New Probes of the Neutron Star Crust

Edward Brown

MICHIGAN STATE

In this talk

- •X-ray bursts, superbursts
 - Dependence on deep crustal heating
- Quasi-persistent transients
 - Crust cooling detected
 - Implications for crust structure
- Confrontation between these two methods

what can we learn?

- Strength and distribution of crust heat sources
- Thermal properties of crust
 - composition
 - conductivity
- Bulk properties of neutron star (M, R)

crust reactions

- explains quiescent luminosity of transients
 - constrain neutrino emissivity of core (Yakovlev et al. 05)
 - radius measurements (Rutledge et al 99; many more—see talk by Prakash)
- sets ignition mass for long X-ray bursts (this talk)

Lattimer & Prakash 07

crust reactions

• set electrical conductivity (controls ohmic decay)

Konar & Bhattacharya 97, Brown & Bildsten 98, Cumming et al. 01

crust reactions

- Mass quadrupole—"mountain"—from composition inhomogeneities (Bildsten 98, Ushomirsky 00)
- r-mode damping (constrain existence of steadystate, Brown & Ushomirsky 00)

electron capture reactions, outer crust

Gupta et al. 07

Accretion pushes material deeper into crust, where the pressure is

$$P = \frac{1}{4} n_e \mu_e \propto \mu_e^4.$$

Crust composition

Haensel & Zdunik 08

Integrated heating, HZ08

Heinke et al. 07

Observations of deep crustal heating

Effect of heat blanketing enveope

Gudmundson et al. 83, Potekhin et al. 98; Brown et al. 02

Effect on unstable burning in envelope

Strohmayer, Galloway et al.

Time (s)

(3 pcu)

kcnts s⁻¹

Long (He) X-ray bursts in 2S 0918–549 (in 't Zand 05)

X-ray bursts

- Consumption of H regulated by β-decay of ¹⁴O, ¹⁵O
- time to deplete H is ≈18 hr
- temperature set by ≈7 MeV/u from H burning
- sensitive to temperature in deep crust if pure He accreted, or complete H burning prior to He ignition (as in SAX J1808.4–268; Galloway & Cumming 06)

KS 1731–260 superburst (Kuulkers 2002)

- About 10³ more energetic than type 1 XRB
- cooling time ~ hrs
- recurrence time ~ yrs

Determining ignition mass

FIG. 5.— Fitted lightcurve for KS 1731-260, assuming the distance given in Table 1. Solid data points are included in the fit, open data points (with fluxes less than 0.1 of the peak flux) are not included.

- Can't use total energetics because of significant neutrino emission; (Strohmayer & Brown 02, Schatz et al. 03)
- Cooling follows broken power-law, with change of slope at thermal timescale at ignition depth (Cumming et al. 07)

TABLE 1
FITS TO SUPERBURST LIGHTCURVES

Source	$f_{\rm peak}{}^{\rm a}$	$d/R^{\rm b}$	E_{17}^{c}	y12 ^c
4U 1254-690	0.22	13	1.5	2.7
40 1735-444 KS 1731-260	2.4	8 4.5	2.6	1.5
GX 17+2 burst 2 Ser X-1	0.8	8 6	1.8 2.3	0.64 0.55
4U 1636-54	2.4	5.9	2.6	0.48

^aObserved peak flux in units of 10⁻⁸ erg cm⁻² s⁻¹.

^bAdopted distance in units of kpc/10 km.

^cThe fitted parameters scale roughly as $E_{17} \propto (d/R)^{8/7}$ and $y_{12} \propto (d/R)^{10/7}$ (see text). For a 50% distance uncertainty, the uncertainties in E_{17} and y_{12} are 60% and 70% respectively (see also Fig. 4).

Superburst ignition

- ¹²C likely cause of superbursts (Cumming & Bildsten 01, Strohmayer & Brown 02)
- Hot crust required to match inferred ignition depth (Brown 04; Cooper & Narayan 05; Cumming et al. 06)
 - No enhanced cooling
 - low thermal conductivity (impure, amorphous crust)

1608–522 superburst

Rutledge et al. 02 suggested looking for post-outburst thermal relaxation of crust for transients with extended outbursts

time in days since sandary 1, 1990

Time in days since January 1, 1996

1000

2000 3000

quiescent lightcurves

Rutledge et al. 02 suggested looking for post-outburst thermal relaxation of crust

Observations (Wijnands et al., Cackett et al.) detected this cooling

Shternin et al. 2007 fit KS 1731 lightcurve, suggest crust has high thermal conductivity

Is the crust amorphous?

Implications

Crust has high thermal conductivity (not amorphous)—agrees with MD simulations (Horowitz et al. 07, 08); cf. Shternin et al. (07)

Horowitz et al. 07; note the crystalline planes!

power-law cooling similar to other cases: white dwarfs in DN (Piro et al. 05) τ (d) superbursts (Cumming et al. 06), 10^{3} 10^{2} 10 magnetars (Eichler & Cheng 89, Kaminker et al. 07) T (K) 10⁸ Can "invert" the lightcurve to T (K) 10⁸ infer the temperature profile 10^{3} 10^{2} (p) 1 $\tau = \frac{1}{4} \left[\int \left(\frac{\rho C_P}{K} \right)^{1/2} \, \mathrm{d}z \right]$ 10 1 1 1 1 1 1 1 1 111111 11111 11111 11111 10^{13} 10^{15} 10^{16} 10^{18} 10^{14} 10^{17} $P/g \,({\rm g}\,{\rm cm}^{-2})$

Probability distribution of parameters

- Monte Carlo runs using simple model of lightcurve
 - 3 parameters: Q_{imp} , T_{top} , T_{core}

$$Q_{\rm imp} \equiv n_{\rm ion}^{-1} \sum_{i} n_i (Z_i - \langle Z \rangle)^2 \lesssim 10$$

 Confirm with numerical cooling calculations

lf crust *n* are not superfluid

greater C_P lengthens diffusion timescale

Effect of impurity parameter Q

Shallow Crustal Heating?

- Introduce shallow heat source
 E_{nuc} = 0.5 MeV/u (dM/dt)
- Could this explain superburst ignition when accretion rate was higher?
- Observations within 10 days post-outburst could confirm existence of this heating!

summary

- deep crustal heating
 - sets ignition conditions of superbursts, X-ray bursts where stable H burning is unimportant
 - observations of quasi-persistent transients in quiescence
 - crust has high thermal conductivity (agree with Shternin et al. 07)
 - need shallow heat source to fit early part of lightcurve—what is this heating? (pycnonuclear reactions [Horowitz et al. 08]?; other light element reactions?)