1	4.0	IN V.	<i>IVO</i> RODENT TOXICITY REFERENCE VALUES USED TO ASSESS
2		THE	ACCURACY OF THE 3T3 AND NHK NRU TEST METHODS 4-3
3			
4		4.1	Methods Used to Determine In Vivo Rodent Toxicity Reference Values 4-3
5			4.1.1 Identification of Candidate In Vivo Rodent Toxicity Reference Data 4-3
6			4.1.2 Criteria Used to Select Candidate In Vivo Rodent Toxicity Data for
7			Determination of Reference Values
8			
9		4.2	Final In Vivo Rodent Toxicity Reference Values4-10
10			
11		4.3	Relevant Toxicity Information for Humans4-16
12			
13		4.4	Accuracy and Reliability of the <i>In Vivo</i> Rodent Toxicity Reference
14			Values
15			
16		4.5	Summary4-20
17			

17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	[This Page Intentionally Left Blank]
32	

33 34

4.0 IN VIVO RODENT TOXICITY REFERENCE VALUES USED TO ASSESS THE ACCURACY OF THE 3T3 AND NHK NRU TEST METHODS

35 The aim of the procedures and analyses presented in this section is to identify the most 36 appropriate in vivo rodent toxicity data with which to compare the in vitro cytotoxicity data. 37 The in vitro NRU cytotoxicity test methods are intended to be used in a weight of evidence 38 approach to determine the starting dose for the *in vivo* acute oral systemic toxicity test 39 methods using rodents. Thus, rodent LD_{50} values from acute oral systemic toxicity tests are 40 the most appropriate reference data for the *in vitro* NRU IC₅₀ values. This section describes

41 the methods for identifying and evaluating the most appropriate rodent LD_{50} data to use for

42 determining reference LD_{50} values for the 72 reference substances tested in the

43 NICEATM/ECVAM validation study. These in vivo rodent toxicity reference values will be

44 used in Section 6 to establish the accuracy of the *in vitro* IC_{50} data from the 3T3 and NHK

45 NRU test methods for predicting LD_{50} values from rodent acute oral systemic toxicity tests.

- 46
- 47

4.1 Methods Used to Determine In Vivo Rodent Toxicity Reference Values 48

49 4.1.1 Identification of Candidate In Vivo Rodent Toxicity Reference Data

50 No animal experiments were performed to obtain *in vivo* reference data for acute oral 51 systemic toxicity. To identify LD_{50} reference data for the 72 reference substances, rat oral 52 LD₅₀ data were located through literature searches, secondary references, and electronic database searches. PubMed and ISI Web of Science[®] searches were conducted using each 53 chemical name and "lethal dose 50." Secondary sources included NTP technical reports, 54 55 Toxicological Profiles from the Agency for Toxic Substances and Disease Registry 56 (ATSDR), Cosmetic Ingredient Reviews by the Cosmetics Industry Council, pesticide 57 handbooks, Merck Index, and various other summary sources. Table 4-1 lists databases 58 searched via the Internet to locate references for rat oral LD_{50} values. Rat LD_{50} data were 59 preferred because the current oral acute toxicity test guidelines recommend using rats (OECD 60 2001a, c, d; EPA 2002a). Taking the same approach used for the Registry of Cytotoxicity 61 (RC), mouse LD_{50} data were sought for a particular chemical if rat LD_{50} values could not be 62 located. [The RC is a database of acute oral LD₅₀ values for rats and mice, obtained from

- 63 RTECS[®] and IC₅₀ values from *in vitro* cytotoxicity assays using multiple cell lines and
- 64 cytotoxicity endpoints for chemicals with known molecular weights (Halle 1998).]
- 65

Table 4-1Internet Accessible Databases with LD50 Information

Database	Sponsor
Agency for Toxic Substances and Disease Registry (ATSDR)	U.S. Department of Health and Human Services (DHHS)
Center for Drug Evaluation and Research (CDER)	U.S. Food and Drug Administration (FDA)
CHEMFINDER	CambridgeSoft Corporation
Chemical Carcinogenesis Research Information System (CCRIS) National Cancer Institute (NCI) Website	NCI; National Institutes of Health (NIH); DHHS
Chemical Evaluation Search and Retrieval System (CESARS)	Michigan Department of Natural Resources; Ontario Ministry of the Environment; CCOHS CHEMpendium [™]
Chemical Hazard Response (CHRIS)	U.S. Coast Guard
Chemical Ingredients Database	U.S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP); California EPA Department of Pesticide Regulation
CHEMINDEX	Canadian Centre for Occupational Health and Safety
CHEMINFO	(CCOHS) CHEMpendium [™]
ChemRTK High Production Volume (HPV) Challenge Program OPPT Chemical Fact Sheets Chemical Information Collection and Data Development	EPA Office of Pollution Prevention and Toxics (OPPT)
CIS Chemical Information	World Health Organization (WHO) International Programme on Chemical Safety (IPCS); CCOHS; International Labour Organisation (ILO) Occupational Safety and Health Information Centre (CIS)
Concise International Chemical Assessment	WHO IPCS; CCOHS; ILO; United Nations Environment
Documents (CICADS)	Programme (UNEP)
Consumer Product Safety Commission Website	U.S. Consumer Product Safety Commission (CPSC)
Deutsches Institut fur Medizinische Dokumentation und Information (DIMDI) [The German Institute for Medical Documentation and Information] Registry of Cytotoxicity (RC)	Zentralstelle zur Erfassung und Bewertungvon Ersatz- und Erganzungsmethoden zum Tierversuch (ZEBET) [German Centre for the Documentation and Validation of Alternative Methods]
Developmental and Reproductive Toxicology/Environmental Teratology Information Center (DART [®] /ETIC)	EPA; The National Library of Medicine (NLM); The National Institute of Environmental Health Sciences (NIEHS); National Center for Toxicological Research (NCTR)
Emergency Response Guidebook (ERG 2000)	Transport Canada; U.S. Department of Transportation (DOT); Secretariat of Communications and Transportation of Mexico
Environmental Health Criteria (EHC) monographs Health and Safety Guides (HSG) International Agency for Research on Cancer (IARC)	WHO IPCS; CCOHS
European Centre for the Validation of Alternative Methods (ECVAM) Scientific Information Service (ECVAM SIS)	European Commission Joint Research Centre
HAZARDTEXT [®] ; MEDITEXT [®] ; INFOTEXT [®] ; SARATEXT [®] ; REPROTEXT [®] ; REPROTOX [®]	TOMES Plus [®] , MICROMEDEX, Greenwood Village, CO

