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Recent Improvements in Aerodynamic Design
Optimization on Unstructured Meshes

Eric J. Nielsen¤ and W. Kyle Anderson†

NASA Langley Research Center, Hampton, Virginia 23681-2199

Recent improvements in an unstructured-grid method for large-scale aerodynamic design are presented. Pre-
vious work had shown such computations to be prohibitively long in a sequential processing environment. Also,
robust adjoint solutions and mesh movement procedures were dif� cult to realize, particularly for viscous � ows.
To overcome these limiting factors, a set of design codes based on a discrete adjoint method is extended to a
multiprocessor environment using a shared memory approach. A nearly linear speedup is demonstrated, and the
consistency of the linearizations is shown to remain valid. The full linearization of the residual is used to pre-
condition the adjoint system, and a signi� cantly improved convergence rate is obtained. A new mesh movement
algorithm is implemented, and several advantages over an existing technique are presented. Several design cases
are shown for turbulent � ows in two and three dimensions.

Nomenclature
c = chord
cl , cd = lift and drag coef� cients
D = vector of design variables
f = cost function
I = identity matrix
L = Lagrangian function
Q = vector of dependent variables
R = discretized residual vector
t = time
u, v = nodal displacements
V = volume of control volume
V = vector of nodal displacements
X = computationalmesh
3 = vector of costate variables
º = Poisson’s ratio
! = cost function weight
¤ = target value

Introduction

W ITH the advent of modern computer architectures, aerody-
namic designers have sought to make use of high-� delity

computational � uid dynamics codes in their everyday design ef-
forts. Although considerable progress has been made toward this
goal, realistic use of such tools remains hindered by the extreme
computationalburden associated with such an endeavor.

Much focus has recently been placed on design algorithms. In
the area of gradient-based optimization, research has focused on
several methods for obtaining sensitivity information, and many of
these approaches rely on an adjoint-variable formulation for ef� -
ciently computing sensitivity derivatives. The adjoint technique is
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particularly attractive for aerodynamic design problems in which
there are a large number of design variables,yet relatively few con-
straints. Examples of both continuous and discrete approaches to
this method can be found in Refs. 1–10.

In Refs. 1–4 a discrete adjoint technique has been implemented
on unstructured grids for two- and three-dimensional � ows. This
work was primarily aimed at performing accurate linearizationsof
Reynolds-averaged Navier–Stokes solvers, using both compress-
ible and incompressible formulations. Results indicated highly ac-
curate sensitivity information for fully turbulent � ows. However,
the cost of such computations in a sequential-processing environ-
ment prevented large-scale design cases from being pursued. The
preconditioning strategy used for the adjoint system in these ref-
erences was based on a � rst-order linearization of the residual and
often led to poor convergencerates. In addition, experienceshowed
that the combination of a distance function approach and tension-
springanalogyused formesh movementwas insuf� cientwhen large
changes in the geometry were necessary. This procedure was also
intolerant of initial meshes with poor quality.

In the current work the linearizationsdeveloped in Refs. 1–4 are
modi� ed to run in a parallel-processingenvironment. The domain
decomposition and parallelization strategies are discussed, result-
ing speedups are demonstrated, and the linearizationsare shown to
remain consistent. A new preconditioning strategy for the adjoint
solver is implemented, and signi� cantly improved convergence is
demonstrated for turbulent � ow. A new mesh movement strategy
based on modi� ed linear elasticity theory is also adopted, and sev-
eral advantagesover the preceding approach are presented.Several
design cases are also shown.

Design Methodology
Flow Equations

The governing� ow equationsare the Reynolds-averagedNavier–
Stokesequations,11 coupledwith theone-equationturbulencemodel
of Spalart and Allmaras.12 The � ow solvers used in the current
work are described at length in Refs. 4, 13, and 14. The codes
use an implicit, upwind, � nite volume discretization on tetrahe-
dral grids, in which the dependent variables are stored at the mesh
vertices. Inviscid � uxes at cell interfaces are computed using the
upwind schemes of Roe,15 van Leer,16 or Osher (see Ref. 17). Vis-
cous � uxes are formed using an approach equivalent to a central-
differenceGalerkinprocedure.Temporaldiscretizationis performed
using a backward-Euler time-stepping scheme. The meshes used
in this study have been generated using the software described in
Refs. 18 and 19.

