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MINOS Standard Reconstruction and RecoBase Packages

Overview

As described in the offline framework documentation, each stage of reconstruction produces a set of ‘candidate’ objects of a certain type (shower, track, etc).  A candidate has an associated set of ‘Set/Get’ methods which are used to pass to the user anything that one could possibly want to know about this object.  The general sequence of reconstruction steps, and the corresponding candidates which are generated, is shown in Figure 1.  
The RecoBase package provides a set of candidate-related classes intended to serve as base classes from which the corresponding classes in alternative reconstruction software can (and should) inherit.  This allows analysis code to access alternative reconstruction packages through a common interface. The ‘SR’ (Standard Reconstruction) reconstruction package provides a set of standard reconstruction algorithms and job modules, and uses the RecoBase candidate classes.  

In general, the actual reconstruction algorithms are found in the AlgxxxSR and AlgxxxSRList RunAlg methods.  The AlgxxxSR::RunAlg method builds a candidate after it has been identified in AlgxxxSRList::RunAlg.  The candidate member variables are held in the Candxxx classes in RecoBase.  In rare cases, such as CandTrackSR, there are candidate classes specific to the standard reconstruction code which inherit from the candidate base class.  Currently, the Get/Set methods associated with the candidate are found in CandxxxHandle.  This is expected to change in the near future, and these methods will move to the candidate classes.
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Figure 1 lists the primary candidate objects generated by the reconstruction code.  These are:

1. CandStrip:  A group of CandDigit objects on the same strip.  On the far detector, this would correspond to CandDigits from the two strip ends.  On the near detector, CandStrips contain all digitizations in a given ‘Snarl’ which satisfy time adjacency requirements (see offline framework documention for the definition of a snarl).

2. CandSlice:  Provisional event blocking of CandStrips based on time produces CandSlices. In the far detector, there is typically 1 CandSlice per snarl, while for near detector data a snarl may be subdivided into an arbitrary number of CandSlices. 

3. CandCluster:   CandStrips which are spatially adjacent (according to an algorithm described below) are combined to form CandClusters.  CandClusters are 2d objects.  

4. CandShower:   The 2d CandCusters are merged to form 3d CandShowers based on time/space adjacency.

5. CandTrack:  The SR package contains a track finder which combines CandStrips to form CandTracks.  There are both 2d and 3d versions of CandTracks, as described  below. 

6. CandFitTrack:   The track fitter operates on CandTrack objects and produces CandFitTrack objects, which include the results of the track fitting algorithm.  

7. CandEvent:  A CandEvent object contains lists of all CandTracks and CandShowers which have been reconstructed for a given CandSlice. 

CandStrip

Candidate Definition

A CandStrip contains all CandDigits belonging to a given strip.  Strip end matching is performed for far detector analysis after the demultiplexer has determined the best of the possible strip end alternatives.  For the near detector, CandDigits for a given strip in a snarl are combined to form a CandStrip based on timing.

Algorithm


Far Detector
Construction of a CandStripList begins in AlgStripList::RunAlgFar.  To be included in a CandStrip, the charge in a given digitization must be larger than AdjPixelChargeFraction of the total charge in this pixel plus the charge in the 4 nearest neighbor occurring within MaxXtalkTimeWindow in time.  This ensures that cross talk hits are not included in CandStrips.  CandDigits are sorted by plane and strip, which ensures that CandDigits that will be associated into CandStrips occupy adjacent entries in this sorted list.  One pass is made through the sorted list, checking for identical strip/plane values in adjacent entries.  If this occurs, and the CandDigit is not identified as cross-talk according to the definition above, the CandDigits are added to the CandStrip

Near Detector

CandDigits are sorted by plane, strip, and time, which ensures that CandDigits which will be associated into CandStrips occupy adjacent entries in this sorted list, and that the CandDigit with the earliest time in a given strip and plane will appear first.  One pass is made through the sorted list, checking for identical strip/plane values in adjacent entries, requiring that the conditions defining a cross-talk digitization are not met (see above), and checking that the time is within the tolerances set by the variables MaxLocTimeSep and MaxGloTimeSep.  The first variable is used to check that no large time gaps occur within a CandStrip, and the second is used to ensure that the total duration of a CandStrip is sensible.  If these conditions are met, the CandDigit is added to the CandStrip.  When one of the time separation requirements is violated, a CandStrip is constructed using the digit list, and a new digit list is started. This continues until the full digit list has been completely examined. 
Mixed

CandDigits are sorted by plane and strip, and nested passes are made through the sorted CanddDigit list.  The initial stage of the outer loop constructs an array of CandDigits for a given strip Id. The inner loop is then made over this list of digits, which is sorted by time.  Then, as in the near detector algorithm, we check that adjacent entries are within the tolerances set by the variables MaxLocTimeSep and MaxGloTimeSep.  The first variable is used to check that no large time gaps occur within a CandStrip, and the second is used to ensure that the total duration of a CandStrip is sensible.  If the CandDigit satisfies timing requirements it is added to the CandStrip daughter list.  When one of the time separation requirements is violated, a CandStrip is constructed with the previous digits, and a new daughter list is started. This continues until the digit list has been completely examined.  The outer loop then proceeds to make a digit list for the next seid, continuing until the full CandDigitList has been examined  

 In AlgStrip::RunAlg, the ‘Set’ functions are called to load the CandStrip member variables based on the CandDigit members, and the daughter list is file.

CandStrip methods

SetPlaneView(PlaneView::PlaneView_t)

PlaneView::PlaneView_t GetPlaneView()

The plane view of this strip.  Possible values are PlaneView::kX, kY, kU, kV, kA (Caldet muon trigger strips running perpendicular to the beam), and kB (Caldet muon trigger strip running parallel to the beam). 

SetZPos(Double_t)

Double_t GetZPos()

The Z position of the strip, in meters. The Z coordinate runs along the beam direction.

SetStripEndId(PlexStripEndId*)

PlexStripEndId GetStripEndId(StripEnd::StripEnd_t = StripEnd::kWhole) 

Sets the strip end IDs or gets the id for the desired end. 

SetTPos(Double_t)

Double_t GetTPos()

The transverse position of the strip, in meters.  This is the U position of a strip running along the V direction, etc.  

Int_t GetPlane()                   
Int_t GetStrip()   

Double_t GetBegTime(StripEnd::StripEnd_t = StripEnd::kWhole)  

Double_t GetEndTime(StripEnd::StripEnd_t = StripEnd::kWhole) 

For the far detector, BegTime and EndTime take the same value, and are the CandDigit times for each of the two strip ends, calibrated according to the value of caltimetype (see below).  For the near detector, these quantities represent the earliest and latest times in a CandStrip.  Units are nanoseconds. 

Double_t GetCharge() 

Double_t GetCharge(StripEnd::StripEnd_t) 

Double_t GetCharge(CalDigitType::CalDigitType_t) 

Double_t GetCharge(StripEnd::StripEnd_t,CalDigitType::CalDigitType_t) 

Double_t GetCharge(CalDigitType::CalDigitType_t,StripEnd::StripEnd_t) 

ChargeNone refers to raw ADC counts.  SigLin is ADC counts, corrected for ‘drift point’ and non-linearity.  SigCorr is ADC counts corrected for drift point, non-linearity, and strip to strip normalization.  In the GetCharge calls, the value of CalDigitType determines which of these quantities is returned.    Possible values of the parameter are CalDigitType::kNone, kSigLin, kSigCorr, and kPE.  The StripEnd parameter determines which of the two strip ends are returned.  Possible values are StripEnd::kUnknown,  kNegative, kPositive, kEast, kWest, kUp, kDown, kWhole.   In the case of kWhole, the summed charge over the strip ends is returned.   The default returns raw ADC counts.  It is planned to change this in the future to return PEs as the default.  

