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ABSTRACT

An estimator of shrinkage based on information contained in a single sample is presented and the results of
a simulation study are reported. The effects of sample size, amount, and severity of nonrepresentative data in
the population, inclusion of noninformative predictors, and least (sum of ) absolute deviations and least (sum
of ) squared deviations regression models are examined on the estimator. A single-sample estimator of shrinkage
based on drop-one cross-validation is shown to be highly accurate under a wide variety of research conditions.

1. Introduction

Meteorologists have long recognized the importance
of accurately quantifying statistical forecast skill. One
of the primary tools of meteorological forecasting is
multiple regression analysis (Murphy and Winkler
1984) where, given data on a response variable yi and
associated predictor variables xij, where j 5 1, . . . , p;
i 5 1, . . . , n; p denotes the number of predictors; and
n represents the number of events; the goal is to find
some function of the xij values that is an accurate and
precise predictor of yi. It is generally recognized that
any estimate of forecast skill grounded in a multiple
regression model that is based on a sample of obser-
vations is characteristically higher than the forecast skill
that would be obtained from a multiple regression model
that is based on the entire population of observations
(Mosteller and Tukey 1977; Picard and Cook 1984; Mi-
chaelsen 1987; Barnston and Van den Dool 1993). It is
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also widely accepted that the fit of the multiple regres-
sion model to new sample data is nearly always less
precise than the fit of the same multiple regression mod-
el to the original sample data on which the model was
based. This is reflected in lower forecast skill levels
obtained when sample-based multiple regression models
are used to predict future events.

It is useful to have elementary terms to distinguish
between the fit of a multiple regression model to the
sample data on which the model has been determined
and the fit of the same multiple regression model to an
independent sample of data. The former is termed ‘‘ret-
rospective’’ fit and the latter is termed ‘‘validation’’ fit
(Copas 1983). The term ‘‘shrinkage’’ denotes the drop
in skill from retrospective fit to validation fit (Copas
1983) and indicates how useful the sample-based re-
gression coefficients will be for prediction on other da-
tasets. For purposes of clarification, shrinkage involves
the following four-step procedure. First, a multiple re-
gression model is fit to a sample dataset by optimizing
the regression coefficients relative to a fitting criterion,
for example, least squares. Second, the goodness of fit
of the multiple regression model is measured by an in-
dex, such as a squared multiple correlation coefficient.
Third, the obtained multiple regression model is applied
to an independent sample dataset and a second good-
ness-of-fit index is obtained for the independent dataset.
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Fourth, a ratio of the two indices is constructed where
the goodness-of-fit index from the original dataset is the
denominator. This ratio is termed shrinkage since it is
usually less than unity.

Mielke et al. (1996) investigated the effects of sample
size, type of regression model, and noise-to-signal ratio
on the degree of shrinkage in five populations that dif-
fered in the amount and degree of contaminated data.
Shrinkage was defined as the ratio of the validation fit
of a sample regression equation to the retrospective fit
of the same sample regression equation where the val-
idation fit was assessed on five independent samples,
averaged over 10 000 simulations. While this index of
shrinkage is both rigorous and comprehensive, the use
of six independent samples precludes its use in routine
research situations. In this paper, an estimate of shrink-
age is developed that is based on a single sample and
can easily be employed by research meteorologists.
Comparisons with the index of shrinkage given by Miel-
ke et al. (1996) indicate that the single-sample estimate
of shrinkage is very accurate under a wide variety of
conditions. The single-sample estimate of shrinkage is
related to cross-validation methods that have become
standard for assessing the predictive validity of forecast
skill.

2. Cross-validation

Historically, users of multiple regression procedures
have developed methods to assess how accurately sam-
ple regression coefficients estimate the corresponding
population regression coefficients. The usual procedure
is to test the sample regression coefficients on an in-
dependent set of sample data. This practice has come
to be known as ‘‘cross-validation.’’ A comprehensive
historical background on cross-validation is provided by
Stone (1974, 1978), Geisser (1975), Mosteller and Tu-
key (1977), and Snee (1977). Camstra and Boomsma
(1992) present an extensive overview of the use of
cross-validation in regression, where the emphasis is on
the prediction of individual observations, and in co-
variance structure analysis, where the emphasis is on
future values of variances and covariances. Michaelsen
(1987) and Elsner and Schmertmann (1994) describe
and discuss cross-validation methods as they pertain to
meteorological forecasting.

It is widely recognized that to be useful, any sample
regression equation must hold for data other than those
on which the regression equation was developed. When
sample data are used to determine the regression co-
efficients that best predict the response variable from
the set of predictor variables, assuming that the variables
to be used in the regression equation have already been
selected, prediction performance is usually overesti-
mated (Picard and Cook 1984). Because the sample re-
gression coefficients are determined by an optimizing
process that is conditioned on the sample data, the re-
gression equation generally provides better predictions

for the sample data on which it is based than for any
other dataset. This is sometimes referred to as ‘‘testing
on the training data’’ (Glick 1978). It should be noted
that the use of cross-validation precludes any manipu-
lation of the dataset prior to the development of the
regression model and subsequent cross-validation.

In general, cross-validation consists of determining
the regression coefficients in one sample and applying
the obtained coefficients to the predictor scores of an-
other sample. The initial sample is termed the ‘‘cali-
bration’’ or ‘‘training’’ sample and the second sample
is called the ‘‘validation’’ or ‘‘test’’ sample (Browne
1975a,b; Huberty et al. 1987; Camstra and Boomsma
1992; MacCallum et al. 1994). The calibration sample
is used to calculate the regression coefficients, and the
predictive validity of the fitted equation is verified on
the validation sample.

As defined, cross-validation requires two samples.
Because a second sample is often not readily available,
an alternative approach is often used in which a large
sample is randomly split into two subsamples. One sub-
sample is specified as the calibration sample and the
second sample is designated the validation sample. The
many problems associated with this approach to cross-
validation are summarized in Lachenbruch and Mickey
(1968), Picard and Cook (1984), and Picard and Berk
(1990). Setting aside the obvious loss of information in
splitting samples (Browne and Cudeck 1992), a signif-
icant problem is the difficulty in procuring large sam-
ples, which are not available in many research situa-
tions. In addition, when calibration sample sizes are
small, the regression coefficients are less precise than
those that would be obtained if the entire sample had
been used (Horst 1966). Mosier (1951) suggested a dou-
ble cross-validation procedure where the regression co-
efficients are calculated for both the calibration and val-
idation samples and the two regression equations are
cross-validated on the sample that was not used to es-
tablish the regression coefficients. Questions have been
raised as to exactly what should be done when the results
of the two cross-validations differ (Snee 1977). It has
been suggested that if the two sets of regression coef-
ficients are not too different, then a new set of coeffi-
cients may be obtained from the combined calibration
and validation samples (Mosier 1951). While no esti-
mate of predictive validity is available for the combined
sample, Mosier (1951) posited that it may be approxi-
mated by the average of the predictive validities ob-
tained for the original calibration and validation sam-
ples.

