

RAMS 2002

ATMET's Recent Air Quality Applications

Craig J. Tremback

ATMET ATmospheric, Meteorological and Environmental Technologies

RAMS Regional Atmospheric Modeling System

- RAMS developed primarily by Colorado State University, Mission Research Corporation/*ASTER Division, and ATMET.
- Large user base (over 160 sites in more than 30 countries) contribute with extensive testing and some development
- Changes over the past year:
 - RAMS distribution and support transferred to ATMET
 - RAMS available at no-cost to all US federal, state, and local government agencies and US universities
 - R. Walko moves to Duke University

RAMS Developments for 2001-2002

- New vertical coordinate
- Land surface scheme improvements
- Data assimilation schemes
- FDDA schemes
- History initialization option
- 1-way nest
- Continued transition to Fortran 90

Cmet

ATmospheric, Meteorological, and Environmental Technologies

<u>Problems with Terrain-Following (σ)</u> <u>Coordinate Systems</u>

- All terrain-following coordinate models have difficulty in handling "steep" topography
 - In σ_z systems, dependent on ratio $\Delta z_{topo} / \Delta z$
- Problems arise in taking horizontal gradients
- ETA coordinate model (Mesinger/Janjic) developed to address this problem for $\sigma_{\rm p}$ coordinate systems
- In σ_z systems, what we really want is a true Cartesian horizontal gradient.
- Horizontal diffusion was causing the majority of the "bad" effects in RAMS when topography became too steep.

<u>A Permanent Solution ?</u>

ETA-type step-coordinate model used successfully:

- Simple Cartesian grid easy to implement
- Eliminates all coordinate-induced, numerical truncation errors
- Runs faster per gridpoint, about 2x faster for basic numerics
- Allows arbitrarily steep topography (cliffs, buildings, etc.
- However...

ETA Disadvantages

However, ETA-type model has drawbacks:

- Topography must jump in steps of Δz , even along smooth slopes.
- Need to numerically deal with "corners". W. Gallus showed ETA model generates noise.
- Usually needs more gridpoints (and memory/disk), hence slower physics
- Gridpoints underground can be blocked from computation relatively easily; not as easy to block from memory (could use "less-structured" grid)

Toward a Better Solution...

- ADAP (ADaptive APerature) coordinate
- Mostly following work of Adcroft, *et al* for oceanographic model
- "Shaved" ETA-type coordinate

Standard ETA coordinate

ADAP coordinate

ADAP Features

- Grid structure is a true Cartesian grid.
- The apertures of the grid cell faces are adapted to topography that would block the flow.
- Implemented as an option in RAMS; σ_z still supported because high-resolution slopes is still an issue. Vertically-nested grids can help.
- Same technique can be applied to other types of obstacles: buildings, vegetative canopy, etc.
- Allows very complex shapes (overhangs, tunnels, etc.)
- All components (topography, buildings, vegetation, etc.) can be present in simulation at same time.

RAMS/ADAP Modifications for Very High-Resolution Simulations

- Two-way nested grid communication allows building interaction with "real" weather
- Isotropic turbulence options:
 - Deardorff TKE available for a long time, used in LES runs
 - Recently implemented E-ε and E-I (S. Trini Castelli, CNR, Torino, Italy)
- All model terms must account for partially-closed apertures
- Complete transition of RAMS from finite-difference model to finite-volume model

<u>RAMS/ADAP Very High-Resolution</u> <u>Simulation Examples</u>

- 1) Flow around a single rectangular building (CEDVAL A1-1, Re = 32750)
- 2) Flow through an array of buildings (CEDVAL B1-1, Re = 56390)
- 3) Flow through an array of buildings on a slope

RAMS configuration

- Two grids: $\[x = 10 \] m \& 2 \] m; \[z = 2 \] m, stretched$
- Neutral, horizontally homogeneous initialization
- 5 m/s initial flow; Re 🕚 100
- Deardorff isotropic TKE subgrid scheme

Flow around a single building

CEDVAL A1-1

Flow through buildings on a slope

Flow through buildings on a slope

<u>Normalized Difference Vegetation Index -</u>

- Global 1 km data from USGS
- Monthly April 1992 through March 1993
- Captures first-order seasonal effects