Int_t GetNDigit(StripEnd::StripEnd_t)

The number of digits in the CandStrip, for the appropriate strip end.  If the parameter passed in the Get function is kWhole, the total digit count is returned.  

Double_t GetCorrBegTime()

CorrBegTime is the time corrected for the ToF of the particle through the detector. 

Ushort_t GetDemuxVetoFlag(StripEnd::StripEnd_t)  


The Demux Veto flag can be used to determine if the demuxer was unable to demultiplex


one or more of the CandDigits in this strip. 

CandStrip Algorithm Parameters

	Parameter 
	Default
	Description

	MaxLocTimeSep
	60 ns
	max time separation between two neighboring digits in same strip.

	MaxGloTimeSep
	120 ns
	max time separation between any two digits in same strip



	caltimetype
	T0s applied
	Determines whether timing calibrations are applied 

    kT0 = offsets applied

    kNone = raw times used

	MaxXtalkTimeWindow
	40 ns
	Time window within which charge can be considered xtalk

	AdjPixelChargeFraction
	0.1
	Min charge/(charge+neighbor pixel charge)  - defines xtalk

	
	
	

	BegPlane/EndPlane


	
	Used to restrict plane interval in which CandStrips are constructed


CandSliceSR

Candidate Definition

A CandSlice consists of a list of CandStrip objects corresponding to one physics event.  In far detector, the raw data record (snarl) and CandSlice contain the same digitizations.  In near detector, a fast clustering algorithm, based primarily on time, is used to separate snarls into separate CandSlices.  It should be noted that the same CandStrip may belong to more than one CandSlice.

Algorithm

Candstrips in the upstream (non-spectrometer) planes are treated first. For these planes the Candstrips are sorted by ToF-corrected time, keeping only strips which return GetCharge()>MinCharge. CandStrips meeting this requirement are placed in a list, and the time of the new CandStrip is checked against that of the previous last entry. If this time difference is greater than MaxTimeGap, and the number of CandStrips is greater than MinStrip, the CandStrips in the list are assumed to constitute a CandSlice, and a CandSlice is constructed from these members. If this time difference is less than MaxTimeGap, but the total list time duration is greater than TimeWindow, we assume that we have missed the true start of this CandSlice. In this case, we first check to see if, by removing the first entry on the list, and adding the new entry, we end up with a shorter time duration in the list. If so, we perform this operation, adding the new CandStrip, and dropping the earliest from the list. If, on the other hand, performing this operation would result in a longer time duration, we use the list without the new entry to create a new CandSlice, and start a new list with the orphan CandStrip. After looping over all upstream CandStrips, we take the list contents remaining, and construct a CandSlice, if the list has at least MinStrip members.

In the next phase, we pick up CandStrips in the spectrometer. To do this, we iterate over CandSlices constructed in the previous stage, and determine which remaining CandStrips should be added. For each CandSlice, a time interval bounded by the CandSlice start time minus EarlyTimeDiff and the CandSlice start time plus TimeDiffSpect is defined, and a list of all spectrometer CandStrips with times inside this interval is constructed. This list of CandStrips is now looped over. If the CandStrip is in the spectrometer, then this CandStrip is added to the current CandSlice.

Next, the CandSlice list is iterated over again, this time to pick up the CandStrips with charge < MinCharge. For each CandSlice, a time interval bounded by the CandSlice start time and the CandSlice start time plus TimeWindow is defined, and a list of all CandStrips with times inside this interval is constructed. If the pulse height is less than MinCharge and the CandStrip is not in the spectrometer, the CandStrip is added to the CandSlice. 

Far Detector

In the far detector, all CandStrips in a given snarl are combined into a single CandSlice. No selections on CandStrips are made.

CandSlice Methods


GetNStrip(PlaneView::PlaneView_t=kUnknown) 

Returns the number of strips in a CandSlice.  

GetBegPlane(PlaneView::PlaneView_t=kUnknown) 

GetEndPlane(PlaneView::PlaneView_t=kUnknown) 

Returns the most upstream and downstream planes in a CandSlice. 

GetCharge(CalDigitType::CalDigitType_t=kPE) 

Total charge in the CandSlice. 


GetBegTime() 

GetEndTime() 

CorrBegTime and CorrEndTime are the earliest and latest times (in nanoseconds) in a CandSlice.

GetCorrBegTime() 

GetCorrEndTime() 

CorrBegTime and CorrEndTime are the earliest and latest times (in nanoseconds) in a CandSlice, corrected for the ToF of the particle to the location of the earliest and latest CandStrip hits in the CandSlice. 

CandSlice Algorithm Parameters

	Parameter 
	Default
	Description

	TimeWindow
	150 ns
	Assumed maximum nominal duration of a CandSlice.



	MaxTimeGap
	40 ns
	Largest allowable time gap within a CandSlice.

.

	MinStrip
	10
	The minimum number of strips in a CandSlice.  A CandSlice is required to have MinStrip/2 strips per view.



	MinCharge
	2.
	Charge cut applied in the initial stage of CandSlice construction.



	EarlyTimeDiff
	30 ns
	Time prior to CandSlice start allowed for spectrometer CandStrip addition to CandSlice.



	TimeDiff
	60 ns
	Time after CandSlice start time allowed for non-spectrometer CandStrip addition to CandSlice.



	TimeDiffSpect
	60 ns
	Time after CandSlice start time allowed for spectrometer CandStrip addition to CandSlice.



	PlaneDiff
	4
	Minimum number of planes separating CandStrips from two CandSlices which will contribute to SliceMatchFrac merger requirement. 



	TPosDiff
	20 cm
	Minimum transverse position separating CandStrips from two CandSlices which will contribute to SliceMatchFrac merger requirement.




CandClusterSR

Candidate Definition

CandClusters consist of CandStrips which are spatially adjacent (see algorithm)  CandClusters are 2D objects. These are combined in a subsequent reconstruction step to form 3D shower objects (CandShowers)
Algorithm

 The first action taken in AlgClusterSRList::RunAlg is construct a neighbor map,  which holds for each CandStrip in the CandSlice the number of neighbor CandStrips, defined to be the number of CandStrips on the same plane having times within StripNeighborTimeDiff, and which lie within StripNeighborStripDiff strips.  Having determined the number of neighbors for each CandStrip, we loop over views.  For each view, the following clustering algorithm is applied to all non-spectrometer planes (or all planes in the far detector).  We first iterate over all CandStrips in the view satisfying this plane cut.  For each CandStrip, we iterate over previously constructed CandClusters, determining whether the strip should be added to an existing cluster.  For each CandCluster, we select CandStrips which lie within +/- StripNeighborPlaneDiff of the primary CandStrip.  In the far detector, this interval is extended by SMPlaneFirst-SMPlaneLast-1 (3) planes on the low plane side if the CandStrip plane is StripNeighborPlaneDiff or more lower than the first plane in SM2 (SMPlaneFirst) or by the same number of planes on the high plane side if the CandStrip plane is StripNeighborPlaneDiff or more higher than the last plane in SM1 (SMPlaneLast).   We now iterate over this CandStrip set within the CandCluster.  If a CandStrip in this set lies in the same plane as the primary CandStrip, we compare the timing and strip different. If a CandStrip in this set lies in a different plane from the primary CandStrip, we use these criteria, and in addition require that the CandStrip lie within a transverse distance of StripNeighborTPosDiffShower if the primary CandStrip was found to have neighbors in the initial step, or within StripNeighborTPosDiffTrack if the CandStrip was found to be isolated.  If these criteria are met for any CandStrip in the selected set, the primary CandStrip is added to this CandCluster.  If a match is found for multiple CandClusters, these clusters are merged.  If, after iterating over existing CandClusters, no match is found, a new CandCluster is created with a single daughter – the primary CandStrip.   If the primary CandStrip has strip neighbors, the new CandCluster is labeled ‘showerlike’.  If not, it is labeled ‘tracklike’.
CandCluster Methods


IsShowerLike()

IsTrackLike()

IsShowerLike(Bool_t)

IsTrackLike(Bool_t)

Set or gets the tracklike or showerlike attribute of a CandCluster, as defined in the algorithm section above.