Database	Sponsor
Integrated Risk Information System (IRIS)	EPA Office of Research and Development (ORD)
International Chemical Safety Cards (ICSC) IPCS/EC Evaluation of Antidotes Series	WHO IPCS; CCOHS; Commission of the European Union
International Uniform Chemical Information Database (IUCLID)	European Chemicals Bureau
Joint Expert Committee on Food Additives (JECFA) Joint Meeting on Pesticide Residues (JMPR) Pesticide Data Sheets (PDSs)	WHO IPCS; CCOHS; Food and Agriculture Organization (FAO) of the United Nations
Material Safety Data Sheets (MSDS)	Interactive Living Paradigms, Incorporated
Multicentre Evaluation of In Vitro Cytotoxicity (MEIC)	Scandinavian Society for Cell Toxicology
National Toxicology Program (NTP) Chemical Health and Safety Database	NIEHS
National Transportation Library	DOT
New Jersey Hazardous Substance Fact Sheets	New Jersey Department of Health and Senior Services
Oil and Hazardous Materials/Technical Assistance Data System (OHM/TADS)	EPA Office of Waste and Water Management
Organisation for Economic Co-operation and Development (OECD) Screening Information Data Sets (SIDS)	IPCS; CCOHS; International Register of Potentially Toxic Chemicals (IRPTC); UNEP
Pesticide Action Network Pesticide Database	Pesticide Action Network North America
Pesticide Product Information System (PPIS)	EPA Office of Pesticide Programs (OPP)
Poisons Information Monographs (PIMs)	IPCS; CCOHS
Registry of Toxic Effects of Chemical Substances (RTECS [®]) NIOSH Pocket Guide to Chemical Hazards	National Institute for Occupational Safety and Health (NIOSH)
SCORECARD	Environmental Defense
The EXtension TOXicology NETwork (EXTOXNET)	University of California, Davis; Oregon State University; Michigan State University; Cornell University; University of Idaho
The Right-to-Know Network (RTK NET)	Office of Management and Budget Watch; Center for Public Data access
Toxic Chemical Release Inventory (TRI) GENE-TOX	The National Library of Medicine (NLM)
Toxic Substances Control Act Test Submissions (TSCATS)	EPA OPPT
TOXLINE [®] Hazardous Substances Data Bank (HSDB) ChemIDplus	NLM (TOXNET)

 Table 4-1
 Internet Accessible Databases with LD₅₀ Information

67 A total of 195 LD₅₀ references retrieved through these searches were reviewed and evaluated.

68 Information regarding the materials and methods used to derive the 491 LD₅₀ values reported

69 by these references were compiled and are provided in **Appendix H-1** in a spreadsheet

70 format. Appendix H-2 provides a narrative characterization and evaluation of the values.

72 4.1.2 <u>Criteria Used to Select Candidate In Vivo Rodent Toxicity Data for Determination</u> 73 of Reference Values

74 From the data retrieved, the goal was to derive a set of high quality reference LD₅₀ values 75 (i.e., data that were collected using standardized protocols, accompanied by documentation 76 showing that established testing procedures were followed in compliance with national and 77 international GLP guidelines [OECD 1998; FDA 2003; EPA 2003a,b]). After a review of the 78 collected data, the SMT determined that a requirement for GLP compliance would eliminate 79 99% (452 of the 459 values remaining after exclusion of 30 duplicate values and two 80 erroneous values) of the oral LD₅₀ values, since only seven had been obtained in compliance 81 with GLP guidelines. GLP-compliant studies were found for only four of the 72 (6%) 82 reference substances. 83 84 The SMT then considered limiting the selection of LD_{50} values to those from studies that 85 used the type of animals recommended by the current oral acute toxicity test guidelines, since 86 these guidelines will be used for future acute systemic toxicity testing. The current

87 guidelines recommend using young adult rats, 8-12 weeks of age, of a common laboratory

strain and the most sensitive sex (OECD 2001a, c, d; EPA 2002a). Female animals are

89 suggested if there is no information on which to determine the most sensitive sex. Selecting

 LD_{50} values from animals that fit this description yielded a limited number of values. Only

91 3% (14/459) of the oral LD₅₀ values were determined using 8-12 week old female laboratory

rats. Another 15 LD₅₀ values were obtained with female rats in an appropriate weight range

93 (~ 176-250 g according to Charles River [<u>http://www.criver.com</u>], Harlan

94 [http://www.harlan.com/us/index.htm], and Taconic Farms

95 [http://www.taconic.com/anmodels/spragued.htm] websites) for that age. Thus, only 6%

96 (29/459) of the LD_{50} values in the database, covering 21 of the 72 reference substances (29

97 %), were obtained from studies that used the strain, sex, and age of rats recommended by

98 current test guidelines (OECD 2001a; EPA 2002a).