RAMS Land-surface Improvements

NDVI

Normalized Difference Vegetation Index

- Measure of "greenness" of vegetated surface, higher values indicate higher amount of growing vegetation
- Global 1km monthly historical dataset (Apr 1992 Mar 1993) from USGS
- Not real-time, but captures most of first-order seasonal effects
- Now standard input dataset to Land Ecosystem Atmosphere Feedback (LEAF) model – RAMS land surface parameterization
- Implementation of SiB2 algorithms to convert NDVI to:
 - leaf area index
 - roughness length
 - vegetation fraction coverage
 - albedo

 Schemes designed to assist in initialization of model
 Based on previous model runs or "processed" observations

 Primarily intended for use in a operational forecast cycle, but can have some applications in historical reconstruction

Recycle

scheme which recycles prior forecast's fields of unobserved variables to initialize the current run

- Numerous variables required on initialization are not observed
- Ability to specify soil and vegetation properties from previous forecast fields
- Can be extended to any field (clouds, etc.)
- Has been used successfully for soil moisture by several users over the years, but now is a standard option

Antecedent Precipitation Index

scheme which uses past (observed) precipitation to assist in defining the initial soil conditions for the start of a model run

- Stripped-down" RAMS with only soil/vegetation schemes executed
- All atmospheric parameters specified from previous forecast
- Precipitation data specified from observations/radar/satellite
- Example:
 - 0000 UTC forecast time on the 30th
 - Back up to 0000 UTC on the 29th
 - Run RAMS in API mode for 24 hours
 - Initial soil moisture field available for 0000 UTC on 30th
- Provides initial soil moisture and all other soil/vegetation properties
- Can be combined with soil moisture observation assimilation

Cumulus Inversion

scheme which uses past (observed) precipitation rates to compute convective heating and moistening rates

- All atmospheric parameters specified from previous forecast
- Precipitation data specified from observations/radar/satellite
- Convective parameterization is "inverted"
- Usually inputs atmospheric properties and outputs precipitation rate, heating and moistening profiles
- Inverted to input precipitation rate, still outputs heating and moistening profiles
- Intended for coarser grid spacings where convective parameterizations would be used
- Heating/moistening profiles are used in assimilation run (3-6 hours) prior to actual forecast start

Condensate Nudging

scheme which uses prior forecast's condensate to nudge fields during assimilation run

- Prior forecast results of condensate are used in assimilation run (3-6 hours) prior to actual forecast start
- Nudging done similarly to FDDA nudging
- Primarily intended for fog, low/mid-level stratus
- Of course, if forecast is very bad...

RAMS Data Assimilation Schemes

History Initialization ability to start run by defining ALL fields from a previous run

- Designed to allow complete change of grid structure
 - If grids match, direct copy of information; otherwise interpolation
- Primarily intended for use where a large difference exists between grids in original run and new run
- Example:
 - Emergency response system for Japanese nuclear plants
 - Collaboration with Mitsubishi Heavy Industries, Nagasaki
 - Mesoscale forecast run down to 2 km grid
 - High-resolution dispersion run at scale of plant
 - Coarse grid 50m spacing

One-way nest

ability to define fine grid boundaries from a previous run of a coarse grid

- Not intended as replacement where two-way nest can be used
 Nested grid bas no affect on coarse grid
- Nested grid has no affect on coarse grid
- More boundary reflection, requires more smoothing in boundary region than two-way nest
- Example:
 - Emergency response system for Japanese nuclear plants

RAMS FDDA Schemes

Enhanced Analysis Nudging nudges prognosed model fields to a gridded data analysis

 Previous options only allowed specification of nudging strength for all variables and all grids

Option added to vary nudging strength:

- on different nested grids
- for different variables (wind, temperature, moisture, pressure)

RAMS FDDA Schemes

Observational Nudging nudges prognosed model fields "directly" to the observations

- Designed to accommodate range of observations from 12-hour rawinsondes in large-scale runs to sonic anemometers in smallscale runs
- User-specified "update time" when observations are "analyzed" (typically every 15-30 minutes for standard obs)
- Each observation location is queried at update time
- If observation times are "close enough" in time, values are interpolated
- Observations are "analyzed" with 3-D Kriging interpolation scheme which produces variable and covariance fields
- Nudging proceeds with user-specified timescales which can vary by grid and variable