An approximatesolutionof the linear systemof equationsformed
at each time step is obtained using several iterations of a point-
iterative scheme in which the nodes are updated in an even-odd
fashion, resulting in a Gauss–Seidel-type method.
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1156 NIELSEN AND ANDERSON

The turbulencemodel is solvedseparatelyfrom the � owequations
at each time step, using a backward-Euler time-stepping scheme.
The resulting linear system is solved using the same point-iterative
scheme employed for the � ow equations. The turbulence model
is integrated all of the way to the wall without the use of wall
functions.

Adjoint and Design Equations
Given a steady-state � ow solution in the form of R.D, Q, X/ D 0,

a Lagrangian function can be de� ned as

L.D; Q; X; 3/ D f .D; Q; X/ C 3T R.D; Q; X/ (1)

where f .D; Q; X/ represents a cost function to be minimized and
3 represents a vector of Lagrange multipliers or costate variables.
Differentiating this expression yields the following:
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Because the vector of costate variables is essentially arbitrary, the
coef� cient multiplying [@Q=@D]T can be eliminated using the fol-
lowing equation:
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Equation (3) represents the discrete adjoint equation for the design
problem. Once the solution for 3 has been formed, the remaining
terms in Eq. (2) can be evaluated to give the desired sensitivity
information:
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The adjoint equation given in Eq. (3) represents a linear set of
equations for the costate variables 3. Although this system can be
solved directly using the generalized minimal residual (GMRES)
algorithm,20 a time-like derivative is added, and the solution is ob-
tained by marching in time, much like the � ow solver:
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where

3n C 1 D 3n C 13n (6)

The time term can be used to increase the diagonal dominance for
cases in which GMRES alone would tend to stall. This ultimately
results in a more robust adjoint solver.

In Refs. 1–5 an incomplete lower/upper (LU) decomposition of
the matrix obtained from a � rst-order-accuratediscretizationis used
to preconditionthe linear system. The preconditioningis appliedon
the left, and no � ll-in is allowed (ILU[0]).21

Domain Decomposition Methodology
In the currentwork the mesh partitionerMeTiS22 is used to divide

the original mesh into subdomains suitable for a parallel environ-
ment. Given the connectivities associated with each node in the
mesh and the number of partitions desired, MeTiS returns an array
that designates a partition number for each node in the mesh. The
user is then responsible for extracting the data structures required
by the speci� c application.

Because of the gradient terms used in the reconstruction proce-
dure, achieving second-order accuracy in the � ow solver requires
information from the neighbors of each mesh point as well as the
points adjacent to these neighbors. In the present implementation
the gradients of the dependent variables are � rst computed on each

Fig. 1 Information required beyond partition boundaries.

mesh partition, and then the results are scattered onto neighboring
partitions.This approachdictates that a single levelof “ghost”nodes
be stored on each processor. These ghost nodes that are connected
to mesh points on the current partition are referred to as level-1
nodes. Similarly, the neighbors of level-1 nodes that do not lie on
the current partition are designated level-2 nodes. This terminology
is illustrated graphically in Fig. 1.

The adjoint solver requires similar information; however, unlike
the � ow solver, residual contributions must be written into off-
processor memory locations associated with level-2 mesh points.
This implies that a second level of ghost information must be re-
tained along partition boundaries.

Software has been developed to extract the required information
from a preexistingmesh based on the partitioningarray providedby
MeTiS. This domain decompositionoperation is done prior to per-
forming any computations. The user is also able to read in existing
subdomainsand their correspondingsolution � les and repartitionas
necessary. This capability is useful in the event that additional pro-
cessors become available or processors currently being employed
must be surrendered to other users. In addition, software has been
developed that reassembles partition information into global � les
and aids in postprocessingthe solutions.

Parallelization Strategy
Each of the codes has been modi� ed to run in a multiprocessor

environmentusinga sharedmemory implementation.This approach
has been chosen because the primary hardware to be utilized is
a Silicon Graphics Origin 2000 system. In the current implemen-
tation ghost information is exchanged across partition boundaries
by loading data into global shared arrays, which are accessible
from each processor. Simple compiler directives speci� c to the
Origin 2000 system are used to spawn child processes for each
partition in the mesh. This approach scales well and is readily ex-
tendable to a message-passing or OpenMP (data available on-line
at http://www.openmp.org) implementation. The convergence rate
of the � ow solution is independent of the number of processors,
whereasthe convergenceof theadjoint solvervariesslightlybecause
the preconditioneris only applied locally on each mesh partition.