99

100 Final Exclusion Criteria

101 Since so few studies met the initial criteria (i.e., GLP compliance and use of animals

102 recommended by current acute oral toxicity test guidelines), the database was reviewed and

103	evaluated to derive alternative criteria for the development of reference LD ₅₀ values. For this
104	evaluation, the SMT looked for commonalities among the data records that, when selected,
105	provided a comparable data set for each chemical. Review of the available data indicated
106	that the majority of acute oral toxicity tests were conducted with unanesthetized young adult
107	laboratory rats of both genders, to which chemicals were administered by gavage. Thus, to
108	compile a homogenous set of reference LD_{50} values for each chemical, the selection process
109	was revised to exclude studies that reflected the following, less typical, materials and
110	methods:
111	• feral rats
112	• rats < 4 weeks of age
113	anesthetized rats
114	• test chemical administered in food or capsule
115	• LD ₅₀ reported as a range or inequality
116	
117	Data from feral rats were excluded, since the health status of these animals was uncertain.
118	All laboratory rat strains/stocks were deemed acceptable, since they were expected to be
119	healthy and provided with adequate care and housing during testing. Data from neonates or
120	weanlings were excluded since their sensitivity to chemical toxicity may differ from that of
121	adults. Four weeks was considered the minimum acceptable age, since rats are weaned at
122	about 3 weeks of age (Barrow 2000). Data from feeding experiments or experiments that

124 most common mode of administration for acute oral studies and the rate of gastrointestinal

involved administration of the chemical in capsules were also excluded, since gavage is the

- absorption for these methods is likely to be different (Nebendahl 2000). Since LD_{50} point
- estimates are required for the prediction model, LD_{50} values reported as ranges or inequalities
- 127 were considered unacceptable.
- 128

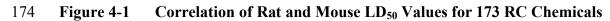
123

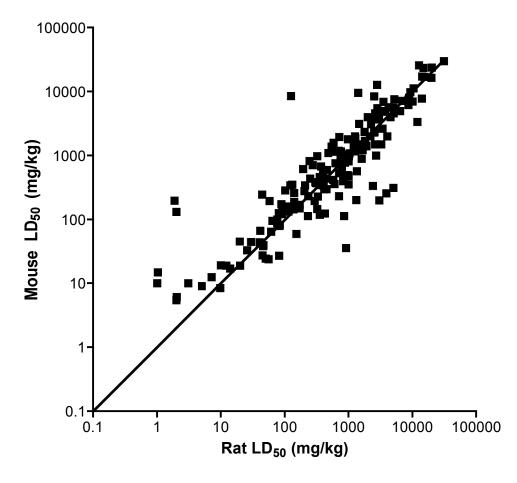
129 Assumptions

130 The level of detail for materials and methods for the LD_{50} studies varied greatly. Some

131 studies reported only the use of white rats while other acute oral toxicity studies provided

132 complete information on stock/strain, gender, and age of animals; the number of animals


133 tested per dosing group, method of administration, doses administered, clinical signs, and


134	times of death. To use as much of the available data as possible, the following assumptions
135	were made if a study report did not declare otherwise.
136	• The rats were assumed to have been young adults of a common laboratory
137	strain.
138	• The rats were assumed to have been unanesthetized.
139	• The oral route of administration was by gavage.
140	
141	Calculation of Reference Values
142	If there were multiple acceptable LD_{50} values for a chemical after the application of the
143	exclusionary criteria, outliers at the 99% level (Dixon and Massey 1981) were excluded. A
144	geometric mean and 95% confidence limits were calculated from the remaining values to
145	serve as the reference LD_{50} . A geometric mean is the antilog of the mean of the logarithm of
146	the values and it is less affected by extreme values than the arithmetic mean. Use of a
147	geometric mean corresponds with the approach used for the RC regression to obtain a single
148	IC_{50} value from multiple IC_{50} values (Halle 1998) and with the approach used to derive the
149	IC_{50} value for each chemical for the <i>in vitro</i> - <i>in vivo</i> regressions for the NICEATM/ECVAM
150	validation study (see Section 6).
151	
152	In addition to the statistical evaluation of outliers, an extreme value, which was not a
153	statistical outlier, for trichloroacetic acid was also evaluated based on biological plausibility.
154	There were five LD_{50} values that ranged from 400-8900 mg/kg after applying the
155	exclusionary criteria for trichloroacetic acid. The lowest value of 400 mg/kg was rejected as
156	biologically implausible since up to 1000 mg/kg/day has been used in chronic rodent
157	carcinogenicity studies (EPA 1996).
158	
159	Use of Rat and Mouse Data
160	If no rat oral LD_{50} values could be found for a chemical, mouse oral LD_{50} values were
161	located, retrieved, and evaluated by the same method as that used for rat oral values.
162	Although a model using entirely rat data or entirely mouse data would be preferable, the use
163	of mouse values was considered to be justified by a significant correlation of rat and mouse

164 oral LD₅₀ values reported by Ekwall et al. (1998a) for the 50 chemicals tested in the MEIC

4-8

- 165 study. Using values from RTECS[®], Ekwall et al. (1998a) reported a coefficient of
- 166 determination, R^2 , of 0.85 for a linear regression analysis of rat LD_{50} mouse LD_{50} .
- 167 Furthermore, Halle (1998) compared IC_{50} LD_{50} linear regressions with 285 rat values and
- 168 242 mice values and found no significant difference in the intercepts or slopes.
- 169
- 170 A correlation of the 173 chemicals in the RC that had both rat and mouse LD_{50} values is
- 171 shown in **Figure 4-1**. A Spearman correlation analysis of the log transformed rat and mouse
- 172 data yielded a significant correlation (p < 0.0001) with $r_s = 0.88$.
- 173

