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Abstract. Diffusion approximations to radiation transport feature a nonlinear conduction co-
efficient that leads to formation of a sharp thermal front, or Marshak wave, under suitable initial
and boundary conditions. The thermal front can vary several orders of magnitude over a very short
distance. Resolving the shape of the thermal front is essential, but using a global fine mesh can
be prohibitively expensive. In such circumstances it is natural to consider using adaptive mesh re-
finement (AMR) to place a fine mesh only in the vicinity of the propagating front. In addition, to
avoid any loss of accuracy due to linearization, implicit time integration should be used to solve
the equilibrium radiation diffusion equation. Implicit time integration on AMR grids introduces a
new challenge, as algorithmic complexity must be controlled to fully realize the performance benefits
of AMR. A Newton-Krylov method together with a multigrid preconditioner addresses this latter
issue on a uniform grid. A straightforward generalization is to use a multilevel preconditioner that is
tuned to the structure of the AMR grid, such as the Fast Adaptive Composite grid (FAC) method.
We describe the resulting Newton-Krylov-FAC method and demonstrate its performance on simple
equilibrium radiation diffusion problems.
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1. Introduction. Radiation transport plays an important role in numerous
fields of study, including astrophysics, laser fusion, and combustion applications such
as modeling of coal-fired power generation systems and wildfire spread. A diffusion
approximation provides a reasonably accurate description of penetration of radiation
from a hot source to a cold medium. This approximation features a nonlinear con-
duction coefficient that leads to formation of a sharp thermal front, in which the
solution can vary several orders of magnitude over a very short distance. The shape
of the thermal front can be very complex as it interacts with different materials having
different conduction properties. Resolving these localized features with a global fine
mesh can be prohibitively expensive. It is natural to consider reducing the cost of
accurately resolving these thermal fronts by using adaptive mesh refinement (AMR),
which concentrates computational effort by increasing spatial resolution only locally.

Classical solution techniques for equilibrium radiation diffusion use a linearized
conduction coefficient to avoid the expense of solving a system of nonlinear equations
at each time step. This introduces a first order error in time, precluding effective
use of higher order time integration methods, and small time steps must be used to
control the size of this error. Analytic and computational results that demonstrate
degradation in time accuracy associated with linearization in the presence of strong
nonlinear coefficients can be found in [22] and [13]. Such effects can be avoided by
using implicit time integration, which generally requires efficient nonlinear solution
techniques to be competitive. Newton-Krylov methods, usually preconditioned by
a multigrid method, have been instrumental in demonstrating that this approach is
practical for equilibrium radiation diffusion problems [24].
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We seek to combine the benefits of improved temporal accuracy of implicit time
integration with the improved spatial accuracy that is made possible by AMR. Two
important factors must be addressed in order to fully realize the potential efficiency
gains. The first is the use of finer grids only in those regions where high resolu-
tion is required. This can be accomplished by determining regions where the spatial
error is large or where localized solution features warrant enhanced resolution, and
immediately translates into lower overall storage costs. The second is the use of algo-
rithms whose arithmetic complexity scales linearly with problem size. This presents
a significant challenge when using implicit time integration methods.

Prior efforts in implicit AMR have not adequately addressed the algorithmic scal-
ability issue. Early work by Winkler, Norman, and Mihalas [28] uses r-refinement to
solve coupled radiation-hydrodynamics problems. They use a fully coupled formula-
tion, solved by a classical Newton’s method, that includes a functional to determine
new gridpoint locations for following features of the flow. Their approach is impracti-
cal for 2- or 3-dimensional problems, and even in one dimension difficulties are encoun-
tered with gridpoint movement. We use h-refinement, in particular structured AMR
(SAMR), to avoid these problems. Both Trompert and Verwer [26, 27] and Li, Pet-
zold, and Hyman [15] use incomplete factorization to precondition their linear solvers.
Incomplete factorization can be expensive to set up, and, depending on the amount
of fill-in allowed, can have high storage overhead. Further, incomplete factorization
scales poorly with increasing resolution, and parallel implementation is problematic.
In addition, this approach requires formation of the full Jacobian, through either
analytic or automatic means. By using a Jacobian-free Newton-Krylov method, we
eliminate the burden of supplying and storing the Jacobian.