Cross-validation is certainly not limited to just two
samples. The data can be divided into more than two
samples and multiple cross-validations can be obtained.
Multiple cross-validation involves partitioning an avail-
able sample of size n into a calibration sample of size
n 2 k and a validation sample of size k. The cross-
validation procedure is realized by withholding each
validation sample of size k, calculating a regression
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TABLE 1. Population 1: Initial population consisting of 3958 noncontaminated events. Columns are (C1) true population r values (C2)
average of 10 000 sample values based on regression coefficients for each sample, (C3) average of five sample values for each of 10r̂ r̂
000 random sets of regression coefficients associated with the 10 000 samples of C2, (C4) average of 10 000 drop-one values estimatedr̂
for each of the 10 000 samples of C2, and corresponding ratios (C3/C2), (C4/C2), (C4/C3), and (C3/C1).

Sample
size Case Model C1 C2 C3 C4 C3/C2 C4/C2 C4/C3 C3/C1

15 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.83216
0.76579
0.69947
0.64059

0.21959
0.24721
0.32214
0.34883

0.19520
0.20980
0.29055
0.31267

0.264
0.323
0.461
0.545

0.235
0.277
0.415
0.488

0.889
0.849
0.902
0.896

0.426
0.483
0.630
0.685

25 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.69659
0.63931
0.61963
0.57839

0.34693
0.37427
0.39741
0.41795

0.33158
0.35416
0.37757
0.39942

0.498
0.585
0.641
0.723

0.476
0.554
0.609
0.691

0.956
0.946
0.950
0.956

0.674
0.732
0.777
0.821

40 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.62613
0.58533
0.57687
0.54955

0.41279
0.43132
0.43965
0.45455

0.40342
0.42250
0.42829
0.44493

0.659
0.737
0.762
0.827

0.644
0.722
0.742
0.810

0.977
0.980
0.974
0.988

0.802
0.843
0.860
0.893

65 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.58265
0.55438
0.55102
0.53274

0.45361
0.46425
0.46701
0.47611

0.44876
0.45954
0.46115
0.47099

0.779
0.837
0.848
0.894

0.770
0.829
0.837
0.884

0.989
0.990
0.987
0.989

0.881
0.908
0.913
0.935

100 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.55843
0.53790
0.53651
0.52353

0.47627
0.48182
0.48269
0.48814

0.47168
0.47803
0.47818
0.48429

0.853
0.896
0.900
0.932

0.845
0.889
0.891
0.925

0.990
0.992
0.991
0.992

0.925
0.942
0.944
0.959

160 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.54290
0.52759
0.52727
0.51780

0.49184
0.49302
0.49364
0.49598

0.48998
0.49183
0.49187
0.49463

0.906
0.934
0.936
0.958

0.903
0.932
0.933
0.955

0.996
0.998
0.996
0.997

0.955
0.965
0.965
0.974

250 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.53325
0.52141
0.52160
0.51454

0.50076
0.49982
0.50012
0.50081

0.50011
0.49965
0.50004
0.50080

0.939
0.959
0.959
0.973

0.938
0.958
0.959
0.973

0.999
1.000
1.000
1.000

0.972
0.977
0.978
0.984

500 10

6

LAD
LSD
LAD
LSD

0.51495
0.51154
0.51130
0.50917

0.52527
0.51661
0.51685
0.51206

0.50865
0.50562
0.50578
0.50500

0.50660
0.50355
0.50422
0.50294

0.968
0.985
0.979
0.986

0.964
0.975
0.976
0.982

0.996
0.996
0.997
0.991

0.988
0.988
0.989
0.992

model from the remaining calibration sample of size n
2 k, and validating each of the ( ) possible regressionn

k

models on the remaining sample of size k held in re-
serve. Since k 5 1 requires validating only n regression
models on the remaining sample of size 1 held in re-
serve, this special case is both easily implemented and
commonly used. In various literature, the case where k
5 1 is termed drop-one cross-validation, leave-one-out
cross-validation, hold-one-out cross-validation, or the U
method. Stone (1978) provides a thorough review of
drop-one cross-validation. Drop-one cross-validation is
an exhaustive method involving substantial redundancy
in the participation of each data point (far more redun-
dancy when k . 1). However, the exhaustive features
of drop-one cross-validation may provide a comprehen-
sive evaluation of predictive accuracy and a solid es-
timate of predictive skill (Barnston and Van den Dool
1993).

Drop-one cross-validation is usually credited to Lach-
enbruch (1967) or Lachenbruch and Mickey (1968).
However, Toussaint (1974) has traced the drop-one
method to earlier sources under different names (Glick
1978). Currently, the drop-one method is the cross-val-
idation procedure of choice and it is not unusual to see

the term cross-validation virtually equated with the
drop-one method (e.g., Nicholls 1985; Livezey et al.
1990).

For many researchers, the method of choice for cross-
validation is to create a model on one sample and test
the model on a second sample drawn from the same
population; alternatively, a model is created on a sub-
stantial portion of a sample and tested on the remaining
portion of the sample. In either case, the selection of
predictors can be based on information in the population
or some other out-of-sample source, or the selection of
predictors can involve subset selection based on in-sam-
ple information. In addition, the regression coefficients
are nearly always based on information in the calibration
sample. Much of the early work in cross-validation spe-
cifically limited analyses to fixed models where the
number and variety of predictors is determined a priori
and not based on subset selection (e.g., Browne 1975a,
1975b; Camstra and Boomsma 1992; MacCallum et al.
1994). Thus, cross-validation in this context implies val-
idation of the sample regression coefficients only. In
those cases where subset selection is based on the sam-
ple information, cross-validation implies validation of
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TABLE 2. Population 2: Contaminated population consisting of 3998 events consisting of the initial population of 3958 events and 40
moderately extreme events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on regressionr̂
coefficients for each sample, (C3) average of five sample values for each of 10 000 random sets of regression coefficients associated withr̂
the 10 000 samples of C2, (C4) average of 10 000 drop-one values estimated for each of the 10 000 samples of C2, and correspondingr̂
ratios (C3/C2), (C4/C2), (C4/C3), and (C3/C1).

