. 5-8); see Figure 2.

	—
Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	8,656,756.51 m
3D Area:	8,656,757.02 m
Volume:	6,747,593.70 m ³
1	

¹Dataset is FY88brookclip, and output file is FY88brookclipareavol.txt

²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 12

6,747,594
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ ft}}{43,560 \text{ ft}^3} = 5,470 \text{ acre} - \text{ ft}$$

Equation 13

$$8,656,757 \ m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 3.34 \ mi^2$$

Note: This area is based on ArcGIS calculation of area represented by cells above the 0.0-foot reference plane height (this is because thickness measurements taken from the salt-crust surface to the salt/clay interface were expressed as positive values). In an attempt to converge on 0.0 feet values, the ordinary kriging performed on the 1988 and 2003 bore-hole data by the ArcGIS Geostatistical Wizard predicted some negative thickness values in a small area of salt crust near the southeast corner of the 2003 GPS boundary. To more accurately calculate volume, these negative cells were eliminated by only considering values above the 0.0-foot reference plane. Consequently, as part of the volume calculation, the calculated area was slightly less than the measured polygon area of 4.0 square miles.

Conversion of acre-feet to tons:

5,470 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 13.1 \times 10^6 \ tons$$

Table A5.6. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 1-foot thickness contour (see Figure 8B); salt-crust thickness was determined by the mud auger-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	89,204,051.23 m
3D Area:	89,204,057.31 m
Volume:	73,358,823.80 m ³

¹Dataset is FY04A_1ftclip, and output file is FY04A_1ftcontClipareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 15

73,358,824
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ft}}{43,560 \text{ ft}^3} \equiv 59,465 \text{ acre} - \text{ft}$$

Equation 16

$$89,204,051 m^{2} \times \frac{1 acre}{4,047 m^{2}} \times \frac{1 mi^{2}}{640 acre} \equiv 34.4 mi^{2}$$

Conversion of acre-feet to tons:

59,465 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 142.2 \times 10^6 \ tons$$

Table A5.7. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 2-foot thickness contour (see Figure 8B); salt-crust thickness was determined by the mud-auger-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	55,414,905.36 m
3D Area:	55,414,909.50 m
Volume:	58,135,210.66 m ³

¹Dataset is FY04_2ftclip, and output file is FY04_2ftContClipareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 18

58,135,211
$$m^3 \times \frac{35.31 ft^3}{1 m^3} \times \frac{1 \, acre - ft}{43,560 ft^3} = 47,125 \, acre - ft$$

Equation 19

55,414,905
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 21.4 \ mi^2$$

Conversion of acre-feet to tons:

$$47,125 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 112.7 \times 10^6 \ tons$$

Table A5.8. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 3-foot thickness contour (see Figure 8B); salt-crust thickness was determined by the mud-auger-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	33,852,194.72 m
3D Area:	33,852,196.67 m
Volume:	41,474,725.88 m ³

¹Dataset is FY04693ftclip, and output file is FY04tsc_69bh_inside3ftContour_Aareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 21

41,474,726
$$m^3 \times \frac{35.31 \ ft^3}{1 \ m^3} \times \frac{1 \ acre - ft}{43,560 \ ft^3} \equiv 33,620 \ acre - ft$$

Equation 22

33,852,195
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 13.1 \ mi^2$$

Conversion of acre-feet to tons:

Equation 23

$$33,620 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 80.4 \times 10^6 \ tons$$

Table A5.9. – Distribution of 2003 salt-crust volume within selected thickness contours; volume based on mud-auger-measurement method.

2003 salt crust volume:	Acre-feet	Percent of total volume
Total volume	61,440	100
Vol w/in 1 to 4+-ft contour	59,465	97
Vol w/in 2 to 4+-ft contour	47,125	77
Vol w/in 3 to 4+-ft contour	33.620	55

Table A5.10. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 1-foot thickness contour (see Figure 9A); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	89,511,729.67 m
3D Area:	89,511,734.39 m
Volume:	68,419,813.07 m ³

¹Dataset is FY04551ftclip, and output file is FY04tsc_55bh_inside1ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 24

68,419,813
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ft}}{43,560 \text{ ft}^3} \equiv 55,462 \text{ acre} - \text{ft}$$

Equation 25

$$89,511,730 \ m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} = 34.6 \ mi^2$$

Conversion of acre-feet to tons:

Equation 26

55,462 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 132.6 \times 10^6 \ tons$$

2

Table A5.11. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 2-foot thickness contour (see Figure 9A); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	55,853,725.44 m
3D Area:	55,853,728.64 m
Volume:	52,927,542.03 m ³