GetNStrip() 

Returns the number of strips in a CandCluster.  

GetBegPlane() 

GetEndPlane() 

Returns the most upstream and downstream planes in a CandCluster. 

GetCharge() 

Total charge in the CandCluster.  The default form of CandStrip::GetCharge() is used, implying that at present, this returns summed PEs.  

GetBegTime() 

GetEndTime() 

CorrBegTime and CorrEndTime are the earliest and latest times in a CandCluster.

GetNPlane()

Returns the number of planes in the CandCluster.

GetTPos() 

Mean transverse position of CandCluster. 

GetPlaneView()

The plane view of this CandCluster.  Possible values are PlaneView::kX, kY, kU, kV, kA (Caldet muon trigger strips running perpendicular to the beam), and kB (Caldet muon trigger strip running parallel to the beam). 

Algorithm Parameters

	Parameter 
	Default
	Description

	StripNeighborTimeDiff
	60 ns
	Time difference allowed between strips on a given plane.



	StripNeighborStripDiff
	3
	Strip separation allowed between strips on a given plane.



	SMPlaneLast
	248
	Last plane of SM1



	SMPlaneFirst
	250
	First plane of SM2



	MinPulseHeight
	2
	Minimum cluster pulse height. (Pes)



	MinPlaneCoverageShower
	1
	Minimum number of planes spanned by a cluster.



	MinPlaneNeighbor
	1
	Minimum number of neighbors in a plane.

	
	
	

	MinPlaneCoverageTrack
	8
	Minimum number of planes spanned.



	StripNeighborPlaneDiff
	4
	Plane separation allowed in strip neighbors.



	StripNeighborTPosDiffShower
	20 cm
	Transverse separation allowed in strip neighbors.



	StripNeighborTPosDiffTrack
	20 cm
	Transverse separation allowed in strip neighbors.


CandShowerSR

Candidate Definition

3D reconstructed showers.  CandShowerSR inherits from virtual class CandReco, and contains pointers to CandCluster objects. More than one may exist per CandSlice, and CandStrip daughters are not necessarily exclusive.
Algorithm

 We begin with a nested loop over all CandSlices, and over all CandClusters within each CandSlice, generating list of all clusters in the U and V planes.  

Next, we execute a nested loop over U-view and V-view CandClusters, checking for matching 2D clusters.   The following criteria are used:

· Beginning planes for the two 2D ‘long’ CandClusters (defined by PlaneScale) must be within DiffViewPlaneMatch, or DiffViewPlaneMatchShort if one or more clusters is short.

· Beginning times for the two 2D CandClusters must be within DiffViewTimeMatch.

· The fractional overlap of U and V clusters must exceed DiffViewPlaneCoverage, if both clusters are long.

· The total pulse heights of the U and V clusters must agree to within DiffViewPulseHeightCut if at least one of the clusters is long. (Note: This should probably be changed to a charge ratio)

If a U/V cluster set is found which satisfies these requirements, a second loop over U clusters is performed, searching for alternative U/V pairs involving the original V cluster satisfying the requirements above, but higher in total energy.  If no better alternative is found a CandShower is constructed.  In this way, a given CandCluster will only be used once, in the shower with the highest total energy.

Within AlgShowerSR::RunAlg,  the vertex location and shower direction is determined.  First, the most upstream U and V planes are found.  Next, a loop over all shower clusters is used to obtain the total shower charge. The charge-weighted U/V positions of the CandClusters in the plane interval from the most upstream planes to VtxPlaneSpan planes downstream is identified as the shower vertex location.  To obtain the shower direction, a linear fit is performed to the charge-weighted transverse position in a given plane vs the Z position of that plane.  A weighted linear fit is performed in each viewed, weighted by the total cluster charge for this shower in a given plane.    The du/dz and dv/dz slopes obtained in these fits are then used to obtain the direction cosines of the shower axis.  Finally, the shower energy is set.

CandShower Methods


CandClusterHandle *
GetUCluster(Int_t)

CandClusterHandle *
GetVCluster(Int_t)

void


AddCluster(CandClusterHandle *)

Adds a CandCluster to the CandShower daughter list, first checking that this cluster not already a member of the list.

CandClusterHandle *
GetCluster(Int_t) 

Returns the ‘i’th cluster in the CandShower daughter list.  If  the entry requested is greater than the list size, the function returns null.

Int_t 


GetLastCluster() 

Returns the last cluster in the CandShower daughter list.

Double_t 

GetEnergy()

void 
   
 
SetEnergy(Double_t)

Set/gets the total shower energy. 

Algorithm Parameters

	Parameter 
	Default
	Description

	MIPperGeV
	14.8
	

	DiffViewPlaneMatch
	6
	Allowable difference in U/V cluster begin plane



	DiffViewPlaneMatchShort


	3
	Allowable difference in U/V cluster beginning for short clusters

	MinAvgPulseHeight
	800.
	

	PlaneScale
	5
	Defines short vs long clusters



	MinAvgNStrip
	2
	Min. # strips for showerlike cluster (unused)



	MinPlane
	1
	Minimum # planes for showerlike cluster (unused)



	DiffViewPlaneCoverage
	0.5
	Minimum allowable fractional plane overlap of U/C clusters



	DiffViewTimeMatch
	30 ns
	Max. start time difference of U/V clusters



	VtxPlaneSpan
	5
	Use strips with plane # at most this many away from beginning plane in view


CandTrackSR

Candidate Definition

3D reconstructed tracks.  CandTracks inherit from the virtual class CandReco. More than one CandTrack may exist per CandSlice.  The CandStrip daughters of a pair of CandTracks are not necessarily exclusive  - tracks can share strips.  

Algorithm

Track processing begins in AlgTrackSRList::RunAlg with a loop over CandSlices.  For each CandSlice, we start by determining the number of digitzations in each view/side, and construct a list of CandStrips with pulseheights greater than MinStripPulseHeight for each view.  Next, for each view we perform a Hough transform.  This preliminary track finding step is used to determine the sign of dZ/dtime, the rough track multiplicity, and to obtain a linear fit to Z vs transverse position that can be used in the more refined track finder used in subsequent steps. 

Using the result of the Hough track finder, we loop over CandStrips and calculate the transverse (U/V) position and the transit time, correcting for T0s, propagation time of the light down the strip (using the hough track fit to determine the position along the strip.), etc.   A linear fit to Z position vs time is then performed.  Each entry with residuals > 20 ns are then removed from the fit arrays, and refits are done until no hits are removed, or there are fewer than 5 hits left.  We then perform a Z vs time fit for the combined U and V views, using the hit points surviving the prior step. We now know the sign of dZ/dtime, which can be used to find tracks consistently from the direction of track head to track tail.  