176 The diagonal line shows the 1:1 relationship.

- 177
- 178
- 179

181 4.2 Final *In Vivo* Rodent Toxicity Reference Values

182

After the application of the exclusionary criteria, there were 385 acceptable LD₅₀ values with 183 184 which to calculate reference values. Table 4-2 shows the reference LD_{50} value for each 185 reference substance in ascending order. The reference values are the geometric means of the 186 acceptable LD₅₀ values. Also shown for each substance are the 95% confidence limits around the mean, the ratio of the maximum to the minimum acceptable value, the number of 187 188 LD_{50} values used to calculate the reference value, the number of LD_{50} values available (not 189 including duplicate values or the erroneous values for acetylsalicylic acid and sodium 190 oxalate), and the LD₅₀ initially used for hazard category (often referred to as "toxicity" or 191 " LD_{50} " category) classification of the substance (see **Table 3-2**). Ratios for the maximum to 192 minimum LD₅₀ values ranged from 1.0 to 25.9. The average ratio was 4.1. Six of the 62 193 reference substances for which ratios were calculated had ratios greater than one order of 194 magnitude: triethylenemelamine, parathion, busulfan, triphenyltin hydroxide, phenol, and 195 trichloroacetic acid. Three of these substances, triethylenemelamine, parathion, and 196 busulfan, were in the two highest toxicity categories (i.e., $LD_{50} \le 50 \text{ mg/kg}$).

197

198 Table 4-2 shows the reference substances grouped by GHS acute oral toxicity category (UN 199 2005) using the reference LD_{50} values. The initial categorization for this study, which used 200 the LD₅₀ values in the far right column of **Table 4-2** (i.e., values reported in **Table 3-2**, 201 which come from the RC unless otherwise specified), placed 12 substances in each toxicity 202 category. Table 4-3 compares the number of substances in each GHS toxicity category 203 based on the reference LD₅₀ values with the number of substances in each category based on 204 the initial LD_{50} values. Table 4-3 shows that the initial and reference LD_{50} values placed 205 74% of the substances in the same GHS category. Compared with the initial LD_{50} , the 206 reference LD_{50} was higher for 25% of the substances and lower for 1% of the substances. 207

GHS Category ¹ /Chemical	Reference Oral LD ₅₀ ² (mg/kg)	95% Confidence Interval ³ (mg/kg)	Reference Oral LD ₅₀ ² (mmol/kg)	95% Confidence Interval ³ (mmol/kg)	Maximum: Minimum Value ³	N Averaged ⁵	Initial Rodent Oral LD ₅₀ ⁶ (mg/kg)			
$LD_{50} \leq 5 mg/kg \ (N=7)$										
Cycloheximide	2	NC	0.00711	NC	2.5	3	2			
Phenylthiourea	3	NC	0.0197	NC	NC	1	3			
Sodium selenate	3	NC	0.0159	NC	3.7	2	27			
Epinephrine bitartrate	4 (mouse)	NC	0.0196	NC	NC	1	4 (mouse)			
Triethylenemelamine	4	1-25	0.0120	0.0037-0.12	13.0	4	1			
Physostigmine	5	NC	0.0182	NC	NC	1	57			
Disulfoton	5	2-10	0.0182	0.009-0.036	5.5	6	2			
		$5 < L_{1}$	$D_{50} \leq 50 mg/kg$	(N = 12)						
Parathion	6	3-12	0.0209	0.010-0.041	16.7	10	2			
Strychnine	6	NC	0.0188	NC	6.9	3	27			
Aminopterin	7	NC	0.016	NC	NC	1	3 (mouse)			
Potassium cyanide	7	5-10	0.111	0.077-0.15	2.0	7	10			
Busulfan	12	NC	0.049	0.008-0.38	15.3	4	2			
Colchicine	15 (mouse)	NC	0.0375	NC	4.9	3	6 (mouse)			
Thallium I sulfate	25	NC	0.0495	NC	NC	1	29 (mouse)			
Arsenic III trioxide	25	10-64	0.127	0.050-0.32	6.3	5	20			
Endosulfan	28	NC	0.068	NC	2.4	2	18 ⁷			
Digoxin	28	NC	0.0362	NC	NC	1	18 (mouse)			
Mercury II chloride	40	27-60	0.148	0.010-0.22	7.7	10	1			
Sodium arsenite	44	36-53	0.336	0.28-0.40	1.5	5	41 ⁷			
		50 < L	$D_{50} \leq 300 \text{ mg/k}_{3}$	g (N =12)						
Sodium dichromate dihydrate	51	44-58	0.193	0.17-0.22	1.9	11	50			
Dichlorvos	59	40-88	0.266	0.18-0.40	5.7	9	17 ⁷			
Nicotine	70	68-72	0.430	0.42-0.44	1.0	4	50			
Fenpropathrin	76	57-100	0.217	0.16-0.29	3.4	9	187			
Hexachlorophene	82	68-98	0.202	0.17-0.24	3.8	19	61			
Paraquat	93	65-132	0.498	0.35-0.71	2.0	5	58			
Lindane	100	78-129	0.344	0.27-0.44	1.4	4	76			
Verapamil HCl	111	NC	0.226	NC	1.1	2	108			
Sodium I fluoride	127	92-175	3.020	2.19-4.16	4.4	12	180			