¹Dataset is FY04552ftclip, and output file is FY04tsc_55bh_inside2ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 27

52,927,542
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ ft}}{43,560 \text{ ft}^3} = 42,903 \text{ acre} - \text{ ft}$$

Equation 28

55,853,725
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 21.6 \ mi^2$$

Conversion of acre-feet to tons:

Equation 29

$$42,903 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 102.6 \times 10^6 \ tons$$

2

Table A5.12. - Volume and area output from ArcGIS 3D Analyst¹, for 2003 salt-crust area within the 3-foot thickness contour (see Figure 9A); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	28,255,977.78 m
3D Area:	28,255,979.25 m
Volume:	31,568,125.47 m ³

¹Dataset is FY04553ftclip, and output file is FY04tsc_55bh_inside3ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 30

31,568,125
$$m^3 \times \frac{35.31 \ ft^3}{1 \ m^3} \times \frac{1 \ acre - ft}{43,560 \ ft^3} = 25,589 \ acre - ft$$

Equation 31

$$28,255,978 \ m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 10.9 \ mi^2$$

Conversion of acre-feet to tons:

Equation 32

25,589 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 61.2 \times 10^6 \ tons$$

Table A5.13. – Distribution of 2003 salt-crust volume within selected thickness contours; volume based on UDOT pole-measurement method.

2003 salt crust volume:	Acre-feet	Percent of total volume
Total volume	57,323	100
Vol w/in 1 to 4+-ft contour	55,462	97
Vol w/in 2 to 4+-ft contour	42,903	75
Vol w/in 3 to 4+-ft contour	25,589	45

Table A5.14. - Volume and area output from ArcGIS 3D Analyst¹, for 1988 salt-crust area within the 1-foot thickness contour (see Figure 9B); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	82,762,138.49 m
3D Area:	82,762,144.12 m
Volume:	66,535,578.45 m ³

¹Dataset is FY881881ftclp, and output file is FY88tsc_118bh_inside1ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 33

66,535,578
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ ft}}{43,560 \text{ ft}^3} = 53,934 \text{ acre} - \text{ ft}$$

Equation 34

$$82,762,138 \ m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} = 31.9 \ mi^2$$

Conversion of acre-feet to tons:

Equation 35

53,934 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 128.9 \times 10^6 \ tons$$

2

Table A5.15. - Volume and area output from ArcGIS 3D Analyst¹, for outlier of 1988 salt-crust area within the 1-foot thickness contour (see Figure 9B); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	476,562.36 m
3D Area:	476,562.36 m
Volume:	$148,273.43 \text{ m}^3$

¹Dataset is FY881ftclpout, and output file is FY88tsc_118bh_inside1ftcontour_outlier_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 36

148,273
$$m^3 \times \frac{35.31 \ ft^3}{1 \ m^3} \times \frac{1 \ acre - ft}{43,560 \ ft^3} = 120 \ acre - ft$$

Equation 37

$$476,562 \ m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 0.18 \ mi^2$$

Conversion of acre-feet to tons:

$$120 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} = 0.29 \times 10^6 \ tons$$

Table A5.16. - Volume and area output from ArcGIS 3D Analyst¹, for 1988 salt-crust area within the 2-foot thickness contour (see Figure 9B); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	55,497,619.26 m
3D Area:	55,497,622.34 m
Volume:	53,773,389.45 m ³

¹Dataset is FY881882ftclp, and output file is FY88tsc_118bh_inside2ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 39

53,773,389
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ft}}{43,560 \text{ ft}^3} = 43,589 \text{ acre} - \text{ft}$$

Equation 40

55,497,619
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 21.4 \ mi^2$$

Conversion of acre-feet to tons:

Equation 41

43,589 acre –
$$ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 104.2 \times 10^6 \ tons$$

2

Table A5.17. - Volume and area output from ArcGIS 3D Analyst¹, for 1988 salt-crust area within the 3-foot thickness contour (see Figure 9B); salt-crust thickness was determined by the UDOT pole-measurement method.