The speedupobtainedbyparallelizingthe � ow and adjointsolvers
is demonstratedin Fig. 2. It canbe seen that a nearly linearspeedupis
obtainedfor a � xed-sizeproblem.For this test turbulent� ow over the
ONERA M6 wing shown in Fig. 3 is computed. The mesh contains
359,536 nodes with a wall spacing of 2 £ 10¡6 of the mean aerody-
namic chord (MAC). The surface mesh consists of 9129 nodes.

To verify that the linearizations performed in Refs. 1–4 have
remained consistent through the port to the parallel environment,
sensitivity derivatives obtained using the parallel solvers on eight
processors are compared with centered � nite differences. Here,
turbulent � ow over an ONERA M6 wing is computed using a
freestream Mach number of 0.3, an angle of attack of 2 deg, and a
Reynolds number of 5 £ 106 based on the MAC. The mesh used for
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Fig. 2 Parallel speedup obtained for the � ow and adjoint solvers.

Fig. 3 Surface mesh for viscous ONERA M6 wing.

Fig. 4 Location of design variables for ONERA M6 wing.

this case consists of 16,391 nodes. All results have been converged
to machine accuracy, and a step size of 1 £ 10¡5 has been used for
the � nite difference computations. For this case the cost function
takes the following form, with !1 D 1, !2 D 10, and the target lift
coef� cient set to the baseline value:

f D !1

¡
cl ¡ c¤

l

¢2 C !2c
2
d (7)

The design variables generated using the software described in
Ref. 23 are depicted in Fig. 4. This geometric parameterization

Table 1 Sensitivity derivatives for turbulent � ow over
ONERA M6 wing computed in parallel

Design variable Finite difference Adjoint Percent error

Camber 3 2.7762 2.7763 0.004
Thickness 4 ¡0.03970 ¡0.03971 0.025
Twist 4 0.00747 0.00747 0.000
Shear 1 0.62023 0.62050 0.044

Fig. 5 Convergence of the adjoint solution for different precondi-
tioners.

scheme utilizes a free-form deformation technique similar to that
used in the motion picture industry for animating digital images.
Here, a Bezier net describing the changes in the geometry is placed
around the baselinemesh. The control points in the net may be used
directly as the design variables, or they may be further grouped into
design variables such as camber, thickness,and twist. It can be seen
from Table 1 that the derivativesincorporatingthis parameterization
scheme are highly consistent.

Adjoint Preconditioning Scheme
In Refs. 1–5 a preconditionedGMRES algorithm has been used

to solve Eq. (3). In these references an incomplete LU factorization
with no � ll-in allowed [ILU(0)] is employed as the preconditioner.
The factorizationis basedon the � rst-orderlinearizationof the resid-
ual, thereby avoiding excessive storage penalties associated with
the higher-orderstencil for the inviscid � uxes. It has been shown in
Ref. 4 that the GMRES algorithm might stall, and a converged ad-
joint solution could be dif� cult to obtain using this preconditioner,
particularly for viscous � ows. This has been found to be the case
for both two- and three-dimensionalproblems.

In an effort to develop a more robust adjoint solver, an improved
ILU(0) preconditioningtechnique based on the complete lineariza-
tion of the residual is employed in the current work. As shown
in Ref. 24, the additional memory required for storing the com-
plete linearization is roughly four times that of the � rst-order ma-
trix for three-dimensionalproblems.This requirementcan be some-
what alleviated by utilizing half-precision storage for these terms.
As described in Refs. 3 and 4, the linearizations required for the
matrix-vector products in the GMRES algorithm are stored for the
nearest-neighborterms; these linearizationsare also stored in half-
precision in the current work. Experiments have shown that this
strategy yields a total memory requirementof about 50% more than
the earlier version of the adjoint solver.