Table 4-2Reference LD50 Values by GHS Category1

Maximum: Minimum Value ³	N Averaged ⁵	Initial Rodent Oral LD ₅₀ ⁶ (mg/kg)
2.4	5	88
19	3	231

Reference LD₅₀ Values by GHS Category¹ Table 4-2

GHS Category ¹ /Chemical	Reference Oral LD ₅₀ ² (mg/kg)	95% Confidence Interval ³ (mg/kg)	Reference Oral LD ₅₀ ² (mmol/kg)	95% Confidence Interval ³ (mmol/kg)	Maximum: Minimum Value ³	N Averaged ⁵	Initial Rodent Oral LD ₅₀ ⁶ (mg/kg)
Cadmium II chloride	135	88-208	0.738	0.48-1.14	2.4	5	88
Diquat dibromide	160	NC	0.466	NC	1.9	3	231
Phenobarbital	224	NC	0.966	NC	2.0	3	163
		300 < L	$D_{50} \le 2000 \ mg/l$	kg (N = 16)			
Caffeine	310	256-374	1.59	1.32-1.93	2.5	10	192
Triphenyltin hydroxide	329	208-520	0.896	0.57-1.42	25.9	15	44
Haloperidol	330	NC	0.877	NC	6.6	2	128 ⁷
Amitriptyline HCl	348	NC	1.18	NC	1.2	2	319
Propranolol HCl	466	NC	1.575	NC	NC	1	470 (mouse)
Cupric sulfate * 5 H2O	474	269-836	1.90	1.08-3.35	4.1	6	300
Phenol	548	434-692	5.82	4.82-7.68	4.7	14	414
Lithium carbonate	590	479-728	7.98	6.5-9.9	1.4	4	1187 (mouse; sulfate salt)
Glutethimide	600	NC	2.76	NC	NC	1	600
Sodium oxalate	633	NC	4.724	NC	1.3	2	155 (mouse)^8
Chloral hydrate	638	391-1040	3.86	2.36-6.29	1.8	4	479
Atropine sulfate	819	641-1045	1.21	0.95-1.54	1.9	7	623
Valproic acid	995	NC	6.91	NC	2.2	2	670 ⁷
Meprobamate	1387	1291-1489	6.35	5.92-6.82	1.2	6	794 ⁷
Acetylsalicylic acid	1506	1224-1854	8.36	6.8-10.3	4.6	14	1000
Procainamide HCl	1950	NC	8.286	NC	NC	1	1950 ⁷
		2000 < L	$D_{50} \le 5000 \ mg/$	kg(N = 11)			
Acetaminophen	2163	NC	14.3	NC	1.2	2	2404
Potassium I chloride	2799	NC	37.6	NC	1.2	2	2602
Carbamazepine	2805	NC	11.9	NC	2.1	2	1957 ⁷
Boric aid	3426	2617-4486	55.4	42.3-72.6	1.9	6	2660 ⁷
5-Aminosalicylic acid	3429	NC	22.4	NC	1.5	2	7749 (mouse)
Chloramphenicol	3491	NC	10.8	NC	2.0	3	3393
Acetonitrile	3598	2951-4375	87.6	71.9-107	6.2	26	3798
Lactic acid	3639	NC	40.3	NC	1.1	2	3730
Carbon tetrachloride	3783	3024-4732	24.6	20-31	4.3	15	2799
Sodium chloride	4046	2917-5623	69.3	50-96	2.0	5	2998

GHS Category ¹ /Chemical	Reference Oral LD ₅₀ ² (mg/kg)	95% Confidence Interval ³ (mg/kg)	Reference Oral LD ₅₀ ² (mmol/kg)	95% Confidence Interval ³ (mmol/kg)	Maximum: Minimum Value ³	N Averaged ⁵	Initial Rodent Oral LD ₅₀ ⁶ (mg/kg)		
Xylene	4667	1294-16827	43.9	12-158	5.6	4	4300		
	•	LD ₅₀	> 5000 mg/kg	(N=14)					
2-Propanol	5105	4624-5636	84.9	77-94	1.3	6	5843		
Trichloroacetic acid	5229	2745-9961	32.0	16.8-61.0	2.7	4	4999		
Dimethylformamide	5309	3548-7925	72.6	49-108	2.6	6	2800		
Citric Acid	5929	NC	30.9	NC	3.9	2	3000 ⁷		
Gibberellic acid	6040	NC	17.4	NC	1.1	2	6305		
Propylparaben	6332 (mouse)	NC	35.1	NC	NC	1	6326 (mouse)		
Ethylene glycol	7161	6266-8204	115.4	101-132	2.5	16	8567		
Methanol	8710	6223-12218	272	194-381	2.3	6	13012		
Dibutylphthalate	8892	6180-12794	31.9	22-46	1.7	4	11998		
Diethylphthalate	9311	NC	41.9	NC	1.2	2	8602		
Sodium hypochlorite	10328	NC	62.8	NC	1.6	2	8910 ⁹		
Ethanol	11324	8610-14894	245.7	187-323	2.5	8	14008		
1,1,1-Trichloroethane	12078	10000-14588	90.5	75-109	1.7	6	10298		
Glycerol	19770	10495-37154	215	114-403	2.2	4	12691		

Reference LD₅₀ Values by GHS Category¹ Table 4-2

209 ¹GHS- Globally Harmonized System of Classification and Labelling of Chemicals (UN 2005). Chemicals categorized using

210 reference oral LD₅₀

211 ²Based on a geometric mean of acceptable LD₅₀ values from laboratory rats unless otherwise specified.