Туре:	Raster
Z Factor ² :	0.3048
Plane Height:	0.00
Reference:	Above Plane
2D Area:	29,845,684.03 m
3D Area:	29,845,685.15 m
Volume:	33,772,132.12 m ³

¹Dataset is FY881883ftclp, and output file is FY88tsc_118bh_inside3ftcontour_Pareavol.txt ²Conversion from feet to meters (1 ft = 0.3048 m); X & Y coordinates are in meters, therefore Z (thickness which was expressed in feet) must also be in meters to calculate volume

Conversion of volume and area to acre-feet and square miles:

Equation 42

33,772,132
$$m^3 \times \frac{35.31 \text{ ft}^3}{1 m^3} \times \frac{1 \text{ acre} - \text{ ft}}{43,560 \text{ ft}^3} = 27,376 \text{ acre} - \text{ ft}$$

Equation 43

29,845,684
$$m^2 \times \frac{1 \ acre}{4,047 \ m^2} \times \frac{1 \ mi^2}{640 \ acre} \equiv 11.5 \ mi^2$$

Conversion of acre-feet to tons:

Equation 44

$$27,376 \ acre - ft \times \frac{43,560 \ ft^3}{1 \ acre - ft} \times \frac{109.8 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \equiv 65.4 \times 10^6 \ tons$$

2

Table A5.18. – Distribution of 1988 salt-crust volume within selected thickness contours; volume based on UDOT pole-measurement method.

2003 salt crust volume:	Acre-feet	Percent of total volume
Total volume	59,635	100
Vol w/in 1 to 4+-ft contour	54,054	91
Vol w/in 2 to 4+-ft contour	43,589	73
Vol w/in 3 to 4+-ft contour	27,376	46

APPENDIX A6

TABLE A6.1. - ANALYSES FROM 1994, 1996, 1997, & 2000 BRINE SAMPLES COLLECTEDFROM SELECTED BONNEVILLE SALT FLATS MONITORING WELLS (CONCENTRATIONAS MG/L); DATA USED FOR REGRESSION ANALYSIS OF CHLORIDE VS TDS (N = 65)...... 37

Table A6.1 Analyses from 1994, 1996, 1997, & 2000 brine samples collected from selected Bonneville Salt Flats monitoring
wells (concentration as mg/L); data used for regression analysis of Chloride vs TDS (n = 65).

Sample	Density	Na	Mg	K	Ca	Cl	SO4	TDS	TDS,
2KBLM-3	1 165	82150	2490	3500	1510	139380	4770	233800	236411
2KBLM-27	1 191	93590	2940	5340	1240	159400	4770	267280	268944
2KBLM-30	1.147	75950	1310	1890	1680	125580	4440	210850	213985
2KBLM-35	1.173	87380	1540	3190	1470	143180	4330	241090	242586
2KBLM-41	1.196	93070	4120	6740	1110	162020	5230	272290	273202
2KBLM-50B	1.197	96210	2940	5700	1080	164020	6070	276020	276452
2KBLM-53	1.186	91590	2770	5060	1180	155600	4710	260910	262769
2KBLM-56	1.186	93070	2120	4590	1300	155220	4740	261040	262152
2KBLM-90	1.121	61830	1710	1890	1500	100740	4460	172130	173619
2KBLM-107	1.171	84430	2790	5060	1230	143810	5320	242640	243610
97BLM-6	1.197	93900	4700	9000	880	162900	5700	277080	274632
97BLM-3	1.162	84400	1450	3550	1500	137000	5250	233150	232543
97BLM-12	1.202	97000	1250	5900	1040	156900	4800	266890	264882
97BLM-25	1.188	93100	3150	6050	1020	155200	5950	264470	262119
97BLM-27	1.112	48400	550	1900	1470	76000	4950	133270	133416
97BLM-30	1.173	92700	1000	3300	1540	149900	4900	253340	253506
97BLM-41	1.197	94300	2850	6250	900	156600	5950	266850	264394
97BLM-43C	1.201	97600	3000	6000	1050	162900	4800	275350	274632
97BLM-46	1.207	96400	2800	6500	850	158200	5800	270550	266994
97BLM-50B	1.197	98700	3200	5550	1100	166400	5300	280250	280320
97BLM-53	1.196	96800	2450	5000	1150	156300	5150	266850	263907
97BLM-60	1.195	94500	4050	6550	1050	162200	5900	274250	273494
97BLM-61	1.204	94600	3700	6800	950	158200	5850	270100	266994
97BLM-82	1.198	97600	2550	4900	1150	162500	4850	273550	273982
97BLM-90	1.170	86800	1450	2650	1150	138800	4150	235000	235468
97BLM-93	1.191	94500	4550	7000	950	162800	7860	277660	274469
97BLM-99	1.164	76000	2250	4200	1050	122600	7100	213200	209143
97BLM-100	1.189	96300	3850	5550	1050	159800	6600	273150	269594
97BLM-107	1.183	90100	2450	4500	1100	147000	6000	251150	248794
97BLM-107A	1.177	94500	1600	3800	1500	154200	5300	260900	260494
96BLM-3	1.171	93050	1900	4000	1100	149350	4850	254250	252613
96BLM-12	1.204	116500	2800	6000	900	190800	4200	321200	319971
96BLM-25	1.187	95350	3400	5900	800	163800	5100	274350	276094
96BLM-30	1.174	94850	1600	3550	1100	156950	4450	262500	264963
96LM-35	1.179	96600	1800	3900	1100	156550	4100	264050	264313
96BLM-41	1.196	98550	4700	8100	700	176200	5150	293400	296245
96BLM-43C	1.201	103250	3600	6900	700	178200	4450	297100	299495
96BLM-46	1.206	99550	5200	8450	600	179800	4800	298400	302095
96BLM-50A	1.194	97300	3600	5900	800	168150	4700	280450	283163
96BLM-53	1.194	101500	3550	5550	800	175200	4450	291050	294620
96BLM-61	1.208	101850	4800	8450	700	180800	4450	301050	303720
96BLM-93	1.189	92800	3800	8100	800	157000	6450	268950	265044
96BLM-99	1.159	91600	4900	5350	600	158700	6600	267750	267807
96BLM-101	1.076	37800	900	2200	1400	60900	4850	108050	108878
96BLM-107	1.184	93850	3500	6100	900	160800	5000	270150	271219
96BLM-60	1.193	96200	4300	8450	700	170650	5300	285600	287226