RAMS and Fortran 90

Transition to many F90 features

- free format source code
- f90 memory allocation
- explicit variable typing (IMPLICIT NONE)
- use of MODULEs

 careful use of pointers (some f90 features produce inefficient code)

Fortran 90 Data Types and the A array

- Old way required for memory efficiency in F77 with nested grids....
- Compute total memory for all variables, all grids: ALLOCATE (A(tot_mem))
- Compute separate variable indices: IUP=f(nnxp,nnyp,etc...) CALL COMPUTE_SUB(nzp,nxp,nyp,a(iup))

SUBROUTINE COMPUTE_SUB(n1,n2,n3,up) REAL UP(N1,N2,N3)

Fortran 90 Data Types and the A array

- New way F90 pointers and user-defined data types (similar to C structures)
- Define data types in an F90 module:
 - MODULE wind_arrays TYPE WIND_MEMORY
 - integer, dimension(maxgrds) :: nnxp,nnyp,nnzp
 - real, pointer, dimension(:,:,:) :: up,vp,wp
 - END TYPE
 - END MODULE
- Declare new data type: TYPE(wind_memory) :: winds(ngrids)
- Allocate pointer arrays:
 - ALLOCATE (winds(ngrid)%up(nnzp(ngrid),nnxp(ngrid),nnyp(ngrid)))

Near Future Plans

- Continued F90 transition
- Additional convective parameterizations (Kain-Fritsch, Grell)
- RRTM longwave radiation scheme
- TEB urban canopy?
- Integrated dispersion model (online and offline HYPACT)
- Various chemical modules (mercury, sulphur, etc.)
- Biomass burning source model
- Global capabilities being transferred to companion model
 - OLAM (Ocean-Land-Atmosphere Model) under development at Duke
 - Difficult to covert mesoscale model to global model directly
 - Numerics must conserve everything exactly for long-term simulation
 - OLAM has different formulation for numerics, unstructured adaptive grid
 - Will use same RAMS physics code
 - Farther future RAMS will covert to OLAM grid structure

ATMET's Current and Recent Air Quality Related Projects

- With ENVIRON
 - TNRCC Houston/Galveston, Sep 1993
 - Several projects with MM5 and RAMS comparisons down to 1.33 km grids. Detailed MM5 sensitivity tests.
 - BAAQMD Bay Area, CCOS, Jun-Aug, 2000
 - RAMS simulations for two CCOS episodes down to 1 km grid, along with sensitivity tests. Delivery of hardware/software system.
 - HARC Houston/Galveston, TexAQS, Aug 2000
 - MM5 runs for the Aug episode, with extensions of our sensitivity tests we performed for 1993 episode.

ATMET's Current and Recent Air Quality Related Projects

With Alpine Geophysics

- EPA annual/episodic runs for 2001
 - MM5 runs for episodic regional simulations with some sensitivity tests

TNRCC

- Houston/Galveston, TexAQS, Aug 2000
 - RAMS runs for TexAQS Aug episode with various sensitivity tests to compare with previous and ongoing MM5 simulations.

- In conjunction with ENVIRON under TNRCC funding, RAMS and MM5 meteorological simulations were performed for the period 6-11 September 1993 for Houston/Galveston
 - MM5 was run in both:
 - 3-grid configuration (4 km finest grid)
 - 4-grid configuration (1.33 km finest grid).
- Statistical verification results of MM5 were acceptable
- Examination of the MM5 meteorological fields, several undesirable features were apparent. The most notable of these features were:
 - Consistent under-prediction of the sea breeze development
 - Under-prediction of surface wind speeds over land during the day
 - Creation of explicit, grid-scale thunderstorms (even on a 4km grid) which generated very strong outflows. These outflows were so strong at times that the low-level wind field was completely disrupted.

MM5 Sensitivity Tests

100 W

P0 W

80 W

40 N

80 N

Grid	# of X points	# of Y Points	Vertical Levels	$\Delta x/\Delta y$ (km)	
1	72	66	41	36	7
2	139	124	41	12	
3	139	118	41	4	
4	127	118	41	1.33	

- Sensitivity simulations for the 24-hour period of 0000 UTC 8 September 1993 to 0000 UTC 9 September 1993.
- More than 20 different simulations were performed in the process of investigating the sensitivity of the MM5 results to various parameterizations, options, and grid resolution.
- Series of experiments categorized as:
 - control simulations
 - PBL tests
 - microphysics tests
 - FDDA tests
- FDDA not used on most of these runs. 24 hour runs should not need it!