We address the issue of algorithmic scalability by using the Fast Adaptive Com-
posite grid (FAC) method of McCormick and Thomas [17, 18] to precondition the
systems of linear equations that must be solved in every nonlinear iteration at every
time step. FAC has low setup costs, low storage overhead, and converges at a rate inde-
pendent of the number of refinement levels [18]. Similar methods for elasto-plasticity
[4] and equilibrium radiation diffusion [25] use multilevel methods on unstructured
grids to solve the linearized equations, but still require formation of the Jacobian.
More recently, Howell and Greenough [12] solve a linearized radiation diffusion prob-
lem on a SAMR grid as part of a semi-implicit radiation-hydrodynamics algorithm,
but performance of the multilevel linear solver is not their primary focus, and no
details about its performance are provided. With minor modifications, our approach
could be used to implement a fully nonlinear version of their reflux step.

We report on efforts to solve equilibrium radiation diffusion problems using struc-
tured AMR and the Newton-Krylov-FAC method. While structured AMR facilitates
reuse of existing software written for logically rectangular grids, discretization at lo-
cations near changes in resolution must be treated carefully in order to avoid the
creation of artificial sources.

This paper is organized as follows. The next section discusses the equilibrium
radiation diffusion model. A discussion of structured adaptive mesh refinement follows
in §3. Special considerations for spatial discretization on SAMR grids appear in §4.
We describe our algorithmic components in §5. Results of computations appear in §6
and we summarize our conclusions in §7.

2. Equilibrium Radiation Diffusion. We provide a brief description of the
equations that govern equilibrium radiation diffusion. See [19] for a more detailed
discussion.
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Propagation of a radiation field and its interaction with matter can be modeled
by an integro-differential equation that accounts for transport, emission, absorption,
and scattering of photons. When the radiation field is isotropic, detailed treatment
of transport in angle is not needed. The dependence on angle can be averaged out to
obtain a description based on spectral energy density and flux. In a static medium at
local thermal equilibrium, absorption is independent of frequency, so dependence on
frequency can also be averaged out. In this case, the radiative flux can be shown to
be proportional to the gradient of the energy density, with the radiative conductivity
proportional to the inverse of the opacity of the medium. Also, when the medium
is in thermal equilibrium, emission equals absorption, and the total radiation energy
density E is proportional to T 4, where T is the temperature of the medium. These
considerations lead to a parabolic partial differential equation

∂E

∂t
= ∇ ·D(E)∇E in Ω ⊂ Rd, d ∈ {1, 2, 3}, t > 0,(2.1)

with initial conditions E(t = 0) = E0. We use a model of radiative conductivity in
which D(E) scales as

D(E) = ZαEβ , α < 0, β ∈ [0, 1],(2.2)

where Z is the atomic number of the medium. The parameters α and β can be
determined experimentally or through simulation [20]. In this work we take α = −3
and β = 0.75.

Because (2.1) is derived from asymptotic arguments, its solution can exhibit non-
physical behavior, such as propagation of radiative energy at a rate faster than the
speed of light. In particular, diffusion theory overestimates the amount of energy
deposited into a cold medium from a hot source. This can be handled by flux lim-
iting, which is an ad hoc adjustment of D(E) that produces the correct asymptotic
behavior. We use Wilson’s form for flux limiting [19, 29]

DL =
(

1
D(E)

+
‖∇E‖
|E|

)−1

.(2.3)

For the remainder of this paper we will drop the subscript and always use flux-limited
diffusion defined by the combination of (2.2) and (2.3).

Finally, boundary conditions for (2.1) must be prescribed. Penetration of heat
into a cold medium at rest from a hot source can be modeled by assuming a constant
imposed radiation field on a portion of the physical boundary ∂ΩR ⊂ ∂Ω. We also
assume that the remainder of the physical boundary ∂ΩN = ∂Ω − ∂ΩR is perfectly
insulating. Under the same assumptions that led to (2.1), the boundary conditions
may be expressed as

n ·D(E)∇E + E/2 = R on ∂ΩR, t > 0,

n ·D(E)∇E = 0 on ∂ΩN , t > 0,

where n is the unit outward normal to ∂Ω. These conditions lead to solutions of (2.1)
known as Marshak waves, which were first described in [16].