Sample
size Case Model C1 C2 C3 C4 C3/C2 C4/C2 C4/C3 C3/C1

15 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.83077
0.76387
0.69081
0.63008

0.20662
0.23315
0.30215
0.32887

0.18590
0.20030
0.28085
0.29919

0.249
0.305
0.437
0.522

0.224
0.262
0.407
0.475

0.900
0.859
0.930
0.910

0.423
0.517
0.627
0.731

25 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.69099
0.63311
0.60467
0.56220

0.32943
0.35703
0.37074
0.39249

0.31682
0.33872
0.35322
0.37486

0.477
0.564
0.613
0.698

0.459
0.535
0.584
0.667

0.962
0.949
0.953
0.955

0.674
0.791
0.769
0.873

40 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.61657
0.57548
0.55632
0.52658

0.38947
0.40904
0.40805
0.42208

0.38038
0.39914
0.39739
0.41204

0.632
0.711
0.733
0.802

0.617
0.694
0.714
0.782

0.977
0.976
0.974
0.976

0.797
0.907
0.846
0.938

65 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.56622
0.53715
0.52586
0.50036

0.42434
0.43587
0.43418
0.43615

0.41918
0.43264
0.42843
0.43242

0.749
0.811
0.826
0.872

0.740
0.805
0.815
0.864

0.988
0.993
0.987
0.991

0.868
0.966
0.900
0.970

100 10 LAD
LSD

0.48886
0.45120

0.53914
0.51555

0.44413
0.44819

0.43980
0.44515

0.824
0.869

0.816
0.863

0.990
0.993

0.909
0.993

6 LAD
LSD

0.48220
0.44984

0.51103
0.48556

0.45081
0.44265

0.44633
0.43940

0.882
0.912

0.873
0.905

0.990
0.993

0.935
0.984

160 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.51867
0.49590
0.49982
0.47246

0.45922
0.45266
0.46294
0.44554

0.45747
0.45185
0.46082
0.44477

0.885
0.913
0.926
0.943

0.882
0.911
0.922
0.941

0.996
0.998
0.995
0.998

0.939
1.003
0.960
0.990

250 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.50767
0.48257
0.49408
0.46486

0.46914
0.45410
0.47041
0.44727

0.46727
0.45271
0.46900
0.44579

0.924
0.941
0.952
0.962

0.920
0.938
0.949
0.959

0.996
0.997
0.997
0.997

0.960
1.006
0.964
0.994

500 10

6

LAD
LSD
LAD
LSD

0.48886
0.45120
0.48220
0.44984

0.49896
0.46904
0.48999
0.45838

0.47922
0.45367
0.47780
0.44897

0.47885
0.45338
0.47740
0.44878

0.960
0.967
0.975
0.979

0.960
0.967
0.974
0.979

0.999
0.999
0.999
1.000

0.980
1.005
0.991
0.998

the subset selection process and the sample regression
coefficients.

The advent of double cross-validation brought ad-
ditional complications. Given fixed predictors, the re-
gression coefficients from each sample are tested on the
other sample and any differences can be consolidated
by some form of weighted averaging of the regression
coefficients (Subrahmanyam 1972). However, given
sample-based subset selection, there is the added com-
plication that each sample will select a different number
and/or a different set of predictors. It is much more
difficult to resolve discrepancies between the two sam-
ple validation results. Browne (1970) provides results
of random sampling experiments demonstrating the ef-
fects of not fixing the predictors beforehand. With drop-
one cross-validation it is possible to conceive of up to
n different but overlapping sets of predictors and up to
n different values for the regression coefficients for each
predictor. The satisfactory and optimal combining of
these differences appears very difficult; see, for ex-
ample, Browne and Cudeck (1989) and MacCallum et
al. (1994).

Cross-validation is not without its critics and there is

evidence that suggests some possible drawbacks to
drop-one cross-validation. Glick (1978) and Hora and
Wilcox (1982) provide simulation studies of drop-one
cross-validation in discriminant analysis. Both studies
indicate that the estimates have relatively high vari-
ability over repeated sampling, possibly due to the re-
peated use of the original data. The results of both Glick
(1978) and Hora and Wilcox (1982) were based on dis-
criminant analysis, which has a binary error function.
Efron (1983) notes that cross-validation performs some-
what better given a smooth residual sum of squares error
function. Finally, some investigators note that a model
that fits the validation sample as well as the calibration
sample is not necessarily a validated model. Maltz
(1994), for example, argues that cross-validation may
only show that the procedure used to split the sample
did, in fact, divide the sample into two similar sub-
groups.

If a specific sample dataset exhibits a high first-order
autoregressive pattern, drop-one cross-validation may
overestimate the validation fit. For example, if a single
sample consists of cases selected from a time series,
then the cases in a given cycle (e.g., a month, a year,
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TABLE 3. Population 3: Contaminated population of 3998 events of the initial population of 3958 events and 40 very extreme events.
Columns are (C1) true population r values, (C2) average of 10 000 sample values based on regression coefficients for each sample, (C3)r̂
average of five sample values for each of 10 000 random sets of regression coefficients associated with the 10 000 samples of C2, (C4)r̂
average of 10 000 drop-one values estimated for each of the 10 000 samples of C2, and corresponding ratios (C3/C2), (C4/C2), (C4/C3),r̂
and (C3/C1).

Sample
size Case Model C1 C2 C3 C4 C3/C2 C4/C2 C4/C3 C3/C1

15 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.83121
0.76468
0.69002
0.62930

0.20082
0.22665
0.29357
0.31866

0.18153
0.19527
0.27530
0.29310

0.242
0.296
0.425
0.506

0.218
0.255
0.399
0.466

0.904
0.862
0.938
0.920

0.448
0.761
0.671
1.170

25 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.69172
0.63445
0.60065
0.55827

0.31845
0.34486
0.35366
0.37435

0.30758
0.32807
0.34098
0.36124

0.460
0.544
0.589
0.671

0.445
0.517
0.568
0.647

0.966
0.951
0.964
0.965

0.710
1.158
0.809
1.375

40 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.61802
0.57769
0.54451
0.51698

0.37532
0.39366
0.37879
0.39520

0.36669
0.38507
0.37480
0.39098

0.607
0.681
0.696
0.764

0.593
0.667
0.688
0.756

0.977
0.978
0.989
0.989

0.836
1.322
0.866
1.452

65 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.56667
0.53918
0.49965
0.47894

0.40517
0.41701
0.38841
0.39580

0.40388
0.41612
0.38981
0.39865

0.715
0.773
0.777
0.826

0.713
0.772
0.780
0.832

0.997
0.998
1.004
1.007

0.903
1.400
0.888
1.454

100 10 LAD
LSD

0.44873
0.29776

0.53523
0.51541

0.41757
0.42518

0.41608
0.42465

0.780
0.825

0.777
0.824

0.996
0.999

0.931
1.428

6 LAD
LSD

0.43722
0.27225

0.47492
0.44794

0.39691
0.38686

0.39539
0.38850

0.836
0.864

0.833
0.867

0.996
1.004

0.908
1.421

160 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.50458
0.48765
0.45708
0.41056

