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ABSTRACT

The structure of the correlation functions appearing in
Sinanoglu's many-electron theory is analyzed. It is shown how
these functions lead naturally to the definitions of correlation
amplitudes satisfying a set of coupled integro-differential
equations. Approximate solutions to a subset of these equations -
the two-particle equations - correspond with solutions of the
"exact pair'" equations proposed by Sinanoglu. The relationship
of these correlation amplitudes with those empleyed by Clark
and Westhaus in cluster expansion techniques is also explered,
and the equivalence of Sinandglu's "exact pair' theory with

their truncated factor-cluster formalism is demonstrated.
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In his formulation of the problem of determining the electronic

eigenstates

HY = EY (1)

Sinano§1u1’2’3 has proposed that for a particular state 123 gﬁr be
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The electronic Hamiltonian;éah'bh%ﬁ be resolved into an 'unperturbed"
H

and a 'perturbed'" part in the usual fashion:
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The orbitals 2] .a and L\ 1y ma for example, be
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chosen self-consistently as in the Hartree-Fock Scheme with the
remaining elements of 'Z?{E determined in accordance with (4).
In any event, we may choose ?_”1 ) ?‘m v Pmuin some optimal
i a
fashion, so that this configuration has the largest amplitude in a
determinental expansion of ?‘m in terms of ??'} and normalize
~ d
‘,F’l‘msuch that this amplitude is unity. The correlation functions
U (X« Xy )
ngl""ﬂ?gn can be expressed in terms of the configuration

interaction (CI) amplitudes
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The sum is over all combinations cof y) orbitals omitted from the

set 4'W] . and i
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coefficient of the configuration obtained by replgcing, orbitals
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respectively. Here [ (K} =~ (X )]denotes a 4 matrix
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whose I,J th element is ?ei[,(;] .) In practice these
coefficients are to be determined via some perturbative or variational

calculation but formally are given in terms of the sought-for

eigenstate .k;m by
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We hope to point out some interesting pfoperties of these
correlation functions and the 'correlation amplitudes'" to which
they naturally lead. Although the derivations given here ére original
and the implications regarding Sinanoglu's formalism have not been
fully explored previouslya, much of the following leans heavily upon
the work of Primas5 and, although not contained in his work, is
inspired by it.

Substitution of (8) into (7) followed by the interchange of the
sums over orbital indices with the integrations over particle

coordinates allows us to write
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A particular determinant appearmg in the sum in the integrand
depends upon N orbitals - see ans
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determinants may be expressed as a single determinant:
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~ In the last line of (11) each of the M sums runs independently

over all orbital labels excludin but
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whenever s
t= 1,

vanishes due to the proportionality of two columns of the determinant.

Expanding det W”'?,—"X',"ﬂ;,"mﬂ as the sum of determinants is a

consequence of repeatedly applying the identity
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Now using this identity in the sense of going from right to left, we
can contract the second expansion appearing in {11}, tc one

determinant:
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The single determinant which results from these operations is most
simply described as the determinant of that matrix coastructed by
taking [(P “‘(Pn, ver (Ph."'? ]and replacing the z th row of the j. th
column by Z: t(pt(x, (p’(x ) where the index T  assumes all orbital

labels except m mIV Since {(‘P } form a complete

orthonormal set of orbltals, we find, according to the closure

property, that
(‘p'f' h = S ’ g_" *;xf) (%)
tzf'm t(x)‘?f;"‘) Cx,x) ~ 5 ?.,.,'_ 50»2, oy
[a %

However, when (14) is inserted into (13), of the N terms occurring
in each sum over ‘L h’l,‘wtl) ve @ mv only those for which

’5)7? 1) }‘nJ )e ,‘)ﬂé’d need be kept, since only they would give rise
- to non-vanishing contributions if the resulting determinant were

expanded in the fashion of (12). Therefore, defining




"

A(x ’\2)

el

i Skxy - _2,,‘? WP, " (15

, ¥ . , .
we arrive at a compact formula for Sinancglu's correlation functicns:
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The collapse of the determinant to a simple product is a consequence
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Although it appears that this result has only a formal significance
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since the eigenfunction W))(, N) is not krown, we may bypass
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the derivation of (16) and alternatively view this fermula as a
starting point for the analysis of a given trial wave functionq/
~
into its correlation function components U . When
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seen in this spirit Eq. (16) simply provides a somewhat more elegant

formulation of the technique proposed by Sinané‘\'glu?, It might prove

interesting to apply this analysis to various proposed trial wave
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functions, e.g. spin-projected Hartree-Fock or Jastrow '’ correlated

wave functions.