To demonstrate the improvedperformanceusing the higher-order
preconditioner,adjoint solutionsare computed in parallel for turbu-
lent � ow over the ONERA M6 wing shown in Fig. 3 using eight
processors. The freestream Mach number is 0.84, the angle of at-
tack is 3.06 deg, and the Reynolds number is 5 £ 106 based on the
MAC. For this case 10 GMRES cycles are used with 10 search
directions and 5 restarts.Results for the � rst- and second-orderpre-
conditioning strategies are shown in Fig. 5. It can be seen that the
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solver based on the � rst-order preconditioner fails to converge the
solution,whereas the method employing the complete linearization
steadily reduces the residual by nearly � ve orders of magnitude.

Mesh Movement Strategy
As stated in Refs. 1–5, a combination of a distance function ap-

proach and a tension-springanalogy has previously been employed
as a means for modifying volume meshes as the geometric shape
is changed throughout the design process. It has been found that
this algorithm lacks the robustness necessary for the design envi-
ronment, particularly for large surface deformations, meshes with
highly distorted cells, and essentially all three-dimensionalgeome-
tries. For this reason, a new approach based on modi� ed linear
elasticity theory has been implemented.

In the approach taken in the current work, it is assumed that the
computational mesh obeys the isotropic linear elasticity relations,
which take the following form in two dimensions25:

r2u C 1

1 ¡ 2º

@

@x
r ¢ V D 0 (8)

r2v C 1
1 ¡ 2º

@

@y
r ¢ V D 0 (9)

where the nodal displacementvector is given by V D u Oi C v Oj. These
equations are solved over a small series of surface increments in
moving from the initial to � nal surface locations; � ve steps are typi-
cally used in a design setting.Despite the assumptionof an isotropic
material, a spatially varying value of Poisson’s ratio is used in order
to maintain the physical integrity of highly skewed cells. This value
has been chosen based on heuristicsand is set so that the coef� cient
1=.1 ¡ 2º/ is equal to the aspect ratio of the localcell. In this manner
low-aspect-ratio cells mimic compressible materials such as cork,
whereas high-aspect-ratiocells tend to behave in an incompressible
fashion, much like rubber. Because the nodes on the surface are
constrained, the high-aspect-ratio cells in the near-wall region are
not susceptible to compression. A similar mesh movement scheme
has also been utilized in Ref. 26. Here, anisotropyin Poisson’s ratio
is achieved by neglecting the Jacobian associated with the trans-
formation between physical and computational coordinates. In this
manner Poisson’s ratio is implicitly determined by the cell volumes
so that small cells deform less.

To illustrate the advantage over the distance function/tension-
spring analogy, the � ap on a multielement airfoil has been de� ected
15 deg, and each of the mesh movement strategieshas been applied.
Figure 6 shows a near-� eld view of the baseline mesh in the region
between the main element and � ap. Figures7 and 8 show the meshes
resulting from the distance function/tension-spring and elasticity
methods,respectively.The distancefunction/tension-springanalogy
allows gaps to form in the mesh, whereas the elasticity approach
pulls in nearby material to � ll the voids.

The dif� culty in moving a grid as it becomes increasingly dis-
tortedpersists,althoughithasbeenfoundthat theelasticityapproach
does allowfor signi� cantly largergeometric deformations.In a sim-
ilar test the � ap of a multielement airfoil has been de� ected from

Fig. 6 Near-� eld view of baseline mesh.

Fig.7 Near-� eld viewofmesh afterapplyingdistance function/tension-
spring analogy.

Fig. 8 Near-� eld view of mesh after applying modi� ed linear elasticity
method.

Fig. 9 Near-� eld view of mesh with � ap in baseline position.

its baseline position shown in Fig. 9. As can be seen from Figs. 10
and 11, the distance function/tension-spring approach has yielded
an invalid mesh, whereas the elasticity formulation has handled the
deformation in an acceptable manner. Similarly, when a series of
� ap translations and rotations is applied to the geometry shown in
Fig. 12 the meshes resulting from the elasticity technique maintain
a high degree of quality as shown in Fig. 13.

To further quantify the differences between the two mesh move-
ment schemes, derivativesof lift and drag due to horizontal transla-
tionsof a main element and � ap are examined. Ideally,the derivative
due to a translationof the � ap shouldbe equal and oppositein sign to
a derivativedue to an equal and opposite translationof the main el-
ement. In practice, however, this relationship is affected by changes
in the topologyof the mesh becauseof the manner in which it varies
during a shape modi� cation.5
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Table 2 Derivatives of lift and drag due to
� ap and main element translation using the

distance function/tension-spring analogy

Derivative xmain x� ap

P
x

@cl=@x ¡1.4785 2.4033 0.9248
@cd =@x 0.0183 0.0277 0.0460

Fig. 10 Near-� eld view of mesh with � ap rotated using the distance
function/tension-spring analogy.