We now find track clusters, starting with the construction of an array containing the number of hits per plane.  The minimum track size is then defined as the larger of Trk2DNSeed, and Trk2DNSeedFrac time the number of planes with hits.  CandStrips are sorted by plane, strip, and time.  We loop over non-spectrometer CandStrips from earliest to latest, as determined by directionality.  If the plane of a given CandStrip is the same as that of the last cluster formed, and this strip is within ClsNSkip+1 strips, this CandStrip is added to this cluster.  Otherwise, this CandStrip forms the start of a new track cluster.  We then iterate over this track cluster list, and remove track clusters with more than MaxNStrip CandStrip members, or with a total charge less than MinClusterPulseheight

We now proceed to form 2D tracks. This is an iterative process, with track seed hits found from the track cluster list, tracks formed starting with these seeds, overlapping tracks and bad tracks removed, and track clusters in good tracks removed from the track cluster list.  This process is repeated until either the track cluster list is empty, or we satisfy conditions for terminating the 2D track finding process, defined below.

The first track finding step is the identification of track seed hits. We perform a nested loop over track clusters, with the inner loop being over clusters earlier in the list than the outer loop.  If the two clusters are in the same view, their planes are within Trk2DplnEnd, and their time difference is greater than Trk2DHitNTime and less than Trk2DhitTime, we check agreement between their transverse positions.  Using the Hough fit parameters, we extrapolate one transverse position to the other, and require that these agree to within Trk2Dwin0 times the difference in Z positions.  

If all of these conditions exists we assume that these track clusters will eventually lie on the same track, and the later of the two is not an appropriate track seed.  If no match is found over the inner track cluster loop, the track cluster in the outer loop would appear to be a good track seed, if the  number of CandStrips in the seed is less than SingleHitDef.  In this case a track with this single entry is added to the track list.   After the track seed step is complete, and if IsCosmics is true, we perform a nested loop over tracks in the track list.  If any two track seeds are on the same plane, we keep only the one with the largest charge.

 We now proceed to add track clusters to tracks in the track list.  We loop over planes with hits. For a given plane, we construct a list of the clusters within this plane (the plane cluster list).  We now loop over all tracks which were seeded on this track finding iteration. For each of these new tracks, we use the last cluster added and compare it with each of the clusters in the plane cluster list.  For each, we require that the plane cluster be within Trk2DNSkip planes (adding 3 toTrk2DNSkip if the gap spans the SM1-2 boundary), and either that the number of current track hits be greater than Trk2DNContiguous or that the plane cluster be with 2 planes ( adding 3 for the SM1-2 gap if applicable).  
We now perform a fit to Z vs transverse position using the last track points, and extrapolating to the plane cluster.  If the track length is less than Trk2DHough0 the full track is used in the fit, and we set the maximum allowable residual to Trk2DLinA0+Trk2DLinB0*z.  Otherwise, we set the number of fit points to Trk2DNHough, and the maximum allowable residual to LinA+LinB*z.  

If the track length is greater than one cluster, we load the fit arrays with the Z and transverse positions of the last ‘nfit’ track clusters.  Each fit point is assigned a weight given by the CandStrip charge/700 time 12.0 divided by the square of the track cluster transverse width.  A linear fit is then performed, and the result extrapolated to the plane cluster under consideration.  To include the effect of the plane cluster width on the maximum allowable residual, we add to the maximum residual described earlier Trk2DsigmaA times the plane cluster transverse width divided by the square root of 12.   

If the track contains only one member, we use the Hough track fit to extrapolate to the cluster position.  Extrapolating to the plane cluster, we add to the maximum residual described earlier Trk2DsigmaA times the plane cluster transverse width divided by the square root of 12.   

Next, we require that either the track length is greater than MinSingleHit or that the number of strips in the plane cluster is less than SingleHitDef, that the difference between the extrapolated track time and plane cluster time be less than Trk2DHitNTime and less than Trk2DhitTime.  Finally, we require that the residual obtained in extrapolating the fit to the plane cluster be less than the maximum allowable residual. In this case, we consider this plane cluster to be a potential member of this track. 

After iterating over all tracks, we add this cluster to the track with the best match, and proceed to the next plane cluster.  After exhausting the plane cluster list, we move to the next plane with hits, and repeat the process above until all planes with hits are examined.  This completes the 2D track finding process for this iteration.   

 We now remove tracks with various pathological problems, starting with tracks which are missinga large number of hits.  We compare the number of hits in a track to the difference between start and ending planes.  If this hit fraction is less than Trk2DhitFraction the track is removed.  Next, tracks shorter than the minimum allowed 2d track are removed.  The number of hits in the track must than the larger of Trk2DNSeed and Trk2DNSeedFrac times the track length, or the track is removed and placed on a bad track list.  Single hit tracks are removed in all cases.  The linearity of remaining short tracks with a number of hits less than or equal to Trk2dNHough and which were created on this track building iteration.  An unweighted linear fit between Z and transverse positions is performed, and the hit with the worst residual is found.  If the residual is larger than Trk2DmaxResid, the track is removed from the track list, and added to the bad track list.  At this point, all clusters on the remaining tracks, and clusters on tracks which have been set to ‘ not iterate’ are removed from the track cluster list.  

Next, we investigate whether removing clusters from the head or tail of a bad track will improve it.  In this case, the cluster is removed from the cluster list, so that the same bad track is not built in the next iteration.   If a Hough solution exists for this view, we calculate the residual of the first and last clusters in the track in a fit, calculating the expected transverse position for the cluster’s Z position, and the Hough fit parameters.  The cluster with the worst residual is removed from the cluster list.

We now determine whether a track is contained as a subset of another track.  The shorter track is removed.  If there is a complete overlap, the shorter track is removed in all cases.  If there is partial overlap, we determine whether one of the two tracks should be removed.  If the number of unmatched clusters in track 2 is less than Trk2DsubsetNHit, and the track 2 is smaller than track 1 by more than Trk2DsubsetDHit clusters, we remove track 2.  If the match fraction, defined as the ratio of the number of matching clusters and the number of track clusters, is greater than Trk2DTwinMatchFraction we remove the track in the pair with the largest reduced chi2.  

We now determine whether the track building iterations should terminate.  If IsCosmic is true, we determine whether any of the tracks span the snarl from the lowest to highest plane.  If this is true, we terminate iterations.  Otherwise, we terminate when the track cluster list is empty.  If this is not the case, we advance the iteration counter, and return to the track seed hit building step with our new, more restricted, track cluster list and a refined track list.

After 2D track building has terminated, we build 3D tracks.  We perform a nested loop over tracks, requiring 1 U track and 1 V track.  We now determine whether these tracks can be combined into a 3D track.  The two track’s start times are required to be within DiffViewTimeMatch, the beginning planes must match to within DiffViewBegPlaneMatch, and the ending planes must match to within DiffViewEndPlaneMatch.  We also require that the tracks overlap by a number of planes given by the length of the shortest of the two times DiffViewPlaneOverlap.  If these conditions are met, a CandTrack is constructed from the two 2D tracks.  

One final check of track overlap is performed on the list of 3D CandTracks.  A nested loop over CandTracks is performed, and pairwise comparisons of the CandTracks are done.  If the fraction of common strips to total strips is larger than Track3DTwinFrac for either track we flag the track with the lowest ‘score’ for removal.   The track score is currently defined as the sum of the number of slices in the track and the total charge/700.

The remaining CandTracks are sorted by length – the largest Trk3DTrackMax are kept, the rest being removed from the list. 