3. Structured Adaptive Mesh Refinement. Localized sharp propagation
fronts and material discontinuities make the radiation diffusion problem an excellent
candidate for AMR. h-refinement AMR techniques provide local mesh resolution by re-
fining the computational mesh locally. Structured adaptive mesh refinement (SAMR)
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Fig. 3.1. A composite grid Ωc of two levels and its component grids Ωh
1 and Ωh

2 .

is h-refinement with local fine grid patches placed over coarser grid patches providing
increased local resolution. SAMR techniques enjoy several advantages. Regular array
access patterns improve cache performance, simple data structures for bookkeeping
minimize the overhead for computations, uniform stencil discretizations provide in-
creased accuracy, and reuse of software developed for single grids is possible.

A SAMR grid consists of a collection of grid patches at different grid resolutions
which together cover the computational domain. Grids with the same mesh resolution
are grouped together and form a refinement level. Grids at a refinement level are
disjoint or touch along cell boundaries, but do not overlap. A fine grid patch overlying
a coarse grid patch is called a child grid with the underlying coarse grid being the
parent grid. A child grid can have several parent grids and vice versa. The boundaries
of child and parent grids are assumed not to align except possibly at physical domain
boundaries. This leads to a natural hierarchical structure for SAMR grids that is
exploited while designing multilevel algorithms. Operations on the composite grid
are decomposed into operations on individual refinement levels which in turn further
decompose into operations on individual patches. Valid degrees of freedom at level
k are defined in cells not covered by cells belonging to level k + 1. Cells covered by
grids at finer levels are ’slave’ cells with their values being derived from fine cells at
the next finer level.

Notation is now introduced for a SAMR grid. Ωc
J represents a composite SAMR

grid with J refinement levels. The subscript is dropped when there is no ambiguity.
Refinement level k, k = 1, 2, . . . , J , denoted by Ωhk

k or more simply as Ωh
k , consists of

a collection {P} of grid patches at the same grid resolution hk. The refinement levels
are ordered by increasing grid resolution with hk+1 = r ∗hk, k = 1, 2, . . . , J−1, where
r ∈ Nd is the refinement ratio. Each component of r is fixed at 2 in this application,
typical values being 2,3, and 4. The subdomain(s) covered by Ωh

k+1 fully nest within
the subdomain(s) covered by Ωh

k . Figure 3.1 illustrates this multilevel structure;
Figures 6.2 and 6.5 in §6 provide more examples of multilevel grid configurations.

4. Discretization. A method of lines approach is used in which (2.1) is first
discretized in time. Let tn+1 = tn +4tn, n = 0, 1, . . ., with t0 = 0. 4tn is a variable
time step determined adaptively during the course of the simulation. At t = tn+1 an
equation of the form

En+1 − γ∆tn∇ ·D(En+1)∇En+1 − gn = 0(4.1)

is solved, where En+1 denotes an approximation to E(tn+1), γ ∈ R, and gn is a real-
valued function of past information that is determined by the specific choice of the
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discretization scheme. We use backward Euler (BE), where γ = 1 and gn(En) = En,
and the second-order backward differentiation formula (BDF2), where γ = 2/3 and
gn(En, En−1) = 4

3En − 1
3En−1 for constant ∆tn.

Spatial discretization of (4.1) on uniform meshes is done by subdividing Ω into
rectangular control volumes and employing standard finite volume discretization tech-
niques. Cell centers are indexed with integer pairs (i, j), and fluxes are computed at
faces (i− 1

2 , j) and (i, j − 1
2 ) via

(D(E)Ex)i− 1
2 ,j ≈ Fi− 1

2 ,j ≡ D(E)i− 1
2 ,j

Ei,j − Ei−1,j

∆x
∆y ,

(D(E)Ey)i,j− 1
2

≈ Fi,j− 1
2
≡ D(E)i,j− 1

2

Ei,j − Ei,j−1

∆y
∆x .