These correlation functions are interrelated with the elements
of other methods for attacking the many-body problem. In particular,
we shall see that the exact correlation functions serve to define the
solutions of a hierarchy of coupled equations considered by Brenigg,
Broutlo, Nesbetll, and Kumarlz. We shall call these solutions
"correlation almplitudes".13 In addition, a set of trial correlation
functions may be used to define a set of trial correlation amplitudes
which play a key role in the cluster expansion developments of
Iwamoto and Yamada]'4 and Clark and Westhausé.a’15

We define the correlation amplltudeyr(x'::"’:;s) by analogy
with Slnanoglu s decomposition (2) in terms of the éorrelation functions

derived from qf via (16). Here we understand gf
Um,,.., Mo P, (16). ¢ -

to be either the exact or a trial wave function.) Thus we write
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Then upon explicitly inserting (16) and collecting terms, we cbtain

a very simple expression for the correlation amplitude:
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This result is obtained by noting that, upon expanding all the
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(Here we have used the fact that the product of an appropriately signed

particle permutation operator with the antisymmetrizer again generates Qmy.)

Thus, when the operator ‘“‘"/N’ la(") is applied to these brackets
[}

the final line in (18) follows immediately. Aside from a normaliza-

tion factor the correlation amplitudes [{ €x,oee Xy defined in
YW,s00 "
A I mi\’l

terms of Sinanoglu's cotrelation functions are equivalent to those
o . .5 12

found, for instance, in the work of Primas” and Kumar.

If Vm " is the solution of (1), a hierarchy of coupled

s

integro-differential equations is satisfied by the correlation

amplitudes obtained with Sinano‘élu's correlation functions. A

somewhat different form of these equations than that developed by

Kumar is found by observing
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Here we have appealed to the Hermiticity of l’l U‘) in order to write
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Henceforth we shall assume that the perturbation may be written
as the symmetric sum of velocity-independent, two-body operators

’U.(?J’) so that in general
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with Ae the difference between the exact eigenvalue and the

orbital energies

AE = £ -2 e, .

(Obvious modifications in the form of (21) are obtained for those

specific cases with m =1 ,MIN~1, =N (cf. Eq. (23)).)

Eq. (21) resembles a Schrgdinger equation for the n-particle

amplitude W‘xl‘--xn) save for the coupling through the perturbation
Y000 Myn

to all (\q -'-,)_ and (YL.‘.Q)... particle correlation amplitudes

with sets of indices containing im” osa mj”} as a subset. There

are a" --1 such coupled equations, the N-particle equation

being the Schrt')'dinger equation for Y = gj .
W(’.,.mw m

b

An expression for the exact energy E follows directly upon

consideration of the equation for Vm




{hay = €m, = (6 -3 e, ) FPe0

N
-2 fdx ‘f"‘cx) V" (%,x°) Vcs,m - jawaﬁx'ffﬁx’» y:g{’)x
*2 f 2<Fg2<NI P l_

AP x”) @M %ﬁ

Y f) 29
Using the fact that for any set of f-i-l indices, WJ oo e WJ
! (P+1)

which contains the given index mz s

Y(xl‘-'A ("l) 11}&& ? €X,) (X rY XP J (245
", .- pry) i m ! Lo P
e, WCP J Wﬂ‘“‘ﬂ

where mz;ﬁ’{{mj-"'mip+;§ _m?’§ , we obtain upon

multiplying (23) from the left by CP%ﬂ(,gl’) and integrating
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Note that we have written GW,‘ (,(_P:j V inl B 5?‘:}7‘%”) QJW,BJX? .
Thus, as is well-known, only the one and two particle correlation
amplitu‘des are, explicitly required to evaluate the energy; of
course, they in turn depend via Eqs. (21) upon the many-body
correlation amplitudes.

The point to be emphasized here is that with Sina:1o§lu"s
correlation amplitudes as defined in (17) satisfying (21), certain

x

approximations upon this hierarchy of equations. immediately generate
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the corresponding two particle functions examined by Sinancglu. Thus,
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the origin of his "exact pair' equation and "Berhe-Goldstcone-like'
2
equation becomes clearer. Alsc important is the realization tkat
the (Ir are simply a subset of the correlation amplitudes
N, mia
»
which satisfy (21) and the entire Many=Electron thecry can, in fact,
be equivalently formulated in terms of these amplitudes as opposed
to the correlation functions U... ... . We shall return to
YHJ' L] ‘YnJo“ ;

these considerations later.