In AlgTrackSR::RunAlg, tracks which have been found using the procedure described above are analyzed to determine their essential attributes (direction, etc), and to load the CandTrack daughter list with CandStrips associated with the track.  We start be identifying CandClusters on the track which are ‘track-like’.  For each cluster, the local angle to the Z axis (the normal to the strip surface) is used to determine the expected number of strips tranversed in that plane, given by the larger of 1 and dz/ds /4.0.  If the actual number of strip hits in this plane does not exceed this value, the ‘InShower’ attribute of each CandStrip in this cluster is set to zero, and all CandStrips in this cluster are added to the CandTrack daughter list.  If, on the other hand, the cluster is wider than expected by the track inclination, we determine the most likely subset of the cluster the particle passed through.  We start by finding the nearest upstream and nearest downstream ‘tracklike’ clusters, and using the locations of these clusters to define a local track slope, and from this, an estimate of the track centroid in the CandCluster determined to be shower-like.  Defining the expected number of tranversed strips in this cluster as described above, we examine each possible set of adjacent strips of this extent in the cluster. For each strip set, we calculate the average distance of each strip in this set to the local track centroid, and add to this the average distance of each strip in the set to the previously determine cluster centroid. In this case that IsCosmic is true, we take the strip set which has the minimum value for this distance-to-centroid estimator as the track CandStrip daughters for this cluster.  If IsCosmic is false, the strip set with the largest summed pulse height is used.  The InShower attribute of each of the strips added to the CandTrack daughter list is set to the number of strips in this cluster with a signal greater than 1 PE.  (Actually, strips with charge>105 counts at this time)

Next, we determine the pathlength between adjacent clusters in the track, and from this, the total pathlength and range-based momentum.  The sign of dt/dz determined in AlgTrackSRList::RunAlg is used to determine the track head and tail.  The U and V view 2D track extremes are used to define the 3D track beginning and end planes.  If dt/dz>0, the track beginning plane is given by the smaller of the two 2D track beginning planes, and the end plane by the larger of the two 2D track end planes. .  If dt/dz<0, the track beginning plane is given by the larger of the two 2D track beginning planes, and the end plane by the smaller of the two 2D track end planes.  (ie, the 3D track is made a long as possible)   We now iterate over planes from the track head to the track tail, calculating the difference in position between track centroid locations in adjacent planes, maintaining a running sum of total path length to this plane. Taking the energy loss per plane (for a normally incident particle) as 40 MeV/c, we set the integrated energy loss from the track head to each track CandStrip daughter through calls to SetMomentum in this loop. 

We now proceed to refined determination of dt/dz. We start by constructing arrays of CandDigit Z positions vs time for each view and side, where time is corrected for propagation delays in the clear and wls fiber, and for timewalk.  Each fit point is weighted by a charge-dependent factor which accounts both for the increase in time resolution with signal, and the degradation is time resolution for very large amplitudes due to the transverse width of showers. The weighting factor takes a minimum value at approximately 10 photoelectrons.  If the InShower value (see above) for this digit is greater than 5 (there are 5 more CandStrips in the cluster than expected) the weight of this digit is set to zero.  Following this loop over track CandDigits, the SetNTrackStrip method is called, passing the total number of strips in this track which are members of CandClusters with no more than 1 extra strip.

The track time vs position fitting now proceeds, with separate fits for each view/side and assumed track direction (sign of  dt/dz)  in the case in which CalTimeType =kRaw, and with all view/sides combined when CalTimeType=kT0.  (differences in offsets between views and sides makes it inappropriate to combine views if T0s are not subtracted). The next step in the time fit is to remove hits with large time residuals.  We do this by assuming that the muon velocity is equal to the speed of light and that the track is straight.  In this case, we can subtract the time of flight of the muon from the observed time and compare the value of this ToF-corrected time for a given hit with the average value of this quantity over the track.  If the corrected hit time differs from the mean by more than 20 ns, it is removed from the fit.  We then recalculate the mean removing these bad hits, looking for additional out of tolerance times, until no new hits are removed, or we are left with only 5 good time hits on the track.  At the termination of this procedure, a final chi2 is calculated for this view/side/direction, and a weighted linear fit of time vs Z using the surviving hits is performed.

In the case that CalTimeType =kRaw, the individual fits results for each view/side are now combined.  The first step is the determination of the track direction The average fit chi2 obtained over the views  & sides for dt/dz>0 is compared with the average for dt/dz<0.  The track direction is assume to be that giving the smaller average chi2 in the ToF-corrected time distributions.   The track  TimeOffset and TimeSlope are then set to the average of the linear fit parameters over the view/sides for the selected track direction. 

In the case that CalTimeType=kT0 the time fitting proceeds much as above, but with hits from all views and sides combined in a single fit.  Because the time values are assumed to be of higher accuracy in this case, ToF-corrected times are required to be within 10 ns of the track average to be used in the fit, and not more that 20% of the track hits are allowed to be removed in this procedure.  

Finally, it is possible that the more careful determination of track time slope may differ from that determined initially in AlgTrackSRList.  In that case, we need to reverse our definition of track head and tail, and recalculate the  integrated energy loss along the track, this time starting from the opposite track end.  In addition, vertex U/V/Z , etc  positions must be reloaded for the new track head.  This is done at the end of RunAlg.  The final step in RunAlg is a call to Calibrate, which will apply the post-reconstruction calibration to the 3D track members.  

Candidate Methods


AddCluster(CandClusterHandle *)


Adds a CandCluster to the CandTrack daughter list.

SetUTrack(Track2DSR *)

SetVTrack(Track2DSR *)

GetUTrack() 

GetVTrack() 

      Sets or returns the 2D track component of the CandTrack for a given plane view. 

GetDirCosU(Int_t) 

GetDirCosV(Int_t) 

GetDirCosZ(Int_t) 


Returns direction cosines at a specified plane.

GetHoughDirCosU() 

GetHoughDirCosV() 

GetHoughDirCosZ()

GetHoughResid2()


Returns various results of the initial Hough track finder.

GetScore() 

Returns a ‘track robustness’ score.  Currently, the track score is currently defined as the sum of the number of slices in the track and the total charge/700.

GetTimeWeight(const CandDigitHandle *)

GetNTrackPlane(PlaneView::PlaneView_t = PlaneView::kUnknown)

Returns the number of planes in the track.  The count can be restricted to a particular plane using the function parameter.

CreateDigitMap(CandContext &, const CandDigitListHandle*) 

TObjArray *DigitMapArray(const CandDigitHandle*)


Set or Gets a map of digits on this track which belong to the same PMT.

SetNTrackStrip(Int_t)

SetNTrackDigit(Int_t)

SetNTimeFitDigit(Int_t)

SetTimeFitChi2(Double_t)

GetNTrackStrip() 

GetNTrackDigit() 

GetNTimeFitDigit()

GetTimeFitChi2() 

SetdS(Int_t,Double_t)

GetdS(Int_t = -1)  travel distance from vertex

Algorithm Parameters

	Parameter 
	Default
	Description

	MinPlane


	3
	

	Trk2DplnEnd


	6
	

	Trk2DNSkip


	20
	

	Trk2DmaxResid


	6 cm
	

	Trk2DhitFraction


	0.75
	

	MinSingleHit
	0
	# of planes required in a track before non-single hits are used



	Trk2DsubsetNHit


	5
	

	Trk2DsubsetDHit


	5
	

	Trk2DNPlaneBeg
	3
	

	DiffViewBegPlaneMatch
	20
	

	DiffViewEndPlaneMatch
	20
	

	DiffViewPlaneOverlap
	0.5
	

	Track2DSlopeWeight
	-0.25
	

	Trk3DTwinFrac
	0.75
	

	MinStripPulseHeight
	200
	

	MinClusterPulseHeight
	140
	

	Trk3DTrackMax
	0
	

	LandauEp
	600
	Parameters for a Landau distribution, approximated by  sqrt(e(-(R*(E-Ep)+exp(-R*(E-Ep))))/2/()

where Ep is most probably energy (pulse height), and R is scale factor. These parameters are used in selecting hits on a track based on pulseheight so we should not make R so large that landau distribution is narrow.