Run tag	No. grids	Dura- tion	Micro- physics	Cu parm	PBL	Bucket scheme	Shal- low cu	Iz0topt	Imvdif	FDDA grid ndgng
Runorig4	4	4 days	Schultz	Grell	G-S MY	NO	NO	NA	NA	YES BL, UA
Runold2	2	24 hrs	Schultz	Grell	G-S MY	NO	NO	NA	NA	NO
Runa	2	24 hrs	Simple ice	KF2	MRF	YES	NO	0	1	NO
Runa4	4	24 hrs	Simple ice	KF2	MRF	YES	NO	0	1	NO
Runb	2	24 hrs	Reis1	KF2	MRF	YES	NO	0	1	NO
Runc	2	24 hrs	Reis 1	KF2	G-S MY	YES	NO	NA	NA	NO
Rund	2	24 hrs	Reis1	KF2	ETA MY	YES	NO	NA	NA	NO
Runold4	4	24 hrs	Schultz	Grell	G-S MY	NO	NO	NA	NA	NO
Rune	3	24 hrs	Reis1	KF2	ETA MY	YES	NO	NA	NA	NO
Runf	3	24 hrs	Reis1	KF2	MRF	YES	YES	0	1	NO
Runf2	3	24 hrs	Reis1	KF2	MRF	YES	NO	0	1	NO
Rung	3	24 hrs	Reis1	KF2	MRF	YES	YES	2	0	NO
Runh	3	24 hrs	Reis1	KF2	MRF	YES	YES	2	1	NO
Runi	3	24 hrs	Reis1	KF2	ETA MY	YES	YES	NA	NA	NO

Run tag	No. grids	Dura- tion	Micro- physics	Cu parm	PBL	Bucket scheme	Shal- low cu	Iz0topt	Imvdif	FDDA grid ndgng
Runj	3	24 hrs	Reis 1	KF2	G-S MY	YES	NO	NA	NA	NO
Runj2	3	24 hrs	Reis 1	KF2	G-S MY modified	YES	NO	NA	NA	NO
Runk	3	24 hrs	Reis 1	KF2	Blacka- dar	YES	NO	NA	NA	NO
Runl	3	24 hrs	Simple ice	KF2	MRF	YES	NO	0	1	NO
Runm	3	24 hrs	Reis 2	KF2	MRF	YES	NO	0	1	NO
Runn	3	24 hrs	Schultz	KF2	MRF	YES	NO	0	1	NO
Runo	3	24 hrs	Reis 1	KF2	G-S MY	YES	NO	NA	NA	YES BL, UA
Runnew4	4	4 days	Reis 1	KF2	MRF	YES	NO	0	1	YES UA ONLY
Runnew3	3	4 days	Reis 1	KF2	MRF	YES	NO	0	1	YES UA ONLY
Runnew4b	4	4 days	Reis 1	KF2	MRF	YES	NO	0	1	YES UA>.85

MM5 Sensitivity Tests

6 hr precipitation over grid 3 valid at 1800 UTC 8 September for:

a) with FDDA and GS

b) no FDDA and GS.