0.42088
0.42113
0.40649
0.36825

0.42080
0.42239
0.40508
0.37137

0.834
0.864
0.889
0.897

0.834
0.866
0.886
0.905

1.000
1.003
0.997
1.008

0.938
1.414
0.930
1.353

250 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.48421
0.45964
0.44837
0.37856

0.42473
0.40951
0.41433
0.34883

0.42132
0.40740
0.41141
0.34694

0.877
0.891
0.924
0.921

0.870
0.886
0.918
0.916

0.992
0.995
0.993
0.995

0.947
1.375
0.948
1.281

500 10

6

LAD
LSD
LAD
LSD

0.44873
0.29776
0.43722
0.27225

0.46656
0.40724
0.44242
0.33445

0.43340
0.37716
0.42437
0.31859

0.43378
0.37488
0.42319
0.31641

0.929
0.926
0.959
0.953

0.930
0.921
0.957
0.946

1.001
0.994
0.997
0.993

0.966
1.267
0.971
1.170

or a decade) may be highly correlated. In such cases a
drop-k cross-validation may be required to mitigate the
cyclic pattern, where k exceeds the length of the cycle.
Michaelsen (1987) has researched the effects of auto-
regressive effects on cross-validation in statistical cli-
mate forecast models.

3. Statistical measures

Let the population and sample sizes be denoted by N
and n, respectively, let yi denote the response variable,
and let xi1, . . . , xip denote the p predictor variables
associated with the ith of n events. Consider the linear
regression model given by

p

y 5 b 1 b x 1 e ,Oi 0 j ij i
j51

where b0, . . . , bp are p 1 1 unknown parameters and
ei is the error term associated with the ith of n events.
Two types of regression models are of interest: least
(sum of ) absolute deviations (LAD) regression models
and least (sum of ) squared deviations (LSD) regression

models. The LAD and LSD prediction equations are
given by

p

˜ ˜ỹ 5 b 1 b x ,Oi 0 j ij
j51

where ỹi is the predicted value of yi and , . . . ,˜ ˜b b0 p

minimize the expression

n

y|e |O i
i51

with v 5 1 and v 5 2 associated with the LAD and
LSD regression models, respectively.

A measure of agreement is employed to determine
the correspondence between the yi and ỹi values, for i
5 1, . . . , n. Many researchers have utilized measures
of agreement in assessing prediction accuracy, for ex-
ample, Willmott (1982), Willmott et al. (1985), Kelly
et al. (1989), Tucker et al. (1989), Gray et al. (1992),
McCabe and Legates (1992), Badescu (1993), Elsner
and Schmertmann (1993), Hess and Elsner (1994), Cot-
ton et al. (1994), and Lee et al. (1995). Watterson (1996)
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TABLE 4. Population 4: Contaminated population of 4158 events of the initial population of 3958 events and 200 moderately extreme
events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on regression coefficients for each sample,r̂
(C3) average of five sample values for each of 10 000 random sets of regression coefficients associated with the 10 000 samples of C2,r̂
(C4) average of 10 000 drop-one values estimated for each of the 10 000 samples of C2, and corresponding ratios (C3/C2), (C4/C2), (C4/r̂
C3), and (C3/C1).

Sample
size Case Model C1 C2 C3 C4 C3/C2 C4/C2 C4/C3 C3/C1

15 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.82319
0.75362
0.66307
0.59807

0.17630
0.19886
0.24413
0.26934

0.16583
0.17653
0.23173
0.24821

0.214
0.242
0.368
0.450

0.201
0.234
0.349
0.415

0.941
0.888
0.949
0.922

0.477
0.638
0.665
0.880

25 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.66658
0.60568
0.54840
0.50205

0.26978
0.29496
0.28455
0.30704

0.26159
0.28121
0.27086
0.29335

0.405
0.487
0.519
0.612

0.392
0.464
0.494
0.584

0.970
0.953
0.952
0.955

0.731
0.946
0.775
1.003

40 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.57417
0.52983
0.48241
0.44501

0.30939
0.33079
0.30925
0.32037

0.30583
0.32601
0.29728
0.31236

0.539
0.624
0.641
0.720

0.533
0.615
0.616
0.702

0.988
0.986
0.961
0.975

0.838
1.060
0.843
1.047

65 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.50310
0.46771
0.43752
0.39896

0.33020
0.34046
0.32591
0.32084

0.32513
0.33620
0.31565
0.31322

0.656
0.728
0.745
0.804

0.646
0.719
0.721
0.785

0.985
0.987
0.967
0.976

0.894
1.091
0.888
1.049

100 10 LAD
LSD

0.36924
0.31192

0.45960
0.42314

0.34149
0.33801

0.33438
0.33372

0.743
0.799

0.728
0.772

0.979
0.987

0.925
1.084

6 LAD
LSD

0.36698
0.30599

0.41285
0.36963

0.33750
0.31813

0.32911
0.31226

0.817
0.861

0.797
0.845

0.975
0.982

0.920
1.040

160 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.42656
0.38503
0.39421
0.34668

0.34929
0.33172
0.34556
0.31471

0.34577
0.32978
0.34131
0.31177

0.819
0.862
0.877
0.908

0.811
0.857
0.866
0.899

0.990
0.994
0.988
0.991

0.946
1.063
0.942
1.028

250 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.40505
0.35909
0.38328
0.33194

0.35441
0.32608
0.35161
0.31188

0.35257
0.32541
0.34934
0.31066

0.875
0.908
0.917
0.940

0.870
0.906
0.911
0.936

0.995
0.998
0.994
0.996

0.960
1.045
0.958
1.019

500 10

6

LAD
LSD
LAD
LSD

0.36924
0.31192
0.36698
0.30599

0.38708
0.33582
0.37622
0.31932

0.36071
0.32013
0.36011
0.30961

0.35695
0.31692
0.35656
0.30651

0.932
0.953
0.957
0.970

0.922
0.944
0.948
0.960

0.990
0.990
0.990
0.990

0.977
1.026
0.981
1.012

provides a comprehensive comparison of various mea-
sures of agreement.

In this simulation study, the measure of agreement for
both the LAD and LSD prediction equations is given by

d
r 5 1 2 ,

md

where
n1

d 5 |y 2 ỹ |O i in i51

and md is the average value of d over all n! equally
likely permutations of y1, . . . , yn relative to ỹ1, . . . , ỹn

under the null hypothesis that the n pairs (yi and ỹi for
i 5 1, . . . , n) are merely the result of random assign-
ment. This reduces to the simple computational form
given by

n n1
m 5 |y 2 ỹ |.O Od i j2n i51 j51

Since r is a chance-corrected measure of agreement, r
5 1.0 implies that all paired values of yi and ỹi for i 5

1, . . . , n fall on a line with unit slope that passes through
the origin (i.e., a perfect forecast). The choice of r rather
than the Pearson product–moment correlation coeffi-
cient (r) or r2 (the coefficient of determination) is that
the latter are measures of linearity and not measures of
agreement. Also, the choice of the mean absolute error
for d rather than the mean squared error is that extreme
values influence the squared Euclidean differences of
the MSE far more than the Euclidean differences of the
MAE. These choices are elaborated by Mielke et al.
(1996).