(4.2)

We employ a simple scheme for specifying different materials in which Z in (2.2) is
specified at cell centers. With this convention, it is natural to also define D(E) at cell
centers, so we need to define face-centered values to compute these fluxes. For this,
we use harmonic averages

D(E)i− 1
2 ,j = 2

(
1

D(E)i−1,j
+

1
D(E)i,j

)−1

D(E)i,j− 1
2

= 2
(

1
D(E)i,j−1

+
1

D(E)i,j

)−1
(4.3)

to define face-centered conductivities. Finally, the discrete spatial operator is obtained
by differencing the fluxes on opposite faces and summing the result:

∇ ·D(E)∇E ≈
(
Fi+ 1

2 ,j − Fi− 1
2 ,j

)
+
(
Fi,j+ 1

2
− Fi,j− 1

2

)
.(4.4)

On a SAMR grid, we use the same spatial discretization on patch interiors. There
are numerous approaches to handling discretization near changes in resolution. A
typical situation for finite volume discretization is depicted in Figure 4. In general,
data at cell centers is not properly aligned across the change in resolution. The
necessary alignment can be achieved by interpolating data on the coarse side of the
coarse/fine interface. Fluxes at fine resolution can then be calculated directly from
the aligned data. Alternatively, the aligned data on the coarse side of the interface
can be centered in a ghost cell at fine resolution by interpolating in a direction normal
to the coarse/fine interface. Finally, the fluxes that reside on fine faces that coincide
with a coarse face are summed to obtain a flux on the coarse face. Piecewise linear
interpolation leads to the symmetric scheme in [10]; piecewise quadratic interpolation
is also commonly used [1].

At coarse/fine interfaces, D(E) is calculated from interpolated values of E. Be-
cause D(E) can exhibit large jumps across material interfaces, we must be careful
about the placement of refinement regions to ensure the accuracy of our spatial inter-
polation schemes.

5. Algorithmic Components. The discretization described in §4 leads to a
large-scale system of nonlinear equations defined on a SAMR grid. In particular, note
that all levels in the grid hierarchy are advanced simultaneously with the same time
step, similar to [15] but in contrast to [26, 27]. This means that, on convergence,
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Fig. 4.1. Schematic of finite volume discretization at interfaces between coarse and fine regions.
The leftmost figure shows the first step, which is to align data on both sides of the change in resolution
through interpolation of data on the coarse side of the interface. The second step, shown in the
middle figure, can either center the aligned data in a ghost cell at the fine resolution, or proceed
directly to calculation of a flux on the fine face. Finally, fluxes computed at fine resolution must be
synchronized with the flux on the underlying coarse face; this is depicted in the rightmost figure.

our solution conserves energy at coarse/fine interfaces, eliminating the need for re-
flux operations when using local time stepping as in [12]. The system of nonlinear
equations at each time step is solved with an inexact Newton method. The linearized
problems that must be solved at each iteration of the inexact Newton method are pre-
conditioned by the Fast Adaptive Composite grid (FAC) method. These algorithmic
components are described in more detail in the following sections.

5.1. Jacobian-free Newton-Krylov Methods. Let F : Rn → Rn be a nonlin-
ear function and consider calculating the solution x? ∈ Rn of the system of nonlinear
equations

F (x) = 0.(5.1)

Starting with an initial approximation x0 to x?, classical Newton’s method for solving
(5.1) generates a sequence {xk} of approximations to x? according to

F ′(xk)sk = −F (xk)
xk+1 = xk + sk

(5.2)

where F ′ is the Jacobian of F evaluated at xk. Newton’s method is attractive be-
cause of its fast local convergence properties. However, for large-scale problems, it
is impractical to determine the Newton step sk in (5.2) with a direct method. Fur-
thermore, when xk is far from x?, the linearization that leads to (5.2) may be a poor
approximation to F (x). It may be more efficient to require only that sk satisfy

‖F (xk) + F ′(xk)sk‖ ≤ η‖F (xk)‖(5.3)

for some η ∈ (0, 1) [8]. Appropriate selection of the forcing term η can lead to
superlinear and even quadratic convergence [9]. While any iterative method can be
used to find an sk that satisfies (5.3), methods such as transpose-free Krylov subspace
methods require only matrix-vector products, which can be approximated by finite
differences

F ′(xk)v ≈ F (xk + εv)− F (xk)
ε

.
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In particular, we use GMRES because of its robustness in the presence of inexact
matrix-vector products [6]. Such a Jacobian-free Newton-Krylov (JFNK) method is
especially advantageous when F ′ is difficult to compute or expensive to store, and has
proven to be effective on a wide variety of problems [14].