Fig. 11 Near-� eld view of mesh with � ap rotated using modi� ed linear
elasticity method.

Fig. 12 Mesh with � ap in baseline position.

To demonstrate this behavior, derivatives of lift and drag due to
equal and opposite horizontal translations of the main element and
� ap on the two-elementairfoil shown in Fig. 14 havebeen computed
for a turbulent � ow. For this case the freestream Mach number is
0.25, the Reynolds number is 9 £ 106, and the angle of attack is
5 deg.

Table 2 shows the lift and drag derivatives due to translations of
the main element and � ap using the distancefunction/tension-spring

Table 3 Derivatives of lift and drag due to
� ap and main element translation

using linear elasticity

Derivative xmain x� ap

P
x

@cl=@x ¡3.8064 3.8671 0.0607
@cd =@x 0.1722 ¡0.1615 0.0107

Fig. 13 Mesh with � ap translated D x/c = 0.02 and rotated §§ 15 deg.

Fig. 14 Geometry used for translation derivatives.

analogy, and the last column is the sum of these two derivatives,
which ideally would be zero. However, it can be seen from the
table that the derivatives are not at all equal in magnitude, and the
drag derivatives are not even of opposite sign. This inconsistency
would be expected to have an adverse effect on an optimization
procedure. Table 3 shows the same derivatives obtained using the
linear elasticity formulation.Although these derivativesdo not sum
exactly to zero, they do exhibit opposite signs and are much closer
in magnitude.This tendencyhas been observed in several cases and
indicates that the linear elasticity formulation maintains the mesh
topology in a more consistent fashion.

As an example of the elasticity formulation in three dimensions,
the surface grid in Fig. 3 has been perturbed as shown in Fig. 15,
and the mesh has been shifted over a series of 10 increments to
conformto the � nal surface.For such domainsemployingsymmetry
planes the mesh points on these boundaries are constrained to in-
plane motion. In this case the maximum cell aspect ratio in the
grid has increased from 2,265,487 to 3,971,343, and the minimum
cell volume has remained constant at a value of 6 £ 10¡14 . The
computational time required for the current test was approximately
30% of a transonic turbulent � ow solution on the same grid.
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Fig. 15 Demonstration of modi� ed linear elasticity mesh movement
capability for viscous ONERA M6 grid.

Design Cases
Recovery of Experimental Flap Con� guration

The � rst test case is a two-dimensionalturbulent� ow problemfor
whicha targetpressuredistributionis sought.An experimentalstudy
of themultielementairfoilgeometryshownin Fig. 16was previously
performed, and it can be seen from Fig. 17 that computations using
the baseline geometry are in disagreement with the experimental
results. The model used in the experiment had a nonuniform gap
and overlap across the span, and the � ap de� ected at high dynamic
pressures.The goalof thecurrentwork is to determinea newposition
of the � apusingthe pressuredistributionobtainedin the experiment.
The improved mesh movement capability just described allows for
the � ap adjustment required by such a problem.

The freestreamMach number is 0.7, the angle of attack is 1.5 deg,
and the Reynolds number is 30 £ 106. For this case the design vari-
ables are the rotation and x and y translationsof the � ap. After � ve
design cycles the � ap has been rotated 3.5 deg and repositioned
as shown in Fig. 16, although very little change has occurred after
the � rst design cycle. It can be seen from Fig. 17 that the resulting
agreement with the experimental results is signi� cantly improved.
Although not shown, an angle-of-attacksweep veri� es that the new
position of the � ap improves the agreement with the experiment
across the range of angles of attack.