4. Data and simulation procedures

The present study investigates the accuracy and utility
of a single-sample estimator of shrinkage. Also consid-
ered are the effects of sample size, type of regression
model (LAD and LSD), and noise-to-signal ratio in five
populations that differ in amount and degree of contam-
inated data. Sample sizes (n) of 15, 25, 40, 65, 100,
160, 250, and 500 events are obtained from a fixed
population of N 5 3958 events, which, for the purpose
of this study, is not contaminated with extreme cases;
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TABLE 5. Population 5: Contaminated population of 4158 events of the initial population of 3958 events and 200 very extreme events.
Columns are (C1) true population r values, (C2) average of 10 000 sample values based on regression coefficients for each sample, (C3)r̂
average of five sample values for each of 10 000 random sets of regression coefficients associated with the 10 000 samples of C2, (C4)r̂
average of 10 000 drop-one values estimated for each of the 10 000 samples of C2, and corresponding ratios (C3/C2), (C4/C2), (C4/C3),r̂
and (C3/C1).

Sample
size Case Model C1 C2 C3 C4 C3/C2 C4/C2 C4/C3 C3/C1

15 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.82410
0.75637
0.65648
0.59195

0.15671
0.17684
0.21212
0.23220

0.14784
0.15684
0.21141
0.22483

0.190
0.234
0.323
0.392

0.179
0.207
0.322
0.380

0.943
0.887
0.997
0.968

0.947
1.296
2.063
2.580

25 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.67046
0.61289
0.52745
0.48267

0.23397
0.25467
0.22739
0.24628

0.22978
0.24579
0.22995
0.24774

0.349
0.416
0.431
0.467

0.343
0.401
0.436
0.513

0.982
0.965
1.011
1.006

1.414
1.866
2.211
2.737

40 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.57754
0.53669
0.42604
0.39821

0.26244
0.27945
0.21735
0.23444

0.26566
0.28149
0.22235
0.24104

0.454
0.521
0.510
0.589

0.460
0.524
0.522
0.605

1.012
1.007
1.023
1.028

1.587
2.048
2.113
2.605

65 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.48744
0.46297
0.33718
0.30874

0.26077
0.27581
0.19921
0.20295

0.26526
0.27978
0.19730
0.20390

0.535
0.596
0.591
0.657

0.544
0.604
0.585
0.660

1.017
1.014
0.990
1.005

1.577
2.021
1.937
2.255

100 10 LAD
LSD

0.16541
0.13645

0.40913
0.38873

0.24710
0.25578

0.24839
0.25838

0.604
0.658

0.607
0.665

1.005
1.010

1.494
1.875

6 LAD
LSD

0.10284
0.08999

0.27822
0.23511

0.18593
0.17010

0.18110
0.16837

0.668
0.723

0.651
0.716

0.974
0.990

1.808
1.890

160 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.33696
0.30317
0.23075
0.17580

0.23219
0.22288
0.17241
0.14063

0.23301
0.22643
0.16991
0.13848

0.689
0.735
0.747
0.800

0.692
0.747
0.736
0.788

1.004
1.016
0.985
0.985

1.404
1.633
1.676
1.563

250 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.28582
0.23539
0.19584
0.13849

0.21974
0.19305
0.15837
0.11975

0.22088
0.19305
0.15498
0.11718

0.769
0.820
0.809
0.865

0.773
0.820
0.791
0.846

1.005
1.000
0.979
0.979

1.328
1.415
1.540
1.331

500 10

6

LAD
LSD
LAD
LSD

0.16541
0.13645
0.10284
0.08999

0.23315
0.17699
0.15889
0.11112

0.20148
0.16198
0.14052
0.10326

0.19745
0.15951
0.13570
0.09952

0.864
0.915
0.884
0.929

0.847
0.901
0.854
0.896

0.980
0.985
0.966
0.964

1.218
1.187
1.366
1.147

TABLE 6. Probability of no contaminated values in each sample of
size n.

Sample size (n)

Contamination

1% 5%

15
25
40
65

100
160
250
500

0.8600
0.7777
0.6688
0.5202
0.3658
0.2001
0.0810
0.0066

0.4774
0.2916
0.1392
0.0406
0.0072
0.0004

4.4 3 1026

2.0 3 10211

a fixed population of N 5 3998 events consisting of the
initial population and 40 moderately extreme events (1%
moderate contamination); a fixed population of N 5
3998 events consisting of the initial population and 40
very extreme events (1% severe contamination); a fixed
population of N 5 4158 events consisting of the initial
population and 200 moderately extreme events (5%
moderate contamination); and a fixed population of N

5 4158 events consisting of the initial population and
200 very extreme events (5% severe contamination).
The 3958 available primary events used to construct
each of the five populations used in this study consist
of a response variable and p 5 10 predictor variables.
Specifics of the meteorological data used to construct
these five populations are given in Mielke et al. (1996).

Two prediction models are considered for each of the
five populations. The first prediction model (case 10)
consists of p 5 10 independent variables, and the second
prediction model (case 6) consists of p 5 6 independent
variables. In case 10, 4 of the 10 independent variables
in the initial population of N 5 3958 events were found
to contribute no information to the predictions. Case 6
is merely the prediction model with the four noninfor-
mative independent variables of case 10 deleted. Both
the case 10 and case 6 prediction models were con-
structed from the initial fixed population of N 5 3958
events. The reason for the two prediction models is to
examine the effect of including noninformative inde-
pendent variables (i.e., noise) in a prediction model.
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TABLE 7. Population 1: Initial population consisting of 3958 non-
contaminated events. The SD( | C2) column contains the standardr̂
deviations of the 10 000 values composing each C2 value in Tabler̂
1. The SD( | C4) column contains the standard deviations of the 10r̂
000 drop-one values composing each C4 value in Table 1.r̂