JFNK methods facilitate use of an inexact Newton method, since an application
only needs to provide methods to evaluate F , set up a preconditioner, and apply the
preconditioner. On a SAMR grid, these operations should ideally exploit the struc-
ture of the grid. Considerations for evaluating F are described next; corresponding
considerations for operations involving the preconditioner are described in § 5.2.

On a regular grid, evaluation of the discrete form of (4.1) is straightforward, and
there are many ways to organize this calculation. One approach is

Algorithm 1: Nonlinear function evaluation
Evaluate the radiation conductivity (2.3).
Compute the harmonic averages (4.3).
Compute radiative fluxes (4.2).
Difference fluxes to obtain (4.4).
Assemble the nonlinear residual (4.1).

A parallel implementation of Algorithm 1 requires only minor changes that are
necessary to satisfy off-processor dependencies for the calculation of (4.2) and (4.3).
An additional minor modification of the data structures is also needed to provide
storage for the off-processor data; a common approach is to supplement local storage
with a layer of ghost cells. On a SAMR grid, data on each patch must likewise be
supplemented to satisfy dependencies on data from another patch (which may or may
not reside on the same processor). In this case, the required data can come from
three sources: other patches at the same resolution; data from a coarser level; or
physical boundaries. Once again, providing a layer of ghost cells with each patch
is a convenient and effective way to provide storage for such data. Moreover, data
from a coarser level must be properly interpolated, and fluxes on coarse faces must
be synchronized with fluxes on fine faces (cf. the discussion in § 4). Because of this,
JFNK has an added advantage for problems on SAMR grids, since the added burden
of determining the structure of the Jacobian at changes in resolution is eliminated.
In a parallel environment, some data needed to satisfy these dependencies for a given
patch resides on the same processor as that patch. Neither the application nor the
solver package should be responsible for this additional bookkeeping, and it is desirable
to employ a SAMR grid management package to handle this additional complexity
[23]. With such capabilities, we can re-use the computational kernels that implement
Algorithm 1 (a principal advantage of SAMR), and Algorithm 1 can be recast as
follows:
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Algorithm 2: Nonlinear function evaluation
for k = J to 1

Fill ghost cells on Ωhk

k .
foreach P ∈ Ωhk

k

Evaluate the radiation conductivity (2.3).
Compute the harmonic averages (4.3).
Compute radiative fluxes (4.2).

if k < J
Coarsen fluxes from Ωhk+1

k+1 .
for k = 1 to J

foreach P ∈ Ωhk

k

Difference fluxes to obtain (4.4).
Assemble the nonlinear residual (4.1).

Thus, function evaluation on a SAMR grid is a straightforward generalization
of function evaluation on a regular grid, and JFNK can readily be implemented on
a SAMR grid, provided suitable representation of SAMR grid data as a vector is
available [23]. However, the potential performance gains made possible by the use of
AMR will be lost without effective preconditioning.

5.2. Preconditioning. Preconditioning is essential to make the JFNK method
competitive. Yet, in the absence of an explicit Jacobian, selection of a preconditioning
matrix can be problematic. A simple linearization of (4.1) leads to the choice

M = I− γ∇ ·D(En+1
k )∇(5.4)

as a preconditioner, where D(En+1
k ) is the kth inexact Newton approximation to

the time-advanced solution En+1. This choice was shown to be effective in [24] for
problems on uniform grids. The task here is to solve systems of the form Mz = r
robustly, accurately, and efficiently when M is discretized on a SAMR grid. For this
the Fast Adaptive Composite grid (FAC) method [17] is employed.

FAC extends techniques from multigrid on uniform grids to AMR grids. FAC
is a multiplicative Schwarz method. Additive Schwarz variants of FAC exist and
are a topic of future research for preconditioning NK methods on AMR grids. A
V-cycle implementation of the method is optimal requiring O(n) operations where
n is the number of degrees of freedom. As a preconditioner for NK methods, FAC
employs smoothing on refinement levels with a coarse grid solve using an approximate
solver like multigrid. Below we describe the FAC algorithm for completeness after
introducing necessary notation.