212 3 For the geometric mean of the acceptable LD₅₀ values.

213 ⁴Ratio of minimum acceptable LD_{50} to maximum acceptable LD_{50}

214 ⁵Number of values used for geometric mean.

215 ⁶Values rounded to the nearest one; from the RC unless otherwise specified; rat data unless otherwise specified.

216 ⁷RTECS[®] (MDL Information Systems 2002).

217 ⁸RC reference for rat oral LD₅₀ of 155 mg/kg is Shrivastava et al. (1992), which references Klinger and Kersten (1961). Klinger

218 and Kersten (1961) indicates the value was determined by intraperitoneal administration to mice.

219 ⁹NLM (2002).

220 Abbreviations: NC - Not calculated. N was three or less and considered too small for a meaningful result.

221	The reference LD_{50} values caused the reclassification of 19 reference substances (i.e., the
222	sum of the numbers in the mismatching cells in Table 4-3). Seven substances remain in the
223	lowest LD ₅₀ category (i.e., LD ₅₀ \leq 5 mg/kg). Five substances originally in this category
224	(aminopterin, mercury chloride, busulfan, parathion, and strychnine) moved to the next
225	higher category (5 < $LD_{50} \le 50$ mg/kg) due the change in the reference LD_{50} values. In the 5
226	$<$ LD ₅₀ \le 50 mg/kg category, four substances (dichlorvos, fenpropathrin, sodium dichromate
227	dihydrate, and nicotine) moved to the next higher LD_{50} category (50 < $LD_{50} \le 300$ mg/kg)
228	and one substance (triphenyltin hydroxide) moved up two categories to $300 < LD_{50} \le 2000$
229	mg/kg. In the $50 < LD_{50} \le 300$ category, four substances (haloperidol, caffeine, copper
230	sulfate pentahydrate, and sodium oxalate) moved up to the next toxicity category ($300 <$
231	$LD_{50} \leq 2000$ mg/kg). In the $300 < LD_{50} \leq 2000$ mg/kg category, only carbamazepine moved
232	up to the next toxicity category (2000 $<$ LD_{50} \leq 5000 mg/kg). In the 2000 $<$ LD_{50} \leq 5000
233	mg/kg category, citric acid, trichloroacetic acid and dimethylformamide moved up to the next
234	higher LD_{50} category ($LD_{50} > 5000 \text{ mg/kg}$). In the $LD_{50} > 5000 \text{ mg/kg}$ category, 5-
235	aminosalicylic acid moved down into the $2000 < LD_{50} \le 5000$ mg/kg category. 5-
236	Aminosalicylic acid was the only substance that moved to a lower LD_{50} (i.e., more toxic)
237	category.

Initial			Re	eference LD ₅₀			Category	Reference LD ₅₀	Reference LD ₅₀	
LD ₅₀ (mg/kg)	≤ 5	5-50	50 - 300	300 - 2000	2000 - 5000	> 5000	Total	Match	Lower	Higher
≤ 5	7	5	0	0	0	0	12	58%	0%	42%
5-50	0	7	4	1	0	0	12	58%	0%	42%
50 - 300	0	0	8	4	0	0	12	67%	0%	33%
300 - 2000	0	0	0	11	1	0	12	92%	0%	8%
2000 - 5000	0	0	0	0	9	3	12	75%	0%	25%
> 5000	0	0	0	0	1	11	12	92%	8%	0%
Total	7	12	12	16	11	14	72	74%	1%	25%

238 Table 4-3 GHS¹ Toxicity Category Matches for the Initial and Reference LD₅₀ Values²

¹Globally Harmonized System of Classification and Labelling of Chemicals (UN 2005):

 $240 \qquad \leq 5: \qquad \qquad LD_{50} \leq 5 \text{ mg/kg}$

241 5 - 50: $5 < LD_{50} \le 50 \text{ mg/kg}$

242 50 - 300: $50 < LD_{50} \le 300 \text{ mg/kg}$

243 300 - 2000: $300 < LD_{50} \le 2000 \text{ mg/kg}$

244 2000 - 5000: $2000 < LD_{50} \le 5000 \text{ mg/kg}$

²Number of chemicals. Darkened cells show the number of chemicals for which the categories match.

- 248 4.3 Relevant Toxicity Information for Humans
- 249

250 The relevance of rodent acute systemic toxicity data to human lethality was assessed by the 251 MEIC program as a comparison to the evaluation of *in vitro* predictions of human acute 252 toxicity (Ekwall et al. 1998b). The MEIC program collected mouse and rat oral LD_{50} data from RTECS[®] (Ekwall et al. 1998a). Mean lethal doses in humans were collected mainly 253 254 from handbooks containing human clinical toxicity information (Ekwall et al. 1998a). Data 255 from the handbooks were supplemented, when necessary, by an in-house compendium from 256 the Swedish Poisons Information Centre. Ekwall et al. (1998b) calculated least squares 257 linear regressions for the prediction of the mean human lethal doses by rat oral LD₅₀ data and 258 by mouse oral LD_{50} data for the 50 MEIC chemicals using units of log mol/kg. Ekwall et al. (1998b) reported $R^2 = 0.607$ for the rat LD₅₀ prediction of mean human lethal doses and $R^2 =$ 259 260 0.653 for the mouse LD_{50} prediction of mean human lethal doses. 261 262 The relevance of the NRU data collected in the NICEATM/ECVAM study to the prediction 263 of human acute toxicity will be addressed elsewhere by ECVAM. 264 265 4.4 Accuracy and Reliability of the In Vivo Rodent Toxicity Reference Values 266 267 Accuracy is the closeness of agreement between the results of an alternative test method and 268 an accepted reference test method (ICCVAM 2003). Since there is no accepted reference test 269 for the rodent acute oral toxicity test, the accuracy of the reference LD_{50} values for predicting 270 the oral LD_{50} in humans cannot be determined. Acute toxicity testing in rodents leads to a 271 relative ranking of the toxicity of chemicals for regulatory purposes. The reliability of the 272 reference LD_{50} values determined in this section may be judged by evaluating the range of 273 acceptable LD₅₀ values for each chemical and by comparing the values (and their variability) 274 with other LD₅₀ values. 275