Let us now point out that, in contrast to (25), even were we
to have all the exact correlation amplitudes, the factor-cluster-

decomposition proposed by Clark and Westhaus15 for expanding the

expectation value of H 5
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still contains explicitly many-particle correlations. The notation
e . denotes a particular combination
(h' hP{E' £z> F$7 b C ina
of F indices b_l e hP | chosen from the set %fﬂ c 90‘Q$§ ®
When {II oo 1&5':-'%,‘1).‘. N}, the notaticn assumes the abbreviated
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form <h'“' kf> . Briefly we recall that
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If the occupied orbitals are chosen self-consistent in the

Brueckner sense, i.e. Urﬁz‘.) = 0 so that
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and thus every one-indexed LY‘?' vanishes. On the other hand.
'
if (29) does not hold -- e.g. if the (Jo“'n' are self-consistent
i
only in the Hartree-Fock sense - then as a consequence of (27), (28), and

(23) we obtain the formal expression
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which explicitly contains the sought-for energy via (22). Whether

or not (29) holds, however, since the exact B-body correlation

.
.

amplitudes are assumed to be known, the remaining Z also
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may be expressed in terms of Ag and quantities which contain

neither the single-particle energies €""7 nor the operator /7(”

exp11c1t1y To see this, again consider tﬁat dlrectly from (28) and

(21)
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When this result is inserted into the second equation cf (27), th

. . . , 15 ,
sum of the single particle energies vanishes and, in general,

one obtains
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Clearly, there is no reason to suspect the vanishing of such &
vA
MJ;HMJ'\’

These manipulations, in which knowledge of the exact ccrrelation
amplitudes has been assumed, are purely formal and have only served
to indicate the explicit bresence of many-body terms in the cluster
expansion of <H> even in this ideal situation. We now point out,
however, an approximation to H> based upon summing all the terms
in (26) with Y or less indices. For the moment we again assume

that the exact correlation amplitudes are known. We see from (22)
N

and (26) that AL = 3 = yaetm
wat ‘J"'JO n

") th order approximation" we write
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we arrive at an approximate expression for AF
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perturbation potential,
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Eq. (37) is meaningful only for U <« N . T¢ be practical

of course, it is required that V((M . It is propoced that
substituting thoughtfully chosen trial forms feor the correlation
amplitudes in (38) may provide practical means cf <asrrying out this
approximation to a fruitful conclusion.

The correlation amplitude ?’(Ka;K may be locked upon =8

more accurately depicting the distrlbutlon of two partizies which,

in the independent particle approximation, occupy orbitals %%w and
Jo
?%". . Let us consider an effective Hamiltonizn whnich, at

Jd%

least intuitively, governs the motion cf these two particlies and
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d
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consequently generates approximate soluticns for % v, we
i 4%

find that with the most straightforward form for this effective

Hamiltonian a variation performed upon the terms through sec.~d order



21

in the factor cluster-expansion15 (26) leads to Sinand%lu“s Mexact-
pair" equationsz. Thus we will see the equivalence of the Many-Electron-
Theory and the factor cluster expansions., Employing the variational
principle with other truncated cluster expansions generstes further
approximations to the "exact pair" theory. In particular, we shall
discover the connection between the Iwamoto-YamadalA cluster formalism
and Sinandélu's Bethe-Goldstone-like pairs. 1In all these cluster
expansion formalisms, however, it is the correlation ampiitudes

L/“M"'mjv\ as opposed to the correlaticen functions UWJOGMMJH
which play the central role. It appears to be intuitively simpler
to assign some physical status to the former quartities, and thus
perhaps to say something significant concerning their transfer from
one molecular specié; to another.