• Ik
c and Ic

k denote interlevel data transfer operators (restriction and interpo-
lation, respectively) between composite grid Ωc and refinement level Ωh

k . For
example, Ic

k could be based on linear interpolation and Ik
c could be defined

as the adjoint of Ic
k.

• Ik
k+1 and Ik+1

k denote interlevel data transfer operators (restriction and in-
terpolation, respectively) between adjacent refinement levels Ωh

k and Ωh
k+1.

Operators Ic
k and Ik

c may be considered as compositions of these operators.
• M c is the composite grid discrete operator obtained by discretizing the PDE

on Ωc and Mk approximates M c on level k .
Expressed in the notation above, one iteration of a V-cycle FAC algorithm with
smoothing on refinement levels and an approximate solve on the coarsest grid is:
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Algorithm 3: Fast Adaptive Composite grid (FAC) Method
Initialize: rc = fc −M cxc; fk = Ik

c rc

foreach Ωhk

k , k = J, . . . , 2
Smooth: Mkek = fk

Correct : xc = xc + Ic
kek

Update : rc = fc −M cxc

Set : fk−1 = Ik−1
c rc

Solve : M1e1 = f1

Correct: xc = xc + Ic
1e1

foreach Ωhk

k , k = 2, . . . , J
Update : rc = fc −M cxc

Set : fk = Ik
c rc

Smooth: Mkek = fk

Correct : xc = xc + Ic
kek

6. Numerical Results. In this section we describe the results of some numerical
experiments that illustrate the performance of the methods described above. Before
describing the test cases, we first specify a few remaining details of our implementa-
tion.

Solvers. As described earlier we use a JFNK solver preconditioned by FAC. For
this we use the infrastructure detailed in [23] to access the SNES solver from PETSc
[2]. SNES iterations are terminated when either an absolute tolerance ‖F (xk)‖ ≤ εabs,
a relative tolerance ‖F (xk)‖ ≤ εrel‖F (x0)‖, or a step tolerance ‖sk‖ ≤ εstep is satisfied;
we use εabs = εrel = 10−8 and εstep = 10−10. We found that we had to supplement
linesearch backtracking with scaling of the inexact Newton step to ensure positive
values in the solution. We use a maximum Krylov subspace dimension of 20, but our
linear iteration count in each time step never exceeds this value. The preconditioner is
one V-cycle of symmetric FAC with two pre- and post-smoothing sweeps of symmetric
red-black Gauss-Seidel on refinement levels. One V-cycle of the SMG solver from the
hypre [7, 11] library is used on the coarsest level. All calculations were performed on
Linux workstations with Intel Xeon 2.4 GHz processors in double precision arithmetic.

Time step control. We base our selection of ∆t on the following criterion:

max
(i,j)

(
|En+1

i,j − En
i,j |

|En+1
i,j |

)
≤ CFLt ,

where CFLt ∈ (0, 1). This criterion controls the amount of relative change in E from
one time step to the next, and is frequently used in applications. For each of the time
discretization schemes we use, this leads to an effective time step control algorithm.
For example, for BE, this leads to

∆t ≤ CFLt min
(i,j)

(
|En+1

i,j |
|(∇ ·D(En+1)∇En+1)i,j |

)
.

We use CFLt = 0.6. In addition, we control the rate of growth of ∆t so that it never
increases by more than 10% from one time step to the next.

Selection of refinement regions. At regular intervals (specifically, every fourth
time step), we identify regions where enhanced resolution is desired. In this work,
we employ simple criteria to identify features of the solution that would benefit from
enhanced resolution. A gradient detector is used to identify regions where the solution
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changes rapidly. However, a gradient-based refinement criterion can be ineffective for
problems that include second-order derivatives (consider the solution of uxx = f
on Ω = [−1, 1] where f(x) = cosh−2(x/ε) for 0 < ε � 1). Thus, we also use a
curvature-based criterion [5]. We have found that, at least for this problem, neither
criterion alone is adequate, but that the combination works quite well. Finally, if a
cell is marked for refinement, we also mark its eight nearest neighbors. We do not
maintain that this approach leads to the desired accuracy result, but our illustrations
will show that they do generate AMR configurations that provide a reasonable test
of our solution strategy.