	LandauR
	0.0025
	

	LandauMinProb
	0.05
	

	IsCosmic
	IsCosmic
	Determines which set of values for parameters below are used.  The default parameters are for cosmics.



	MaxNStrip
	50
	

	HitNTime
	-999999 ns
	

	HitTime
	999999 ns
	

	SingleHitDef
	50
	

	Trk2Dwin0
	4.


	

	DxA
	20 cm
	

	DxExpA
	400 cm
	

	DxExpB
	-1.5
	

	DxPlnA
	0.8
	

	DxPlnExpA
	15.
	

	DxPlnExpB
	-0.1
	

	Trk2DAlpha
	0.4
	

	Trk2DLinA0
	50 cm
	

	Trk2DLinB0
	0.5
	

	Trk2DLinA
	20 cm


	

	Trk2DLinB 
	0.5
	

	Trk3DNSigmaA 
	3


	

	Trk2DTwinMatchFraction  
	0.5
	

	Trk2DNSeed 
	3
	

	Trk2DNSeedFrac      
	0.3
	

	Trk2DNContiguous   
	0
	

	DiffViewTimeMatch   
	999999 ns
	

	TrkClsNSkip  
	2


	Number of missing strips allowed

	Trk2DNHough0  
	4
	

	Trk2DNHough
	3
	

	
	
	

	
	
	

	
	
	


CandFitTrackSR

Candidate Definition

Stores information from magnetic track fitting

Inherits from CandTrack
Algorithm

Candidate Methods


CandFitTrackSR Members

GetKalmanPlane(Int_t)

RemoveKalmanPlane(Int_t)

CompressKalmanPlaneList()

GetCurrentKalmanPlane(PlaneView::PlaneView_t = PlaneView::kUnknown) 

SetCurrentKalmanPlane(KalmanPlaneSR*)

RemoveForward(KalmanPlaneSR *kp = 0)

AddToFit(TrackClusterSR *,Int_t)

ReverseFit(Int_t)

SetInitialQP(Double_t)

AddUpstreamPlaneList(TObjArray*)

CalculateVtxT(TrackClusterSR *tc = 0)

CandFitTrack (Base Class) Members

GetEMCharge()

SetEMCharge(Double_t)

GetChi2()

SetChi2(Double_t)

Algorithm Parameters

	Parameter 
	Default
	Description

	Swimmer
	
	

	IsCosmic
	1
	

	SeedTrkNSTrip
	8
	

	SeedTrkNStripView
	2
	

	TposError2
	1.4 cm2
	

	InitialPositionError2
	1.4 cm2
	

	InitialSlopeError2
	0.1
	

	InitialQPError2
	0.01 GeV
	

	InitialPOff
	2 GeV
	

	MaxIterate
	10
	

	QPDiff
	0.01
	

	KalmanDState1
	0.01 GeV
	

	KalmanDState2
	0.01 GeV
	

	KalmanDState3
	0.0025 Gev
	

	KalmanDState4
	0.0025 GeV
	

	KalmanDState5
	0.05 GeV
	

	KalmanPlnRadLen
	1.47
	

	Kalmandedx
	0.038 GeV
	

	KalmanMaxQP
	5.
	Max abs(q/p) before fitter stops



	MaxInitialChi2
	30.
	

	HitDTime0
	-20 ns 
	Hit – track time > Dtime0



	HitDTime1            
	50 ns
	Hit – track time < Dtime1



	NskipView
	3
	Up to n missing planes allowed in each view



	FitInputHits
	1
	

	
	
	


CandEventSR

Candidate Definition

The CandEvent is the highest level candidate objection.   It associates tracks and showers which are determined to originate in the same physics event, refining the original blocking provided by CandSlices.  A CandEvent may contain more than one candidate of each type. The CandEvent allows for sharing of digits between tracks and showers, as well as between CandSlice objects.

Algorithm

  AlgSREventList::RunAlg begins by iterating over all CandSlices, adding the CandShowers and CandTracks from each into a reconstructed object array.   If a slice has no tracks or showers, BuildEventsFromUnassoc is called.

BuildEventsFromUnassoc loops over strips in the slice, filling an array of ‘unassociated’ strips.  This array is now looped over.  An event is seeded with the first strip in the list. Strips are then added to the event strip list, if they meet the following criteria.   A new strip is compared with other strips in the same view using the Dist2 parameter, defined as  

 Dist2= plane2 *HitAssocZParm + tpos2 *HitAssocPParm + time2 *HitAssocTParm

This value is required to be less than HitAssocMaxDist2*4 for at least one pre-existing strip in the event, compared with the new strip. For strips in the orthogonal view, the time difference must be less than HitAssocDTime0 and greater than HitAssocDTime1, and the plane difference must be less than HitAssocPlane for at least one preexisting strip.  This check is made for strips in the orthogonal view until the first match is found.  Subsequent strips in this view are compared to strip in the same view using the Dist2 parameter. Following a complete loop over unassociated hits, if strips are found in both views a shower, and subsequently an event, is created from these strips.  These strips are then removed from the unassociated hit list.  This process is repeated until no new events are found in a loop over the unassociated hits.

In the case in which a slice contains either tracks and/or showers, we now iterate over these objects.  For each object, we iterate over previously constructed CandEvents, and determine whether this object should be added to this event. For each of these previously constructed CandEvents, we iterate over its reconstructed objects, a list of showers and tracks in this event, performing the following tests to determine if the two objects are associated with each other.

We deal first with the case in which the event object is a CandShower.  If the new reco object is also a CandShower, we calculate the U,V,Z and time differences between the new object and the event CandShower vertices. If the new object is a CandTrack, we extrapolate the CandTrack to the CandShower vertex Z position and calculate the U and V distances at that point.  In all cases, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference.  As an alternative estimator of Z separation we take the end plane of the event CandShower (as opposed to its vertex) and compare this Z position with the new object vertex Z position. Again, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference. Finally, if the new object is a CandShower we compare the end plane Z position of the new object CandShower  with the event CandShower vertex Z position, compensating for the inter-SM if necessary. We take the smaller of the Z differences obtained in these three cases above as the actual Z difference in the case

that the new object is a CandShower, and the smallest of the first two cases if the new object is a CandTrack.    

If the new object is a shower, and the object distances satisfy:



u2+v2 < ShwShwDtpos2 and abs(z)<ShwShwDz  and abs(t)<ShwShwDt
or if the new object is a track and the object distances satisfy:

 u2+v2 < ShwTrkDtpos2 and abs(z)<ShwTrkDz  and abs(t)<ShwTrkDt

then the new object is added to this event.  If this object was also found to be associated with previous events in the event list, these events are merged.

If the previous checks failed to find a match and the new object is a CandTrack we perform an additional check of proximity, if the event CandShower vertex Z position is greater than the new track vertex minus ShwTrkDz.  This handles the case in which the event shower is associated with the track, downstream of the vertex.  The track U, V, and time values are extrapolated to the  event CandShower vertex, and the shower vertex Z position is compared with the track end Z position.  If the following condition is satisfied the new track is added to the event:  

u2+v2 < ShwTrkDtpos2 and abs(t)<ShwTrkDt and event shower vertex Z is less than the track end Z plus ShwTrkDz.

If this object was also found to be associated with previous events in the event list, these events are merged.