Sample
size Case Model SD( | C2)r̂ SD( | C4)r̂

15 10

6

LAD
LSD
LAD
LSD

0.07205
0.10145
0.10536
0.12495

0.21811
0.20870
0.23722
0.21354

25 10

6

LAD
LSD
LAD
LSD

0.07976
0.09381
0.09650
0.10405

0.19051
0.15925
0.18076
0.15057

40 10

6

LAD
LSD
LAD
LSD

0.07542
0.08140
0.08507
0.08608

0.14298
0.11277
0.13386
0.10771

65 10

6

LAD
LSD
LAD
LSD

0.06600
0.06736
0.07015
0.06946

0.10259
0.08098
0.09610
0.07882

100 10

6

LAD
LSD
LAD
LSD

0.05482
0.05479
0.05717
0.05582

0.07727
0.06276
0.07272
0.06118

160 10

6

LAD
LSD
LAD
LSD

0.04579
0.04508
0.04702
0.04545

0.05734
0.04804
0.05450
0.04737

250 10

6

LAD
LSD
LAD
LSD

0.03696
0.03620
0.03762
0.03636

0.04148
0.03692
0.04071
0.03651

500 10

6

LAD
LSD
LAD
LSD

0.02695
0.02622
0.02717
0.02615

0.02921
0.02684
0.02884
0.02679

TABLE 8. Population 2: Contaminated population of 3998 events
consisting of the initial population of 3958 events and 40 moderately
extreme events. The SD( | C2) column contains the standard devi-r̂
ations of the 10 000 values composing each C2 value in Table 2.r̂
The SD( | C4) column contains the standard deviations of the 10 000r̂
drop-one values composing each C4 value in Table 2.r̂

Sample
size Case Model SD( | C2)r̂ SD( | C4)r̂

15 10

6

LAD
LSD
LAD
LSD

0.07354
0.10359
0.10890
0.12936

0.21597
0.20627
0.23385
0.21345

25 10

6

LAD
LSD
LAD
LSD

0.08266
0.09707
0.10427
0.11167

0.18894
0.15777
0.18602
0.15612

40 10

6

LAD
LSD
LAD
LSD

0.07913
0.08435
0.09503
0.09713

0.14657
0.11843
0.14472
0.12155

65 10

6

LAD
LSD
LAD
LSD

0.07164
0.07299
0.08132
0.08418

0.11311
0.09119
0.11164
0.09778

100 10

6

LAD
LSD
LAD
LSD

0.06286
0.06408
0.06886
0.07336

0.08795
0.07473
0.08581
0.08112

160 10

6

LAD
LSD
LAD
LSD

0.05246
0.05481
0.05509
0.06151

0.06648
0.06168
0.06478
0.06593

250 10

6

LAD
LSD
LAD
LSD

0.04379
0.04796
0.04497
0.05194

0.05167
0.05224
0.04962
0.05471

500 10

6

LAD
LSD
LAD
LSD

0.03150
0.03697
0.03189
0.03864

0.03451
0.03729
0.03289
0.03872

5. Findings and discussion

The results of the study are summarized in Tables 1–
5. In Tables 1–5, each row is specified by 1) a sample
size (n), 2) p 5 10 (case 10) and p 5 6 (case 6) in-
dependent samples, and 3) LAD and LSD regression
analyses. In each of the five tables the first column (C1)
contains the true r values for the designated population
and the second column (C2) contains the average of
10 000 randomly obtained sample estimates of r, r̂,
where the ỹ values are based on the sample regression
coefficients for each of the 10 000 independent samples,
that is, a measure of retrospective fit. The third column
(C3) measures the effectiveness of validating sample
regression coefficients. In this column the sample re-
gression coefficients from 10 000 random samples were
first obtained from column C2, then for each of these
10 000 sets of sample regression coefficients an addi-
tional five independent random samples of the same size
(n 5 15, . . . , 500) were drawn from the population.
The sample regression coefficients from C2 were then
applied to each of the five new samples, and valuesr̂
were computed for each of these five samples for a total

of 50 000 values. The average of the 50 000 valuesr̂ r̂
is reported in column C3, yielding a measure of vali-
dation fit. The fourth column (C4) contains the average
of 10 000 randomly obtained drop-one sample valuesr̂
where each of the values is based on the same sampler̂
data that yields one of the 10 000 sample values com-r̂
posing the averages in column C2. Thus, each value in
column C4 represents the average of n times 10 000 r̂
values. The fifth column (C3/C2) contains the ratio of
the average value of C3 to the corresponding valuer̂ r̂
of C2, that is, the index of shrinkage. The sixth column
(C4/C2) contains the ratio of the average value of C4r̂
to the average value of C2, that is, the drop-one single-r̂
sample estimator of shrinkage, as measured by C3/C2.
The seventh column (C4/C3) contains the ratio of the
average value of C4/C2 to the average value ofr̂ r̂
C3/C2, that is, the ratio of the drop-one single-sample
estimator of shrinkage to the index of shrinkage. The
eighth column (C3/C1) contains the ratio of the vali-
dation fit of C3 to the corresponding true fit, measured
by the population r value given in C1. The values of
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TABLE 9. Population 3: Contaminated population consisting of 3998
events consisting of the initial population of 3958 events and 40 very
extreme events. The SD( | C2) column contains the standard devi-r̂
ations of the 10 000 values composing each C2 value in Table 3.r̂
The SD( | C4) column contains the standard deviations of the 10 000r̂
drop-one values composing each C4 value in Table 3.r̂

Sample
size Case Model SD( | C2)r̂ SD( | C4)r̂

15 10

6

LAD
LSD
LAD
LSD

0.07312
0.10296
0.10986
0.13057

0.21340
0.20394
0.23235
0.21374

25 10

6

LAD
LSD
LAD
LSD

0.08271
0.09680
0.10943
0.11702

0.18859
0.16023
0.19101
0.16443

40 10

6

LAD
LSD
LAD
LSD

0.07881
0.08353
0.10850
0.10854

0.15062
0.12591
0.16098
0.14063

65 10

6

LAD
LSD
LAD
LSD

0.07311
0.07326
0.10760
0.10912

0.12111
0.10234
0.14048
0.13000

100 10

6

LAD
LSD
LAD
LSD

0.07011
0.06856
0.09916
0.10987

0.10276
0.09096
0.12123
0.12467

160 10

6

LAD
LSD
LAD
LSD

0.06532
0.06718
0.08366
0.10760

0.09020
0.08629
0.09932
0.11722

250 10

6

LAD
LSD
LAD
LSD

0.06024
0.07112
0.07153
0.10170

0.07645
0.08589
0.08012
0.10799

500 10

6

LAD
LSD
LAD
LSD

0.04760
0.07220
0.05308
0.08288

0.05133
0.07339
0.05542
0.08283

TABLE 10. Population 4: Contaminated population consisting of 4158
events consisting of the initial population of 3958 events and 200
moderately extreme events. The SD( | C2) column contains the stan-r̂
dard deviations of the 10 000 values composing each C2 value inr̂
Table 4. The SD( | C4) column contains the standard deviations ofr̂
the 10 000 drop-one values composing each C4 value in Table 4.r̂

Sample
size Case Model SD( | C2)r̂ SD( | C4)r̂

15 10

6

LAD
LSD
LAD
LSD

0.07562
0.10652
0.12349
0.14319

0.20328
0.19460
0.23447
0.21392

25 10

6

LAD
LSD
LAD
LSD

0.09434
0.10862
0.13018
0.13574

0.18918
0.16428
0.19988
0.17395

40 10

6

LAD
LSD
LAD
LSD

0.09796
0.10279
0.12286
0.12368

0.16053
0.13597
0.16902
0.14667

65 10

6

LAD
LSD
LAD
LSD

0.09569
0.09648
0.11052
0.10641

0.13179
0.11449
0.13891
0.11780

100 10

6

LAD
LSD
LAD
LSD

0.08759
0.08668
0.09751
0.09047

0.10968
0.09591
0.11473
0.09552

160 10

6

LAD
LSD
LAD
LSD

0.07687
0.07262
0.08342
0.07305

0.08986
0.07640
0.09390
0.07508

250 10

6

LAD
LSD
LAD
LSD

0.06777
0.05996
0.07159
0.05947

0.07482
0.06017
0.07611
0.05962

500 10

6

LAD
LSD
LAD
LSD

0.05184
0.04164
0.05314
0.04148

0.05465
0.04147
0.05635
0.04148

columns C1, C2, C3, C3/C2, and C3/C1 are contained
in Mielke et al. (1996).