Test cases. We use two test cases to illustrate the performance of Newton-

Fig. 6.1. Material configuration for test cases. Case 1 is on the left and Case 2 is on the right.

Krylov-FAC for solving (2.1), which are depicted in Figure 6.1. In both test cases,
Ω = [0, 1]2, ΩR = {x = 0} ∪ {x = 1}, we take R = 2500 at x = 0 and R = 0.25 at
x = 1, and we integrate until t = 1500. The first test case is taken from [21], where it
is used to illustrate the performance of a preconditioner for a non-equilibrium diffusion
model. The material properties are defined by

Z(x, y) =

{
100 (x, y) ∈ [ 14 , 3

4 ]2

10 otherwise
.

With our choice of α this leads to a jump of three orders of magnitude in D at the
material interface.

Case 2 is taken from [24], where the material properties are given by

Z(x, y) =


100 (x, y) ∈ [ 34 , 1]× [0, 1

4 ]
50 (x− 3

4 )2 + (y − 3
4 )2 ≤ 0.0225

20 (x, y) ∈ [0.0, 1
4 ]2

10 otherwise

.

6.1. Case 1. Time evolution of the solution and the grid hierarchy is shown in
Figure 6.2. By t = 0.25, the incident energy has heated up the left side of the domain
and a thermal front has propagated into the domain and begun to interact with the
second material. Note that the finest level tracks the steepest part of the thermal
front, where the solution rapidly changes by three orders of magnitude. The finest
level continues to track the front as it propagates further into the domain, and follows
it as it wraps around the second material at time t = 1.
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t = 0.25 t = 0.50

t = 0.75 t = 1.0

Fig. 6.2. Evolution of solution and grid for Case 1, using a 16× 16 base grid plus 4 refinement
levels. Boundaries of refinement patches are superimposed on a color contour plot of the solution.
The coarsest level is outlined in green; level 1: yellow; level 2: light blue; level 3: magenta; and level
4: peach.

A comparison of the problem size needed for adaptive and uniform mesh cal-
culations appears in Figure 6.3. For the uniform mesh calculation, we use a global
256 × 256 fine mesh, at the same resolution as the finest level of the adaptive mesh
calculation. Initially, as the incident energy heats up the left boundary, a global coarse
mesh is sufficient, and the adaptive calculation requires less than 1% of the storage of
the uniform grid calculation. As the thermal front propagates into the domain, more
refinement levels are needed to resolve it, and the storage required for the adaptive
method increases until a maximum of 45% of the uniform grid calculation is needed.
As the radiation energy in the interior of the material increases, de-refinement takes
place, until the simulation reaches close to steady state at the end of the calculation,
and the adaptive calculation requires only 4% of the uniform grid calculation. The
adaptive calculation averages about 22.5% over the course of the simulation. Similar
behavior is observed when BDF2 is used for the time integration.

Next, we compare the number of iterations required by the adaptive and uniform
mesh calculations for backward Euler time integration. This is depicted graphically
over the course of the simulation in Figure 6.4 and summarized as averages in Ta-
ble 6.1. The adaptive mesh calculation requires about the same number of nonlinear
iterations as the uniform mesh calculation, and slightly more linear iterations. It is
interesting to note the greater variation in the iteration counts for the adaptive cal-
culation, which is likely caused by regridding and the fact that we make no special
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Fig. 6.3. Comparison of problem size for adaptive vs. uniformly fine calculation.

provision for discontinuous coefficients on the finer levels. Similar results are obtained
when BDF2 is used for time integration.
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Fig. 6.4. Comparison of performance on a uniform grid and a locally refined grid, using
backward Euler time integration. NNI is the number of JFNK iterations and NLI is the number of
linear iterations, plotted as a function of time.

6.2. Case 2. Time evolution of the adaptive computation appears in Figure 6.5.
By t = 0.5, the lower conductivity in Region 1 (Z = 20) has slowed the thermal front
in comparison to the background material (Z = 10), which has been recognized by
our refinement criteria. By t = 0.75, the thermal front has begun to interact with
Region 2 (Z = 50) and has begun to propagate towards Region 3 (Z = 100). Again,
the finest region tracks this behavior. At t = 1.0, the thermal front continues towards
Region 3 and the thermal front has begun to wrap around Region 2 due to its lower
conductivity. By t = 1.25, the thermal front has begun to interact with Region 3,
while the radiation energy in the interior of Region 2 begins increasing.