We deal next with the case in which the event object is a CandTrack.  If the new reco object is a CandShower or if the event CandTrack vertex is downstream (has larger Z) of the new object, we calculate the U,V,Z and time differences between the new object and the event CandTrack, using the event CandTrack to extrapolate to the new object vertex position. Otherwise, we use the new CandTrack to extrapolate to the event CandTrack vertex. In all cases, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference.  We next determine the distance between the new object vertex transverse position and the transverse position of the event CandTrack.  If the new object is a shower, we also compare the end position of the shower with the new CandTrack vertex Z position, corrected for inter-SM gaps if necessary. If this Z separation is less than the previous value we use the latter.

If the new object is a shower, and the object distances satisfy:



u2+v2 < TrkTrkDtpos2 and abs(z)<TrkTrkDz  and abs(t)<TrkTrkDt
or if the new object is a track and the object distances satisfy:

 u2+v2 < ShwTrkDtpos2 and abs(z)<ShwTrkDz  and abs(t)<ShwTrkDt

then the new object is added to this event.  If this object was also found to be associated with previous events in the event list, these events are merged.

If the previous checks failed to find a match and the new object is a CandShower we perform an additional check of proximity, if the new CandShower vertex Z position is greater than the event CandTrack vertex minus ShwTrkDz.  This handles the case in which the new shower is associated with the CandTrack, downstream of the track vertex.  The CandTrack U, V, and time values are interpolated to the new CandShower vertex, and the shower vertex Z position is compared with the track end Z position.  If the following condition is satisfied the new track is added to the event:

u2+v2 < ShwTrkDtpos2 and abst)<ShwTrkDt and the shower vertex Z is less than the track end Z plus ShwTrkDz.

If this object was also found to be associated with previous events in the event list, these events are merged.

Having iterated over all objects, and building events from them, we treat hits unassociated with any object.  We iterate over all CandStrips in all CandSlices, building a list of CandStrips which are not contained yet in any CandEvent. 

 We then compare the time of each unassociated CandStrips with the vertex time of each event.  If the unassociated hit time minus the vertex time is greater than HitAssocDTime0 and less than HitAssocDTime1, and the event has a primary shower,  we attempt first to associate the hit with the primary shower.  If the event has a track but no primary shower, or the shower is further than ShwShwDz from the track vertex, we will consider in addition whether to create a new shower near the track vertex, using this strip plus the strips in the first U/V planes of the track.  In the former case, for each CandStrip in the primary shower we determine the difference in planes between this CandStrip and the unassociated hit, as well as the difference in transverse position.  The distance between these CandStrips is define as HitAssocZParm*Z2  + HitAssocPParm*TransversePos2  + HitAssocTParm*time2.  Looping over all shower CandStrips, we determine the smallest separation.  Looping over all events, we determine the event with vertex time consistent with the unassociated hit, and with the smallest value for this space/time separation.  If this separation is less than HitAssocMaxDist2, we remove this unassociated CandStrip from the list, and add it to the event and primary shower daughter lists. In the case in which we are considering whether to create a new shower, the distance between the strip and event is based on the strip position and track vertex position.   If this is determined to be the shortest event distance for this strip, a new shower is created using this strip plus the strips in the first U and first V plane of the track, and the strip is removed from the unassociated hit list.  In either case, since the event has been modified as a result of adding this strip, we recalculate the shortest distance of all other unassociated hits to this modified event, as before.  The process continues until we have looped over all unassociated hits.  The loop over unassociated event is repeated until no new association is found for a complete loop. 

As each event is constructed In AlgEventSR::RunAlg, the track list is examined for duplicates according to the algorithm discussed below, with duplicates being removed from the list.  In addition, the primary track and shower is identified and flagged.  

Processing in AlgEventSR::RunAlg begins with a loop over all reconstructed objects in the Event.  For each track, a call to GetScore is made (see CandTrack documentation).  The track with the highest score is called the primary event track.  The shower with the largest energy is called the primary track as long as it is within ShwTrkDz of the track vertex (if a track vertex exists).  Otherwise, the shower closest to the track vertex is called the primary, if its energy is at least MinShwEFract of the largest shower. 

If a best track is found, the event vertex location is set to the vertex of the best track.  Otherwise, the vertex of the best shower is used as the event vertex. 

AlgSREventList::RunAlg begins by iterating over all CandSlices, adding the CandShowers and CandTracks from each into a reconstructed object array.  Having built this object array, we now iterate over objects in it.  For each object, we iterate over previously constructed CandEvents, and determine whether this object should be added to this event. For each of these previously constructed CandEvents, we iterate over its reconstructed objects, a list of showers and tracks in this event, performing the following tests to determine if the two objects are associated with each other.

We deal first with the case in which the event object is a CandShower.  If the new reco object is also a CandShower, we calculate the U,V,Z and time differences between the new object and the event CandShower vertices. If the new object is a CandTrack, we extrapolate the CandTrack to the CandShower vertex Z position and calculate the U and V distances at that point.  In all cases, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference.  As an alternative estimator of Z separation we take the end plane of the event CandShower (as opposed to its vertex) and compare this Z position with the new object vertex Z position. Again, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference. Finally, if the new object is a CandShower we compare the end plane location of the new object CandShower and compare its Z position with the event CandShower vertex Z position, compensating for the inter-SM if necessary. We take the smaller of the Z differences obtained in these three cases above as the actual Z difference in the case that the new object is a CandShower, and the smallest of the first two cases if the new object is a CandTrack.    

If the new object is a shower, and the object distances satisfy:



u2+v2 < ShwShwDtpos2 and abs(z)<ShwShwDz  and abs(t)<ShwShwDt
or if the new object is a track and the object distances satisfy:

 u2+v2 < ShwTrkDtpos2 and abs(z)<ShwTrkDz  and abs(t)<ShwTrkDt

then the new object is added to this event.  If this object was also found to be associated with previous events in the event list, these events are merged.

If the previous checks failed to find a match and the new object is a CandTrack we perform an additional check of proximity, if the event CandShower vertex Z position is greater than the new track vertex minus ShwTrkDz.  This handles the case in which the event shower is associated with the track, downstream of the vertex.  The track U, V, and time values are extrapolated to the event

CandShower vertex, and the shower vertex Z position is compared with the track end Z position.  If the following condition is satisfied the new track is added to the event:  

u2+v2 < ShwTrkDtpos2 and abs(t)<ShwTrkDt and event shower vertex Z is less than the track end Z plus ShwTrkDz.

If this object was also found to be associated with previous events in the event list, these events are merged.

We deal next with the case in which the event object is a CandTrack.  If the new reco object is a CandShower or if the event CandTrack vertex is downstream (has larger Z) of the new object, we calculate the U,V,Z and time differences between the new object and the event CandTrack, using the event CandTrack to extrapolate to the new object vertex position. Otherwise, we use the new CandTrack to extrapolate to the event CandTrack vertex. In all cases, if the two object vertices are in opposite SMs in the far detector, we subtract the inter-SM gap from the Z position difference.  We next determine the distance between the new object vertex transverse position and the transverse position of the event CandTrack.  If the new object is a shower, we also compare the end position of the shower with the new CandTrack vertex Z position, corrected for inter-SM gaps if necessary. If this Z separation is less than the previous value we use the latter.

If the new object is a shower, and the object distances satisfy:



u2+v2 < TrkTrkDtpos2 and abs(z)<TrkTrkDz  and abs(t)<TrkTrkDt
or if the new object is a track and the object distances satisfy:

 u2+v2 < ShwTrkDtpos2 and abs(z)<ShwTrkDz  and abs(t)<ShwTrkDt

then the new object is added to this event.  If this object was also found to be associated with previous events in the event list, these events are merged.