Table A6.1 (continued)									
Sample	Density	Na	Mg	К	Ca	Cl	SO4	TDS	TDS, calculated ¹
94BLM-3	1.174	95200	2700	3800	1048	156700	5020	264467.7	264557
94BLM-6	1.200	99300	8500	9400	834	185400	5790	309224.1	311195
94BLM-12	1.205	116900	4200	5700	781	192500	4340	324421.3	322733
94BLM-25	1.193	98300	5600	6200	924	173300	5590	289914.1	291532
94BLM-30	1.177	96100	3300	3800	1021	160300	5110	269630.9	270407
94BLM-35	1.177	95800	3000	4300	1027	159500	5020	268646.8	269107
94BLM-41	1.198	100500	6800	7300	865	181200	5180	301845.4	304370
94BLM-43C	1.202	111700	5300	6400	824	186800	4830	315853.7	313470
94BLM-46	1.204	112600	7600	8300	757	195800	5310	330366.7	328096
94BLM-50A	1.199	110600	4800	5500	824	186800	5020	313543.7	313470
94BLM-53	1.192	111200	5100	5800	839	184700	4830	312469.3	310058
94BLM-61	1.201	111600	6000	7700	801	189800	5120	321021.4	318346
94BLM-82	1.195	111300	4100	5500	834	185400	4920	312054.1	311195
94BLM-99	1.166	88900	6100	5800	1078	152600	6010	260488.2	257894
94BLM-101	1.188	97200	5600	5400	949	169900	5700	284749.4	286007
94BLM-107	1.188	97400	5300	5900	952	169500	5580	284632.4	285357
94BLM-60	1.193	98500	5900	7300	913	174800	5590	293003	293970
94BLM-71A	1.200	100400	7500	9300	842	184400	6080	308521.5	309570
94BLM-28	1.196	100500	6100	6600	885	178500	5490	298075.5	299983
1 Y = 1.625 * Cl concentration + 9913									

Constant	9913				
Std Err of Y Est	2083				
R Squared	0.9972				
No. of Observations	65				
Degrees of Freedom	63				
X Coefficient(s)	1.6250				
Std Err of Coef.	0.0108				

Table A6.2. - Regression Output from data in Table A6.1.

- Calculate TDS associated with 100,000 mg/L Cl using $Y = m^*X + b$, where:
 - \circ Y = TDS
 - \circ m = 1.625 (slope)
 - \circ X = 100,000 mg/L Cl
 - \circ b = 9913 (Y intercept)

$$Y = (1.625 \times 100,000) \oplus 9913 = 172,417 \, mg / L \quad TDS$$

- Calculate tons of TDS in aquifer pore space bounded within 100 g/L chloride contour associated with Bonneville Salt Flats (975 square-mile area designated as GSLD-BSF), where:
 - \circ GSLD-BSF area = 624,078 acres
 - \circ Estimated shallow-brine aquifer average depth = 20 feet
 - \circ Estimated aquifer porosity = 45%
 - Estimated average TDS concentration (see Equation 1) = 172 g/L

Equation 4

Pore space,
$$ft^3 = 624,078 ac \times \frac{43,560 ft^2}{1 ac} \times 20 ft \times 0.45 = 244.7 \times 10^9 ft^3$$