Comparison of problem sizes is presented in Figure 6.6. Once again, a global
coarse grid is sufficient until the thermal wave propagates into the domain, at which
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Table 6.1
Summary of performance for Case 1. NNI: average number of nonlinear iterations; NLI: average

number of linear iterations.

BE BDF2

uniform AMR uniform AMR

NNI 4.9 5.1 4.8 5.2

NLI 12.2 14.6 10.4 12.3

t = 0.50 t = 0.75

t = 1.0 t = 1.25

Fig. 6.5. Evolution of solution and grid for Case 2. Conditions for this test are the same as
in Figure 6.2.

point refinement levels are created and extended into the domain. The adaptive
calculation peaks at about 50% of the uniform calculation as the thermal wave breaks
around Region 1 and interacts with region Region 2. This is followed by a steady
reduction in problem size as the solution increases inside Region 2 and the thermal
wave begins to interact with Region 3. At the end of the calculation, only Region
3 requires enhanced resolution, and most of the domain is de-refined. On average,
this calculation required about 21% of the size of the uniform calculation. In this
case, there is a lot more local variation in the size of adaptive calculation. This is
due to our regridding strategy, which leads to behavior in which regions are refined
and de-refined in successive regridding events. This behavior can be alleviated by fine
tuning the thresholds used in our refinement criteria or by using additional criteria
based on truncation error estimates.
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Fig. 6.6. Comparison of problem size for adaptive vs. uniformly fine calculation.

Finally, Figure 6.7 compares iteration counts over the course of the simulation
when BDF2 time integration is used. Once again, the locally refined calculation re-
quires roughly the same number of nonlinear iterations, and slightly more linear iter-
ations, than the uniform grid calculation. Backward Euler time integration produces
similar results. These data are summarized as averages in Table 6.2.
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Fig. 6.7. Comparison of performance on a uniform grid and a locally refined grid. Notation is
the same as for Figure 6.4.

7. Conclusions. We have demonstrated the feasibility of combining implicit
time integration with adaptive mesh refinement for equilibrium radiation diffusion
problems. The numerical examples presented show that, for both first and second
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Table 6.2
Summary of performance for Case 2. Notation is the same as in Table 6.1.

BE BDF2

uniform AMR uniform AMR

NNI 5.2 5.1 4.8 5.4

NLI 11.2 13.5 9.7 12.0

order time integration schemes, the multilevel FAC preconditioner effectively controls
the number of linear iterations per time step.

There are several issues in our implicit AMR strategy that merit further explo-
ration. In particular, our interlevel transfers use geometric interpolation, an approach
that is known to lead to robustness problems in the presence of discontinuous coeffi-
cients. This may contribute to some of the convergence failures of JFNK that we have
observed. Our criteria for selecting refinement regions are based on feature detection,
and not estimation of spatial errors. A systematic evaluation of temporal and spatial
convergence orders is needed to determine the efficacy of this approach. We also need
to evaluate the parallel performance of our code and explore the use of asynchronous
multilevel preconditioners.

A major issue that we have not addressed to our satisfaction is the fact that
previous information is no longer a solution after regridding. This was observed in [3],
where it was argued that higher-order spatial interpolation could solve the problem,
and in [15], where it is handled by allowing an underlying variable order, variable step
integrator to reduce the order of integration and the size of the time step. While it
was noted that this behavior leads to some loss of efficiency, the issue of the effect
on the order of temporal accuracy was not explored. We handle this issue directly
(albeit in a brute force manner) by re-solving (2.1) on the new grid to update the
most recent solution information. At early times, when there is not much change
in the grid hierarchy, no additional work is necessary, since in these circumstances
the interpolated past information still satisfies (2.1) on the new grid to the specified
tolerances. However, at later times, past information that has been interpolated to
the new grid does not satisfy (2.1) on the new grid, and a full solve is needed. We
plan to explore this issue in more detail in future work.
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