If the previous checks failed to find a match and the new object is a CandShower we perform an additional check of proximity, if the new CandShower vertex Z position is greater than the event CandTrack vertex minus ShwTrkDz.  This handles the case in which the new shower is associated with the CandTrack, downstream of the track vertex.  The CandTrack U, V, and time values are interpolated to the new CandShower vertex, and the shower vertex Z position is compared with the track end Z position.  If the following condition is satisfied the new track is added to the event:

u2+v2 < ShwTrkDtpos2 and abst)<ShwTrkDt and the shower vertex Z is less than the track end Z plus ShwTrkDz.

If this object was also found to be associated with previous events in the event list, these events are merged.

Having iterated over all objects, and building events from them, we treat hits unassociated with any object.  We iterate over all CandStrips in all CandSlices, building a list of CandStrips which are not contained yet in any CandEvent. 

 We then compare the time of each unassociated CandStrips with the vertex time of each event.  If the unassociated hit is more than  HitAssocDTime0 ns later than the event vertex,  but not more than HitAssocDTime1 later, and the event has a primary shower,  we attempt first to associate the hit with the primary shower.  For each CandStrip in the primary shower, we determine the difference in planes between this CandStrip and the unassociated hit, as well as the difference in transverse position.  The distance between these CandStrips is define as HitAssocZParm*Z2  + HitAssocPParm*TransversePos2  + HitAssocTParm*time2.  Looping over all shower CandStrips, we determine the smallest separation.  Looping over all events, we determine the event with vertex time consistent with the unassociated hit, and with the smallest value for this space/time separation.  If this separation is less than HitAssocMaxDist2, we remove this unassociated CandStrip from the list, and add it to the event and primary shower daughter lists.  Since this shower has now been modified, we recalculate the shortest distance of all other unassociated hits to this modified primary shower, as before.  The process continues until we have looped over all unassociated hits, and compared them with each event’s primary shower.  

As each event is constructed In AlgEventSR::RunAlg, the track list is examined for duplicates according to the algorithm discussed below, with duplicates being removed from the list.  In addition, the primary track and shower is identified and flagged.  Finally, the post-reconstruction calibration step is initiated by a call to CandEvent::Calibrate.

Processing in AlgEventSR::RunAlg begins with a loop over all reconstructed objects in the Event.  For each track, a call to GetScore is made (see CandTrack documentation).  The track with the highest score is called the primary event track.  The shower with the largest number of strips is called the primary shower.  

One final check of track overlap is performed on the list of 3D CandTracks.  A nested loop over CandTracks is performed, and pairwise comparisons of the CandTracks are done.  If the fraction of common strips to total strips is larger than TrkTrk3DTwinFrac for either track we flag the track with the lowest ‘score’ for removal.

If a best track is found, the event vertex location is set to the vertex of the best track.  Otherwise, the vertex of the best shower is used as the event vertex. 

Candidate Methods


CandEventSR Members

CandEvent Base Class Members

Double_t GetVtxU()

Double_t GetVtxV() 

Double_t GetVtxZ() 

Double_t GetVtxT()

Double_t GetVtxPlane()

SetVtxU(Double_t)

SetVtxV(Double_t)

SetVtxZ(Double_t)

SetVtxT(Double_t)

SetVtxPlane(Int_t)

If a best track is found, the event vertex location is set to the vertex of the best track.  Otherwise, the vertex of the best shower is used as the event vertex. 

AddShower(const CandShowerHandle *)

AddTrack(const CandTrackHandle *)

SetPrimaryShower(const CandShowerHandle *)

SetPrimaryTrack(const CandTrackHandle *)

These routines first check whether this CandShower or CandTrack already exists in the CandEvent.  If not, the new object is added to the appropriate list.  In addition, the ‘SetPrimary’ members flag these object as the primary track or shower in the event.  

CandShowerHandle *GetShower(Int_t)

CandTrackHandle *GetTrack(Int_t)

The members return the ‘ith’ track or shower in the appropriate object list, and return a null result if  “i” is greater than the list length.

CandShowerHandle *GetPrimaryShower()

CandTrackHandle *GetPrimaryTrack() 

Int_t GetLastShower() 

Int_t GetLastTrack()

Returns the length of the shower or track list.

CompressShower()

CompressTrack()

Calibrate()

This method should only be called in Algorithms.  The post-reconstruction calibration step (calibrations needing the 3D position of each hit) is initiated with a call to this method.  In Calibrate, all CandStrips in the reconstruction CandTracks and CandShowers (ie all 3d objects) are iterated over, and the calibrated charges of each type (obtained by calls to StripCalibrator::GetMIPs and StripCalibrator::GetSigMapped) are stored in lists in CandEvent.  Subsequent calls to the GetCharge or GetStripCharge methods will access these lists if MIPs or SigMapped calibration values are requested.    

Double_t GetCharge(CalStripType::CalStripType_t = CalStripType::kMIP) const;

Returns the total charge of the event.  Charge is calibrated according to the value of CalStripType, with the default returning a total charge in MIPs.  Other possibilities are kNone (returns raw ADC counts), kSigLin (returns ADC counts corrected for drift point and non-linearity), kSigCorr (returns ADC counts corrected for drift point, non-linearity, and strip-strip normalization), kSigMapped (returns ADC counts corrected for drift point, non-linearity,strip-strip normalization, and strip attenuation), and kPE (returns summed photoelectrons in the event) 

Double_t GetStripCharge(CandStripHandle *)

Returns the total charge in MIPs of the given strip.

Double_t GetStripCharge(CandStripHandle *, CalStripType::CalStripType_t, StripEnd::StripEnd_t = StripEnd::kWhole)

Double_t GetStripCharge(CandStripHandle *, StripEnd::StripEnd_t, CalStripType::CalStripType_t = CalStripType::kMIP)

Returns the charge of a particular CandStrip or CandStrip end.  Calibrated charge is returned according to the value of CalStripType, with the default returning a total charge in MIPs.  Other possibilities are kNone (returns raw ADC counts), kSigLin (returns ADC counts corrected for drift point and non-linearity), kSigCorr ( returns ADC counts corrected for drift point, non-linearity, and strip-strip normalization), kSigMapped (returns ADC counts corrected for drift point, non-linearity,strip-strip normalization, and strip attenuation), and kPE (returns summed photoelectrons in the event).  The second two versions of this call are identical.   

Algorithm Parameters

	Parameter 
	Default
	Description

	TrkTrkDtpos2
	500 cm2
	Maximum transverse separation between track vertices for event association.



	TrkTrkDz
	100 cm
	 Maximum Z position difference between track vertices for event association



	TrkTrkDt
	50 ns
	Maximum time difference between tracks for event association



	ShwTrkDz
	100 cm
	 Maximum Z position difference between shower and track vertices for event association



	ShwTrkDt
	50 ns
	Maximum time difference between shower and track for event association



	ShwTrkDtpos2
	500 cm2
	Maximum transverse separation between shower and track for event association



	ShwShwDz
	100 cm
	Maximum Z position difference between showers for event association



	ShwShwDt
	50 ns
	Maximum time difference between showers for event association



	ShwShwDtpos2
	500 cm2
	Maximum transverse separation between showers for event association



	HitAssocDTime0
	-20 ns
	Maximum time prior to event vertex for unassociated hit



	HitAssocDTime1


	100 ns
	Maximum time after event vertex for unassociated hit



	HitAssocMaxDist
	0
	Maximum allowable time/space separation between unassociated hit and closest primary shower. 



	HitAssocTParm
	.0001 ns
	Time parameter used in time/space sep. between unassociated hits and primary shower



	HitAssocZParm
	0.0224
	Z position parameter used in time/space sep. between unassociated hits and primary shower



	HitAssocPParm
	20.25 m2
	Transverse position parameter used in time/space sep. between unassociated hits and primary shower



	TrkTrk3DTwinFrac
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