276 Variability Among the Acceptable LD₅₀ Values

277 The variability of the acceptable LD_{50} values used to calculate the reference value for each

278 reference substance was assessed by calculating the ratio of the maximum to the minimum

value (see **Table 4-2**). For the 62 reference substances with more than one acceptable LD₅₀

value, the average maximum: minimum ratio ranged from 1.1 to 25.9 with a mean of 4.3 and

- a median of 2.2. The maximum: minimum ratios were greater than 10 for four substances:
- triethylenemelamine, parathion, busulfan, and triphenyltin hydroxide.
- 283

284 The low LD_{50} values for triethylenemelamine, busulfan, and parathion may have contributed 285 to the high maximum: minimum ratios for these substances, since the range of values did not 286 seem to be extremely wide. The four LD_{50} values for triethylenemelamine ranged from 1 to 287 13 mg/kg, the four LD_{50} values for busulfan ranged from 1.9 to 29 mg/kg, and the 10 LD_{50} 288 values for parathion ranged from 1.8 to 30 mg/kg. Table 4-4 shows the maximum:minimum 289 ratios by toxicity category. The substances in the higher toxicity categories (i.e., $LD_{50} \le 50$ 290 mg/kg) tended to have higher maximum: minimum LD_{50} ratios than substances in the lower 291 toxicity categories (i.e., $LD_{50} > 50 \text{ mg/kg}$); however, there were also fewer substances in the 292 higher toxicity categories.

293

294 Table 4-4 Maximum:Minimum LD₅₀ Ratios by GHS¹ Toxicity Category

GHS Category ¹ (LD ₅₀ in mg/kg)	Mean Maximum:Minimum LD ₅₀ Ratio	Median Maximum:Minimum LD ₅₀ Ratio	Range of Maximum:Minimum LD ₅₀ Ratio	Ν
$LD_{50} \leq 5$	6.2	4.6	2.5 - 13.0	4
$5 < LD_{50} \leq 50$	7.1	6.3	2.0 - 16.7	9
$50 < LD_{50} \le 300$	2.4	1.9	1.1 - 5.7	12
$300 < LD_{50} \le 2000$	4.6	2.2	1.2 - 25.9	13
$2000 < LD_{50} \le 5000$	2.6	2.0	1.2-22.3	11
$LD_{50} > 5000$	2.3	2.3	1.1 - 3.9	13

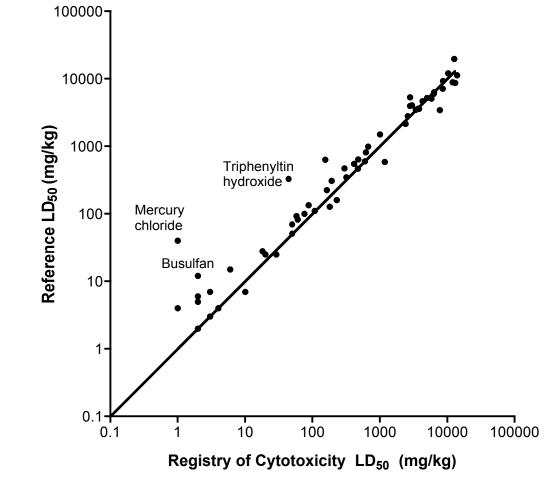
¹GHS-Globally Harmonized System of Classification and Labelling of Chemicals (UN 2005).

N = number of chemicals with more than one acceptable LD_{50} value after application of the exclusion criteria in Section 4.1.2.

298

299 Comparison of Reference Values with RC Values

300 The correspondence of the reference LD_{50} values with the LD_{50} values for the 58 validation


301 study reference substances in common with the RC are shown on a log scale in Figure 4-2.

302 A Spearman correlation analysis for the two sets of log transformed values yielded a

303 significant correlation (p < 0.0001) with a correlation coefficient, r_s , of 0.97. Figure 4-2

304 shows that the reference values tended to be higher than the RC LD_{50} values. The LD_{50}

305	values used in the RC were largely from the 1983/84 RTECS [®] , which publishes the lowest
306	LD ₅₀ value found for a particular chemical without regard to the source (i.e., from a primary
307	publication or a review) and without scientific review before publication. Thus, since the
308	reference LD_{50} values are based on the geometric mean from multiple studies, it is not
309	surprising that these values tended to be higher than those included in the RC database.
310	
311	When comparing the reference LD ₅₀ values to the RC values, the substances with the largest
312	differences in LD ₅₀ were busulfan, triphenyltin hydroxide, and mercury chloride (see Figure
313	4-2).
314	• The reference LD_{50} for busulfan was six times that of the RC value (12 mg/kg
315	vs. 1.9 mg/kg). The RC value (i.e., the 1983/84 RTECS [®] value) was from a
316	paper by Schmahl and Osswald (1970) in which they cited a rat oral LD_{50} of
317	1.86 mg/kg. We also found rat oral LD_{50} values of 28 and 29 mg/kg for male
318	and female Sprague-Dawley rats, respectively (Matsuno et al. 1971).
319	• The reference LD_{50} for triphenyltin hydroxide was 7.5 times the RC LD_{50} (329
320	mg/kg vs. 44 mg/kg). The 15 LD_{50} values used to determine the reference value
321	included the RC value and had a wide range, 44-1200 mg/kg. Due to the
322	relatively large variation in the data, neither the highest nor the lowest values
323	were statistical outliers.
324	• The reference LD_{50} for mercury chloride was 40 mg/kg, while the RC value was
325	1 mg/kg. The RC value was from a summary document that reported the rat
326	oral LD_{50} as a range of 1-5 mg/kg (Worthing and Walker 1991). Since it was
327	reported as a range, it was excluded from the calculation of the reference value.
328	The remaining 11 LD_{50} values ranged from 12 to 160 mg/kg. As previously
329	stated, 160 mg/kg was an outlier compared to the other 10 values and therefore
330	excluded from the calculation of the reference value.
331	
332	
333	
334	
335	