We now specialize to the case in which the independent-particle

model is constructed according to the Hartree-Fock scheme so that the

orbitals satisfy
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Here, following the remarks of Geller, Tayior, and Levine, ° we

define the non-local potential
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where in terms of the usual Coulomb and exchange cperatorz of Hartree-

Fock theory
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Now focusing on orbitals 'Yn'n and Y7 in the Hartree-
J W
Fock model we ask what effective Hamiltonian may be constructed to
apprcximate more realistically the motion of the "electrons'
occupying these orbitals. We propose the following Hamiltonian
which, in addition to the mutual Coulomb repulsion of the electrons

in the chosen orbitals, includes the effective interaction of each

of these two electrons with the ''background'" particles:

H,8 020 [t' Sl AT S N I I + e |4
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The one-body operators appearing in the second group of terms
approximate the effective interaction of each chesen electron with
the background as the difference between the total Hartree-Fock
potential and that part contributed by quasiparticles occupying
orbitals VWJ' and YYU» . (Notice that this latter term is

defined to be in accord with the Hartree-Fock potential of Geller

22
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Taylor and Levine.

satisfies
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as an approximation to the two body correiction zuriitude defined

in (17). More to the point of the presernt discuszion, however, we

can redefine, as the basic ingredients of the rsctor ¢luster
4

expansion,
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These latter quantities may be obtzired from 2 trici form for §f
bt
=4

as in (17) in terms of trial correlation functions

via (16) but also may simply be postulated functicrnzi forme containing

variational parameters. In the definition of (3%0‘ we have
és

introduced a new effective one-body Hamiliton‘an to replace the

Hartree Fock operator. This isg, of course, not necessary {ci. (300



but it may prove convenient as explained in the fcllewing paragraph.
Thus, in general, to use the factor cluster expansicn through zecond

order we need

% ~
%;:’ G [‘P"" t Um;f"

and (45)

~
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We shall assume in the forthcoming discussioun, however;, that the
one-body correlation functions are negligibly small throughout all

space , so that V (Pw and thus, becausej;';g ?m(x, )Séqcp(x, =0
in accordance with (27) the one-index cluster 1ntegralsZ. ) vamsha
?

Let us briefly take time to note that although the one- and
two-body effective Hamiltonians depend explicitly upon the
corresponding Hartree~Fock orbitals under consideration and thus are
very much unlike the operators proposed previouslyls, the factor-
cluster-formalism proceeds in the same fashion as before. This is
because the factor - cluster decomposition - like all cluster
decompositions - leads to an expansion for the expectation value of
an operator S which, if completely summed, results identically

in (S> . Thus, were we to continue to define state-dependent

effective Hamiltonians in the manner of (42) we would obtain
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in which the N-particle effective Hamiltonian is identically the
given Hamiltonian, the expectation value of which with respect to
L
Lf(‘-- Ay) = 'YCx‘---xN) is the sole surviving term in the
MUTEIAL Y, ps;
completely summed cluster expansion.
~
Inserting H("’g) and KF,,E;,L&XZ) as defined above into (44)
. 2 (2R 4 X

and after regrouping the terms in the effective Hamiltonian taking

advantage of the fact that
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We find that
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Let us now add and subtract the difference betweern the Coulomd and

exchange integrals, J - K , to L ard thereby
)

J: o g™ 42 e

obtain
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where in the terminology of Geller, Taylor, and Levine

2
m(l 1) = e Scn - S ln -S(Q) S("-) + J KMm‘(SO)

MO '71 T Ty Ty, Wl
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Then, since
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‘2. IW( )2) “'”‘1)) o (51)
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But upon inserting this expres31on for the ‘Z__m 's 1nto the
d* )'1-

cluster expansion we obtain
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where, in the final expression, we recognize that the sum of terms
in square brackets in the intermediate equation is the Hartree-Fock

energy. To correspond with Sinanoglu's notation we have defined

g’ Q'm wi I H‘Lh.n-’um ™; )‘f C.C.t (U,. M-’km*h(a\,) "’eh, mv ?mmvyjum_)

‘4 (Qs\, .+U‘MW‘ ?7\1 ww +U“1IW| ) (543

The form of (54) is similar to that of the corresponding

expression in Sinanoflu's "exact pair" theory. However, an important
distinction exists. 1In arriving at (53) we have nowhere invoked the

so-called strong orthogonality conditions,
S‘ﬁixl xf? [x ) U"(”xd =0, ";41, h = oot M. (55)

To avoid the ''Nightmare of inner shells"., these conditions must be
imposed upon trial correlation functions;l they are, unfortunately,
a source of great complexity in practical calculations as attested
by Geller, Taylor, and Levine17 in their application of Many-Electron-
Theory to Be. When these conditions are imposed, we find that the

denominator in (54) becomes
<?’"t,«w? Um‘.nylfw‘.mi * u'"‘l,”:, ) = Z * (U\Mi'nyJ Um.),:/ ), (56)

and then the two approaches are strictly identical: The correlation
functions, or equivalently, the correlation amplitudes which result

upon minimizing the above truncated factor cluster expansion term by




term are the same as those which emerge via Sinanﬁélm”s procedure.,
On the other hand the fact that the former method results in the
same form as Sinanoglu's without the imposition of (33) suggest that
one should not carry out an unrestricted variational calculation upcn
the truncated factor cluster expansion in the mary electron probtlem.
A similar conclusion would appear to be valid in using this method
to construct a theory of finite nuclei.