It should be noted in this context that both C3 and
C4 are free from any selection bias. Selection bias oc-
curs when a subset of predictor variables is selected
from the full set of predictor variables in the population
based on information contained in the sample. In this
study, selection bias has been controlled by selecting
the two sets of predictor variables (i.e., cases 10 and 6)
from information contained in the population and not
from information contained in any sample. Specifically,
in the case of C3, the predictor variables were selected
from information in the population, the regression co-
efficients were based on information contained in the
sample for these (10 or 6) predetermined predictor vari-
ables, then the regression coefficients were applied to
five new independent samples of the same size and
drawn from the same population. This process was re-
peated for 10 000 samples, producing 50 000 values.r̂
Each C3 value is an average of these 50 000 values.r̂
Thus, while there is an optimizing bias due to retro-
spective fit, there is no selection bias. In the case of C4,

the predictor variables were again selected from infor-
mation contained in the population and the regression
coefficients were based on information contained in the
sample, after dropping one observation. A value wasr̂
calculated on the set of n 2 1 y and ỹ values, and the
procedure was repeated n times, dropping a different
observation each time. The entire process was repeated
for 10 000 samples, producing n times 10 000 values.r̂
Each C4 value is an average of these n times 10 000

values. Thus, there is no selection bias. The advantager̂
to this approach is that the optimizing bias can be iso-
lated and examined while the selection bias is con-
trolled. In addition, this approach is more conservative
as validation fit is almost always better when subset
selection is included (MacCallum et al. 1994). The
drawback to this approach is that the results cannot be
generalized to studies that selected both prediction vari-
ables and regression coefficients based on sample in-
formation and, in addition, shrinkage may be increased.

The ratio values in column C3/C2 in Tables 1–5 pro-
vide a comprehensive index of shrinkage that serves as
a benchmark against which the accuracy of the drop-
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TABLE 11. Population 5: Contaminated population consisting of
4158 events consisting of the initial population of 3958 events and
200 very extreme events. The SD( | C2) column contains the standardr̂
deviations of the 10 000 values composing each C2 value in Tabler̂
5. The SD( | C4) column contains the standard deviations of the 10r̂
000 drop-one values composing each C4 value in Table 5.r̂

Sample
size Case Model SD( | C2)r̂ SD( | C4)r̂

15 10

6

LAD
LSD
LAD
LSD

0.07494
0.10476
0.12873
0.14899

0.19074
0.18378
0.22530
0.20967

25 10

6

LAD
LSD
LAD
LSD

0.09339
0.10667
0.14751
0.15292

0.17836
0.16084
0.20186
0.15169

40 10

6

LAD
LSD
LAD
LSD

0.10061
0.10400
0.15666
0.15555

0.15998
0.14360
0.18604
0.17129

65 10

6

LAD
LSD
LAD
LSD

0.11479
0.11073
0.15084
0.14880

0.14447
0.13048
0.15964
0.14895

100 10

6

LAD
LSD
LAD
LSD

0.11799
0.11559
0.13551
0.12614

0.12954
0.12049
0.13828
0.12206

160 10

6

LAD
LSD
LAD
LSD

0.10895
0.10701
0.11705
0.09116

0.11034
0.10334
0.11682
0.08748

250 10

6

LAD
LSD
LAD
LSD

0.09543
0.08361
0.10046
0.06166

0.09467
0.07840
0.09831
0.05949

500 10

6

LAD
LSD
LAD
LSD

0.07177
0.04617
0.07518
0.03362

0.06644
0.04218
0.07223
0.03134

one single-sample estimator of shrinkage given in col-
umn C4/C2 can be measured. The ratio values in column
C4/C3 were obtained by dividing the ratio values in
column C4/C2 by the corresponding ratio values in col-
umn C3/C2. They provide the comparison ratio values
by which the drop-one single-sample estimator of
shrinkage is evaluated.

For each of the five populations summarized in Tables
1–5, the ratio values in column C4/C3 are close to unity
for samples with n . 25. The few C4/C3 values that
exceed 1.0 are probably due to sampling error. It should
be noted that the C4/C3 ratios tend to be less than unity
for the smaller sample sizes. When n # 25, reductions
from unity of the C4/C3 values are 4.5%–11% for the
LAD regression model and 4.5%–15% for the LSD re-
gression model in population 1. For populations 2–5,
the corresponding reductions are 4%–10% (LAD) and
4.5%–14% (LSD), 3.5%–9.5% (LAD) and 3.5%–14%
(LSD), 3%–6% (LAD) and 4.5%–11% (LSD), and 0%–
5.5% (LAD) and 0%–11% (LSD), respectively. Thus,
the drop-one single-sample estimator (i.e., C4/C2) is an
excellent estimator of shrinkage (i.e., C3/C2), although

it is conservative for very small samples. This conclu-
sion holds for all sample sizes greater than n 5 25, both
cases (6 and 10), both regression models (LAD and
LSD), and all five populations with differing degrees
and amounts of data contamination.

Column C3/C1 summarizes, in ratio format, the val-
idation fit (C3) to the true population r value (C1). This
is sometimes referred to as ‘‘expected skill’’ (Mielke et
al. 1996). In general, the C3/C1 values indicate the
amount of skill that is expected relative to the true skill
possible when an entire population is available. More
specifically, the C3/C1 values indicate the expected re-
duction in fit of the y and ỹ values for future events
(Mielke et al. 1996). A C3/C1 value that is greater than
1.0 is cause for concern since this indicates that the
sample regression coefficients provide a better valida-
tion fit, on the average, than would have been possible
had the actual population been available.