Equation 5

$$TDS, g \equiv 244.7 \times 10^9 \ ft^3 \times \frac{7.48 \ gal}{1 \ ft^3} \times \frac{1L}{0.264 \ gal} \times \frac{172 \ g \ TDS}{1L} \equiv 1.19 \times 10^{15} \ g \ TDS$$

Equation 6

$$TDS, tons = 1.19 \times 10^{15} \ g \ TDS \times \frac{1 \ Kg \ TDS}{1000 \ g \ TDS} \times \frac{2.2 \ lbs \ TDS}{1 \ Kg \ TDS} \times \frac{1 \ ton \ TDS}{2000 \ lbs} = 1.3 \times 10^9 \ tons \ TDS$$

Note: for tonnage associated with 60% pore space, multiply 1.3 billion tons by 1.33 (i.e., 0.6/0.45).

- Calculate mass of salt removed from 38 square miles of BSF salt crust resulting from a simulated 1-inch rainfall event, where:
 - Area of salt crust in October 2003 = 38 square miles
 - Salt-crust depth dissolved by simulated 1-inch rainfall (White 2003, p. 259) = 0.143 inch
 - Salt-crust density (rounded from Mason and Kipp 1998, p. 54) = 110 lbs/cubic foot

 $Salt \ crust, tons \equiv 0.143 \ in. \times \frac{1 \ ft}{12 \ in} \times \frac{43,560 \ ft^2}{1 \ acre} \times \frac{110 \ lbs}{1 \ ft^3} \times \frac{1 \ ton}{2000 \ lbs} \times \frac{640 \ ac}{1 \ mi^2} \times 38 \ mi^2 \equiv 694,335 \ tons \ salt \ crust$

- Calculate percentage of dissolved salt crust contained in 80 square miles of shallowbrine aquifer, and then calculate tonnage of dissolved salt removed through the lease collection ditch, where:
 - Estimated tonnage of TDS contained in 80 square miles of shallow-brine aquifer (after Mason and Kipp 1998, p. 54) = 179 million tons
 - Estimated tonnage of TDS withdrawn annually from lease collection ditch (Mason and Kipp 1998, p. 106) = 850,000 tons

Equation 8

% dissolved in 80 mi² =
$$\frac{0.694 \times 10^{\circ} \text{ tons}}{(179 \oplus 0.69) \times 10^{\circ} \text{ tons}} \times 100 \equiv 0.39\%$$

Equation 9

TDS dissolved salt crust, tons = $850,000 \text{ tons } TDS \times 3.9 \times 10^{-3} = 3,315 \text{ tons } TDS$

- Calculate tons of TDS contained in 38 square miles of shallow-brine aquifer associated with 2003 salt-crust area, where:
 - \circ Estimated shallow-brine aquifer average depth = 20 feet
 - \circ Estimated aquifer porosity = 45%
 - \circ Estimated average TDS concentration (Mason and Kipp 1998, p. 54) = 286 g/L

Equation 10

Pore space,
$$ft^3 = 38 mi^2 \times \frac{640 ac}{1mi^2} \times \frac{43,560 ft^2}{1ac} \times 20 ft \times 0.45 = 9.53 \times 10^9 ft^3$$

$$TDS, g \equiv 9.53 \times 10^9 \ ft^3 \times \frac{7.48 \ gal}{1 \ ft^3} \times \frac{1L}{0.264 \ gal} \times \frac{286 \ g \ TDS}{1L} \equiv 77.22 \times 10^{12} \ g \ TDS$$

$$TDS, tons = 77.22 \times 10^{12} \ g \ TDS \times \frac{1 \ Kg \ TDS}{1000 \ g \ TDS} \times \frac{2.2 \ lbs \ TDS}{1 \ Kg \ TDS} \times \frac{1 \ ton \ TDS}{2000 \ lbs} = 84.94 \times 10^6 \ tons \ TDS$$

- Calculate percentage of dissolved salt crust contained in 38 square miles of shallowbrine aquifer, and then calculate tonnage of dissolved salt removed through the lease collection ditch, where:
 - Estimated tonnage of TDS contained in 38 square miles of shallow-brine aquifer (see equations 8-10) = 84.9 million tons
 - Estimated tonnage of TDS withdrawn annually from lease collection ditch (Mason and Kipp 1998, p. 106) = 850,000 tons

Equation 13

% dissolved in 38 mi² =
$$\frac{0.694 \times 10^6 \text{ tons}}{(84.94 \oplus 0.69) \times 10^6 \text{ tons}} \times 100 \equiv 0.81\%$$

Equation 14

TDS dissolved salt crust, tons = $850,000 \text{ tons } TDS \times 8.1 \times 10^{-3} = 6,885 \text{ tons } TDS$