336 Figure 4-2 Correlation of LD₅₀ Values for the 58 RC Chemicals

338 The diagonal line shows the 1:1 relationship.

- 339
- 340

341 Comparison of the Variability Among Acceptable LD₅₀ Values to Other Studies

342 When compared to other studies on the variation of acute oral LD_{50} values, the variation

343 determined for 61 reference substances with multiple LD₅₀ values was not unusual. Weil and

- 344 Wright (1967) showed that even LD_{50} values from multiple laboratories using exactly the
- 345 same protocol varied by as much as five-fold for the 10 substances they tested in eight
- 346 laboratories. In addition, they showed that allowing the laboratories to use their own
- 347 protocols for LD₅₀ determination produced data somewhat more variable, but the observed
- 348 differences were not reported. Another multicenter study that did not control the LD₅₀
- 349 protocols reported maximum:minimum ratios from 3.6 to 11.3 for five substances (Hunter et

350	al. 1979). The 65 participating laboratories in eight countries reported LD_{50} values ranging			
351	from 44 to 5420 mg/kg for the five substances tes	sted:		
352	Compound I/PCP	44 – 523 mg/kg		
353	Compound II/Sodium salicylate	800 - 4150 mg/kg		
354	Compound III/Aniline	350 – 1280 mg/kg		
355	Compound IV/Acetanilide	805 – 5420 mg/kg		
356	Compound V/Cadmium chloride	70 – 513 mg/kg		
357				
358	The results of a follow on study in which the same	e substances were tested by about 100		
359	laboratories in 13 countries showed that adhering to a specific protocol reduced the range of			
360	maximum:minimum LD_{50} ratios from 3.6 – 11.3 to 2.4 – 8.4 (Zbinden and Flury-Roversi			
361	1981).			
362				
363	Although the LD_{50} data collected from the literature for the NICEATM/ECVAM validation			
364	study used various strains, sexes, observation durations, and calculation methods for			
365	estimating the LD ₅₀ , the variation in LD ₅₀ values for individual substances was similar to the			
366	data by Hunter et al. (1979). The current study found six of the 61 substances with multiple			
367	LD ₅₀ values had maximum:minimum LD ₅₀ values higher than that reported by Hunter et al.			
368	(1979). Three of the reference substances: triethy	lenemelamine, parathion, and busulfan,		
369	were in the lowest LD_{50} (i.e., highest toxicity categories). Hunter et al. (1979) also observed			
370	that the largest variation was associated with the	most toxic substances.		
371				
372	4.5 Summary			
373				
374	In vivo reference data for comparison with the in	vitro NRU cytotoxicity data for the 72		
375	substances were determined by analyzing rodent LD ₅₀ values identified by literature searches			
376	and secondary references. Rat LD_{50} values were	preferred, but when rat data could not be		
377	located for three substances, mouse LD ₅₀ values	were used. The 491 LD_{50} values located		
378	consisted of 485 rat oral LD_{50} values and six mouse oral LD_{50} values. Identifying a high			
379	quality data set determined under GLP guidelines	s was not possible since only 3% of the data		

al. 1979). The 65 participating laboratories in eight countries reported LD_{50} values ranging

380 records were in compliance. Instead, a homogenous set of LD₅₀ values for each substance 381 was identified by excluding studies that employed the following materials and methods: 382 ٠ feral rats 383 rats < 4 weeks of age 384 anesthetized rats ٠ 385 test chemical administered in food or capsule ٠ 386 LD_{50} reported as a range or inequality • 387 388 After analyzing the remaining acceptable data for outliers, the remaining 385 values were 389 used to determine *in vivo* reference values by calculating a geometric mean of the values for 390 each reference substance. The reference LD_{50} values for 20 substances varied enough from 391 the initial LD₅₀ values, which came from the RC and other summary sources, that the 392 substances were classified into different GHS oral toxicity categories. 393 394 Since there is no reference test for the rodent oral LD_{50} , the accuracy of the reference values 395 for predicting the oral LD₅₀ in humans could not be determined. The reliability of the 396 reference values was assessed by comparison to other evaluations of the performance of the 397 *in vivo* acute oral toxicity tests. Although the correlation of the reference values for the 58 398 RC chemicals with the RC LD₅₀ was high ($r_s = 0.97$), the reference LD₅₀ values tended to be 399 higher than the RC values. The maximum: minimum ratio of the acceptable values for the 62 400 reference substances that had more than one LD_{50} value ranged from 1.1 to 25.9. The 401 maximum:minimum ratios for four chemicals were greater than one order of magnitude. 402

402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	[This Page Intentionally Left Blank]
417	