Inspection of column C3/C1 in Table 1 reveals that
the LSD regression model consistently performs better
than the LAD regression model, case 10 has lower val-
ues than case 6, and the C3/C1 values increase with
increasing sample size. Table 2, with 1% moderate con-
tamination, yields a few C3/C1 values greater than 1.0
and they all appear with the LSD regression model.
Table 3, with 1% severe contamination, shows the same
pattern, but the C3/C1 ratio values are somewhat higher.
Table 4, with 5% moderate contamination, continues the
same motif and Table 5, with 5% severe contamination,
contains C3/C1 values considerably greater than 1.0 for
nearly every case. It is abundantly clear that with only
a small amount of moderate or severe contamination,
the LSD regression model produces inflated estimates
of expected skill. The LAD regression model, based on
absolute deviations about the median, is relatively un-
affected by even 1% severe contamination, but the LSD
regression model, based on squared deviations about the
mean, systematically overestimates the validation fit and
yields inflated values of expected skill (i.e., C3/C1).

Since C3 (validation fit ) values and C4 (drop-oner̂
single-sample validation fit ) values are essentially ther̂
same for all five populations, both cases, both regression
models, and all sample sizes, it is readily apparent that
C4/C1 ratios would be nearly identical to the C3/C1 ratios
in Tables 1–5. Consequently, caution should be exercised
in using drop-one estimators with the LSD regression mod-
el as they will likely provide inflated estimates of vali-
dation fit when contaminated data are present. Because
the drop-one estimate of shrinkage is equivalent to drop-
one cross-validation, the same caution applies to drop-one
cross-validation with an LSD regression model.

While it is abundantly evident that LSD regression sys-
tematically overestimates validation fit, the reason for the
optimistic C3/C1 values is not as manifest. It is obvious
that the inflated estimates of expected skill for LSD re-
gression in Tables 1–5 are systematically related to sample
size with larger sample sizes associated with C3/C1 values
in excess of 1.0. This is probably due to a moderately or
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severely contaminated population event occurring in a sin-
gle sample. Very small samples (e.g., n 5 15) are not
likely to include a contaminated event, whereas very large
samples (e.g., n 5 500) are much more likely to include
one or more contaminated events. Table 6 provides the
probability values that no contaminated population event
belongs to a single sample for both 1% and 5% contam-
ination. The probability that no contaminated event be-
longs to a single sample with 1% moderate or severe
contamination in the population is given by (3958/3998)n,
and the probability that no contaminated event belongs to
a single sample with 5% moderate or severe contamination
in the population is given by (3958/4158)n in Table 6. For
1% moderate or severe contamination, the probability of
selecting no contaminated events from the population is
greater than 0.50 for samples of size n # 65. For 5%
moderate or severe contamination, the probability of se-
lecting no contaminated events from the population never
exceeds 0.50. Given the well-known sensitivity of LSD
regression to extreme events, it is not surprising that LSD
regression yields optimistic levels of expected skill for
larger samples that are more likely to contain one or more
moderate or severely contaminated events. It should be
noted in Table 5 that neither LSD nor LAD regression is
able to accommodate 5% severe contamination.

The single sample estimate of shrinkage, C4, is higher
for 6 predictors than for 10 predictors in Table 1 with
LAD regression and n # 160 and with LSD regression
and n # 250, in Table 2 with LAD regression and n #
250, and with LSD regression and n # 40. The same
relationship holds for both LAD and LSD regression in
Table 3 with n # 40 and in Tables 4 and 5 with n # 25.
These results are consistent with the influence of contam-
ination since when n is small, the influence of additional
noninformative predictors is mitigated because the prob-
ability of selecting a contaminated event in each sample
is reduced. Clearly, regression models containing nonin-
formative predictors should be avoided (Browne and Cu-
deck 1992).

The standard deviations of the 10 000 values com-r̂
posing C2, SD( |C2), and the standard deviations of ther̂
10 000 drop-one values composing C4, SD( |C4), arer̂ r̂
given for each sample size (n 5 15, . . . , 500), case (10
and 6 predictors), and regression model (LAD and LSD)
combination in Tables 7, 8, 9, 10, and 11, which cor-
respond to the five contamination levels of Tables 1, 2,
3, 4, and 5, respectively. In particular,

1/2M1
2SD( r̂) 5 (r̂ 2 r) ,O i[ ]M 2 1 i51

where
M1

r 5 r̂ ,O iM i51

M 5 10 000 in this study, and r corresponds to either C2
or C4. The standard deviations are confined to SD( |C2)r̂
and SD( |C4) since the associated estimable single sampler̂

values exist only for C2 and C4. For all five tables,r̂
SD( |C2) is smaller than SD( |C4) for small sample sizes.r̂ r̂
However, SD( |C2) and SD( |C4) become more similarr̂ r̂
to one another with increasing sample sizes. Also for all
five tables, the SD( |C2) values are fairly similar for casesr̂
with 10 and 6 predictors; this also holds for the SD( |C4)r̂
values. The differences between LAD and LSD regression
for both SD( |C2) and SD( |C4) are more complex. Whiler̂ r̂
SD( |C2) is smaller for LAD regression than for LSDr̂
regression with small sample sizes (15, 25, and 40), the
SD( |C2) and SD( |C4) values are larger (perhaps slightly)r̂ r̂
for LAD regression than for LSD regression in Table 7.
In Tables 8 and 9, SD( |C2) is smaller for LAD regressionr̂
than for LSD regression whereas this observation holds
for SD( |C4) only with large sample sizes (250 and 500).r̂
In Tables 10 and 11, except for SD( |C2) with small sam-r̂
ple sizes (15, 25, and 40), both SD( |C2) and SD( |C4)r̂ r̂
are larger for LAD regression than for LSD regression.

6. Summary

Mielke et al. (1996) investigated the effects of sample
size, type of regression model, and noise-to-signal ratio
on the degree of shrinkage in five populations containing
varying amounts and degrees of data contamination.
Shrinkage was measured as the ratio of the validation
fit of a sample-based regression model to the retro-
spective fit of the same regression model where the
validation fit was assessed on five independent samples
from the same population. While the Mielke et al. (1996)
index of shrinkage is both rigorous and comprehensive,
it involves an additional five independent samples and
thus is not useful in routine applications. In this paper
a drop-one single-sample estimator of shrinkage is de-
veloped and evaluated on the same dataset used by Miel-
ke et al. (1996). The drop-one single-sample estimator
provides an accurate estimate of shrinkage for the five
populations, both regression models, both cases, and all
sample sizes, although the estimator is slightly conser-
vative for very small sample sizes.

Finally, a caution is raised because the drop-one sin-
gle-sample estimate of shrinkage is, in fact, an estimate
of shrinkage. There is evidence that the drop-one meth-
od provides inflated estimates of validation fit for the
LSD regression model when the population data is con-
taminated by extreme values, e.g., populations 1–4 in
Tables 1–4. In population 5 (Table 5) with 5% severe
contamination, both the LSD and LAD regression mod-
els provide estimates of validation fit that are too high.
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