Turbulent Flow over ONERA M6 Wing
A turbulent � ow wing optimization is performed using the

ONERA M6 mesh shown in Fig. 3. The freestream Mach num-
ber is 0.84, the angle of attack is 3.06 deg, and the Reynoldsnumber
is 5 £ 106 based on the MAC. For these conditions the baseline
geometry exhibits a swept shock extending from the root leading
edge and a strong normal shock further aft as shown in Fig. 18. The
objective for this example is to reduce drag while maintaining the
initial value of lift. The weights !1 and !2 in Eq. (7) are set to 1 and
10, respectively.The 20 shapedesign variablesare shown in Fig. 19,
and the angle of attack is also allowed to vary. The design case has
been run using approximately three days of wall-clock time on 12
processors of an Origin 2000 system.

Cross sections of the initial and � nal geometries can be seen
in Fig. 20. After � ve design cycles the drag coef� cient has been
decreasedby 15%from0.0168to 0.0142,whereasthe lift coef� cient
has maintained its baseline value of 0.253. Pressure distributions at
several locations across the span of the wing are shown in Fig. 21,
and density contours for the � nal geometry are shown in Fig. 22. It
can be seen that the normal shock has been weakened considerably,
particularly in the outboard section of the wing.

Turbulent Flow over Multielement Wing
To handle an arbitrarynumber of three-dimensionalelements pa-

rameterized by the package described in Ref. 23, software has been
developed to combine multiple bodies that employ independent

Fig. 16 Baseline and modi� ed geometries for multielement airfoil
problem.

Fig. 17 Pressure distributions for multielement airfoil problem.

Fig. 18 Density contours for the baseline geometry.

Fig. 19 Location of design variables for ONERA M6 wing.
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Fig. 20 Cross sections of the inital and � nal wing geometries.

Fig. 21 Pressure distributions for the initial and � nal wing geometries.

parameterizations. To evaluate this capability, the baseline airfoil
depicted in Fig. 16 is extruded in a spanwise direction to create a
5-deg swept wing as shown in Fig. 23. The surface grid shown con-
tains 31,229 nodes, and the volume mesh consists of 843,385nodes
and4,796,360tetrahedra.The adjointsolverrequiresroughly12 GB
of storage for the current example.

For this case the main element and � ap are parameterized sep-
arately using camber values at the locations shown in Fig. 24. In

Fig. 22 Density contours for the � nal geometry.

Fig. 23 Surface mesh for multielement wing.

Fig. 24 Location of design variables for multielement wing.

addition to these shape parameters, the de� ection as well as the
vertical and streamwise positioning of the � ap are used as design
variables. The angle of attack is also allowed to vary for a total
of 34 design variables. The objective is to reduce the drag while
maintaining the baseline lift by setting !1 and !2 in Eq. (7) to
1 and 10, respectively. The freestream Mach number is 0.75, the
baseline angle of attack is 2.81 deg, and the Reynolds number is
6:2 £ 106.
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The design case has been run using 16 processors of an Origin
2000 system and required approximately six days of wall-clock
time. After � ve design cycles the drag coef� cient has been reduced
from0.0399to 0.0378,whereasthe lift coef� cienthasmaintainedits
original value of 0.437. Cross sections of the baseline and modi� ed
geometries can be seen in Fig. 25, whereas pressure distributions
are shown in Fig. 26. The � ap has been repositioned and can be
seen to carry a reduced loading,which has been compensatedby an
increase in camber across the main element.

Fig. 25 Cross sections of the initial and � nal wing geometries.

Fig. 26 Pressure distributions for the initial and � nal wing geometries.

Summary
An unstructured mesh design methodology based on a discrete

adjointformulationhas been extended to a multiprocessingenviron-
ment using domain decomposition and a shared memory approach.
The parallel implementation has been shown to scale well while
yielding discretely consistent sensitivity information.

A preconditioning scheme based on the complete linearization
of the residual has been demonstrated for adjoint computations.
Although the new strategy requires an increasedamount of memory
as a result of the larger stencil, it has been found to give superior
convergence rates and hence better reliability.

An improved mesh movement capability has been developed us-
ing an approach based on linear elasticity relations. In the current
work the scheme is modi� ed to use a spatially varying value of
Poisson’s ratio to account for highly skewed cells. The new proce-
dure yields a robust technique, which maintains the mesh topology
in a more consistent fashion than a preceding distance function/
tension-springanalogy.

Severaldesignexampleshavebeenpresented,which demonstrate
the improved capability of the current implementation. Reduced
turnaround time combinedwith an increased level of robustnesshas
enabled previously impractical problems to be addressed.
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