Thus we see that the results of Sinandglu’s Many-Electron-
Theory can be equivalently obtained within the framework cf the
correlation amplitudes and the factor cluster expansisn. The latter

approach is easily (in principle) extended to higher order through
b d
15
the introduction of M-particle correlation amplitudes gﬂ;d cemyn ¢
Jp pLN

The few-body correlation amplitudes, say V).Q.S , play an essential

role in this formulation and thus supplant the correlation functicns

Uw’yi' o 'th

entire regions of electrons from one molecule to ancother.

in considering such questions as the transferability of

To examine the significance of the normalizaticn factors
~ ~ .
: - POy U b -
(Qjouiléii 1-0:.’. let us consider the Iwamoto-Yamada (IY) cluster

8,14,15,19 Once again assuming that the one-bocdy

formalism.
correlation functions can be neglected and retaining explicitly cnly

those second order terms which are linear in the IY cluster integrais,

we can approximate the expectation value 'of the Hamiltonian by

E = i,eml' + g"‘ 3""2-”1) » (573
3 ;ﬁJ !
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Under these assumptions, it turns out that

Fomim; = (B U Jlém;@.fﬁm,.y.)[ampy—QM:QW]

=(§‘n‘-~nj léw vy )Z’“"'? "’1 § o

so that performing the same manipulations with ,and *:

wl.“:, M;m;
which led to (53), we obtain J
E EHF ‘7"' (59)

A , (‘Tm v K,,, o )[[d“”" gé’"’f"" .m) 1]

(60}
The first term is simply the numerator of the corresponding term

in (53). The second is essentially a normalization correction to
the truncated Iwamoto-Yamada expansion. Indeed, it fcllows

. . , 15

immediately from the order by order equivalence of the factor and
the Iwamoto-Yamada cluster expansionsand the structure of ;3””

omo.
13

as seen in (58) that the role of the remaining second order termsC/
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involving higher powers of the IY cluster integrals is simply to
incorporate all the second order normalization effects possessed
by the denominators in (54).

When the strong orthogonality conditions are imposed the second
term in (60) is O ((U ﬁ . Neglecting all such terms

. . . N . -~ o I3
occuring in his denominators, Sinanoglu has arrived at an approxi-
mation to his '"exact pairs' which he terms "Bethe-Goldstone-like

2 .
pairs®.” Clearly, by employing the IY cluster expsnsion truncated as
in (57) and then neglecting terms O((u , )), we arrive at an
hhv»

identical result. Thus, the variational prlpc1p1e appiied to the

truncated energy expression

iy > (61)

; . ol . N

also yields Sinamoglu's  Bethe-Goldstone-like equations for the
approximate two-body correlation amplitudes. Another theory of
correlated wave functions which, through '"third order'", leads to a
result similar to (61l) in that the denominator in (54) is replaced

. , , 20 Lo .
by unity has recently been given by Steiner” . It might be pointed
out that without imposing the strong orthogonality conditions an

~

unrestricted variation upon each of the f? in (61) can lead
™
to infinitely negative energies. This catastrophic result was first
. 21 . . s
pointed out by Emery in connection with the nuclear matter binding

energy problem. A similar difficulty was also found by Steiner22 in

calculations on Be. The resolution of this difficulty in the nuclear
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matter problem was obtained by imposing restrictions upon the trial
correlation function; one of the most common restrictions imposed
has recently been shown by Clark23 to include the strong orthogonality
conditions.

These considerations indicate the close connection between the
cluster expansion formalisms and Sinanoglu's Many-Electron Theory.
It is hoped that the emphasis placed upon the correlation amplitudes
as opposed to the correlation functions will bring about a clearer
physical insight into atomic and molecular processes. Numerical
work on the correlation problem within the cluster expansion

formalisms should get under way in the near future.
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