MM5 Sensitivity Tests Dataset: gr3 RIP: pbl3 Fcst: 24.00 Total precip. in past 6 h Total precip. in past 6 h Horizontal wind vectors Valid: 0000 UTC Thu 09 Sep 93 (1900 CDT Wed 08 Sep 93) at sigma = 0.999 1 000 16.4 V L 000 110 b) GS pbl 100 6-hr precipitation on grid 3 at L 000 ar 0000 UTC 9 September 30 N 50 Dataset: gr3 RIP: pbl3b Init: 0000 UTC Wed 08 Sep 93 Valid: 0000 UTC Thu 09 Sep 93 (1900 CDT Wed 08 Sep 93) Dataset: gr3 RIP: pbl3b Fest: 24.00 Total precip. in past 6 h Total precip. in past 6 h Horizontal wind vectors Init: 0000 UTC Wed 08 Sep 93 Valid: 0000 UTC Thu 09 Sep 93 (1900 CDT Wed 08 Sep 93) H Fest: 24.00 Total precip. in past 6 h Total precip. in past 6 h Horizontal wind vectors 30 at sigma = 0.999 at sigma = 0.99920 H 22.3 Li fi 6.0P 2.12 L 00 H 3.81 11 11 50 60 70 60 90 BARB VECTORS: FULL BARB - 5 m s⁻¹ LOT- 0.00000E+00 HIGH- 96.000 100 110 100 Т. 00 DATER VAL # 000 100 90 Init: 0000 UTC Wed 08 Sep 93 Valid: 0000 UTC Thu 09 Sep 93 (1900 CDT Wed 08 Sep 93) Dataset: gr3 RP: pbl3h Fost: 24.00 Total precip. in past 6 h Total precip. in past 6 h Horizontal wind vectors RIP: pbl3b H 4.47 A 10 N 80 30 N \$ at sigma = 0.999 20 60 L 00 110 L 00 L 00 H 00 100 **9**0 H 00 30 N **6**0 K 70 H 30 50 70 50 90 100 110 120 BABB TRCT058: FULL BARE - 5 m s⁻¹ 60 10 20 30 40 130 20 20 30 40 50 50 70 50 90 100 110 120 130 BARB TSCTORS: FULL BARB - 5 m s⁻¹ CONTOURS: UNITS-max. LOT - 0.00000E HORE - 56.000 INTERVAL- 5.0000 10 50 20 25 30 35 40 45 50 55 60 65 70 15 10 15 20 25 45 50 30 40 Model info: V3.5.0 No Cumulus Eta PEL Reisner 1 4 km, 40 lavels, 12 sec 40 Model info: V3.5.0 No Cumulus MRF PEL Reisner 1 4 km 40 levels 12 880 30 d) ETA MY pbl a) MRF pbl 20 20 30 40 50 50 70 80 90 100 110 120 130 BARB<TRCTORS:</td> FULL BARS 5 m.s⁻¹ 300 100 110 120 130 CONTOURS: UNTER-mma. LUT = 0.0000 EVEN 00.000 HIGH= 80.000 INTERVAL 5.0000 10 c) Blackadar pbl 10 15 20 25 30 35 40 45 50 5

Model info: V3.5.0 No Cumulus Blackadar Reisner 1 4 km, 40 levels, 12 sec

MM5 Sensitivity Tests

PBL height – 1800 UTC

MM5 Sensitivity Tests

PBL height – 1800 UTC

The cause of the convection:

- GS and ETA TKE schemes not mixing heat upward from the surface fast enough.
- Larger than realistic superadiabatic layer near surface was maintained.
- Non-hydrostatic dynamics creates positive buoyancy tendency.
- If boundary layer depth reaches significant fraction of horizontal grid spacing, grid-scale "thermals" develop. These are larger and stronger than realistic.
- FDDA nudging acts as horizontal numeric filter, forcing circulations to even larger scale.
- Resolved deep convection is produced.

- Under-prediction of surface wind speed: Low bias for the surface wind speed is primarily controlled by the PBL scheme as it interacts with the land surface scheme.
- Lack of sea breeze circulations: The lack of good sea breeze development in the previous simulations was caused by a combination of three things:
 - estimating the sea surface temperature from the lowest atmospheric level temperature
 - the over-development of grid-scale convective cells whose cold surface outflow both overwhelmed and thermally suppressed any developing sea breeze circulations
 - using the FDDA analysis nudging through the entire depth of the atmosphere.

- Recommendations:
 - Gayno-Seaman scheme should not be used at higher resolutions without further testing
 - Non-hydrostatic dynamics should be further tested in situations where non-hydrostatic effects are *expected* to occur.
 - Testing of the OSU/NCEP ETA and Pleim-Xu Land Surface Model (LSM) schemes.
 - FDDA should be used with caution.
 - The grid nudging parameters should be tested and adjusted for the smaller grid scales.
 - Use of the FDDA observation nudging scheme should be considered. Observation nudging may be more appropriate for smaller scales. But still, many parameters should be tested and adjusted.