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Abstract

We illustrate the performance of low-complexity serially concatenated codes designed for the deep space optical chan-
nel. The codes are an iteratively decoded, serial concatenation of a convolutional code with coded � -ary pulse-position-
modulation (PPM) through a bit interleaver. For �����	�	
 with a ���
 -bit interleaver, we illustrate performance �� � dB
from capacity and gains of ��� � dB relative to a baseline �����������	�� Reed-Solomon code concatenated with PPM. Storing
channel likelihoods may be prohibitively expensive for iterative decoding of high PPM orders. We show that the receiver
may compute and store a small subset of the channel likelihoods and suffer negligible performance degradation. The com-
plexity of the soft decision decoding is also reduced. For �����	�	
 we show negligible performance degradation when
only � of each �	�	
 likelihoods are stored. In this case, the number of operations for the forward-backward algorithm on the
inner code, which comprises the bulk of operations, may be reduced by �� %.

1 Introduction

NASA is developing optical links to support deep space communication at data rates on the order of �� � Mbit/second.

These optical links operate efficiently at high peak to average power ratios which may be achieved by modulating the data

using ! -ary pulse-position-modulation (PPM). For certain lasers and detectors, the optimal PPM order is high– !#"%$'&�( .

High PPM orders and data rates require short pulse widths. In fact the optical pulse widths may outstrip the speed of the

digital hardware required for implementing many candidate encoders and decoders. Hence, it is important that the encoder

and decoder are low-complexity. We present a low-complexity iteratively decoded convolutionally coded modulation that

significantly outperforms baseline Reed-Solomon (RS) coded PPM.

High PPM orders also imply low code rates. Storing the channel likelihoods, which are required for iterative decoding,

can be prohibitively expensive for large interleavers and PPM orders. We show that the storage requirements can be reduced

by storing a subset of the likelihoods while suffering no loss in performance. The complexity of implementing the forward-

backward algorithm is also reduced when partial likelihoods are retained.

2 Serially concatenated coding

Our discrete-time coded binary communications channel model is illustrated in Fig. 1. User data is encoded by the serial

concatenation of (outer code) )+* and (inner code) )-, through a bit interleaver . . Each transmitted codeword, a binary
/
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Figure 1: Constrained storage channel model

! -vector ! , has noise " added such that the receiver observes the noisy version #%$&!('%" . We add the constraint that only)
of each ! observations, as well as their indices * , are made available to the receiver. The mapping + denotes the rule for

choosing the
)

samples, +%,-#/.102#43(5�*76 , *98;:'��5=<><=<?5 !A@B5DC *EC�$ ) , and #F3 is the vector of retained samples # , 5HG(IJ* .

A set of indices used as a subscript to a vector denotes the vector formed from the indexed components.

We use the notation ) *K. ) , to denote the non-iteratively decoded serial concatenation of outer code ) * and inner code

) , and )-*ML ) , to denote iterative decoding. We address PPM order !N$ $ & ( and make comparisons with a 0 $ & &�5 � $BO�6
Reed-Solomon code. Prior work investigated the system PCCC . PPM [1, 2] for the optical channel, where PCCC is an

iteratively decoded parallel concatenated convolutional code. Peleg and Shamai [3] investigated the system PCCC L PPM

on a discrete-time Rayleigh-fading model, illustrating performance 1–2 dB from capacity. The architecture we consider is

simpler then that in [1, 2, 3].

We consider a number of systematic, rate �QP�$ convolutional codes for ) * . The following table lists the numerators and

denominators in octal notation of the codes considered.

Code numerator denominator states R�S ,UT
cc1 1 1 1 2
cc2 4 6 2 3
cc3 5 7 4 5
cc4 74 64 8 6

Table 1: Outer convolutional codes

We use an AWGN model, which is a reasonable model for an avalanche photo-diode (APD) detector when the number

of incident signal photons is large. In AWGN, " is a vector of independent, identically distributed zero-mean Gaussian

random variables with variance VXWT $ZY\[DP�$ . The PPM mapping is preceded by a binary accumulator, cc2 in Table 1,

making the inner code recursive. We refer to the inner code that is formed by the concatenation of a binary accumulator and

PPM mapping as accumulate-PPM (APPM).

Figure 2 illustrates the performance for ) * L APPM with
) $�! (no storage constraint) as a function of the bit-SNR,]_^ Pa` [ . The composite code rate is bc$edUf�g W !&P�$ ! $ �DP�(�h . Performance is compared to the capacity for rate b

constrained to use a ! -PPM alphabet and a 0 $'& &�5 �$-O�6 RS code. All cases use a h'��i'( -bit spread interleaver. A stopping

rule that terminates when the inner code produces a codeword of the outer code is used for all but the j>j�� code, whose low

distance renders this stopping rule useless. A maximum of (�h iterations are allowed, and fewer than O iterations are typical

at bit error rates below ���kFl . At a bit error rate of ���kFl , the best serially concatenated code is ��< $ dB from capacity and

gains $�< m dB over the Reed Solomon baseline. Additional gains of < $ – < & dB are achievable by increasing the interleaver size

to ( & &�n'( bits.
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3 Partial Statistics

To realize the gains of the iterative decoding algorithms requires likelihoods to be computed and stored for each codeword

of the inner code. For an inner code that maps to ! -ary PPM symbols, the storage required at the decoder for one frame

of channel likelihoods is � ! C � C P dUf�g W 0 ! 6 bits, where � is the number of bits used to represent fixed or floating-point

values. High data rates, large values of ! and large interleavers can make likelihood computation and storage prohibitively

expensive. To reduce the complexity of iterative decoding, we take
)�� ! and compute and store only a subset of the

channel likelihoods.

The conditional likelihoods

� 0�+ 0 # 6=C !-6�$ � 0 #�� $��	� C !M$&j>6 � 0 *;$�
_C ! $ jQ5�#�� $��	�F6a5 (1)

are a sufficient statistic for the maximum-a-posteriori estimation of � given + 0 # 6 , and serve as input likelihoods for iterative

decoding. The term � 0 # � C !-6 is the likelihood that would result if the input were mapped to a
)

dimensional constellation

and the term � 0 *JC !�5H# � 6 is an adjustment to reflect the outcome of the decision.

For moderate ! , PPM is a sparse on-off-keying, hence a reasonable choice is to let + choose the
)

largest elements of

# . Then

� 0 * C !�5�#��46 $ � 0������#����� ������	� C ! $ j>6
$�� � � 0�! 6 5�C j � C�$ �

� 5�C j � C�$ � 5 (2)

where the maximum of a vector is the largest element of the vector, "
 $ :'�B5><=<><?5 !A@�P#
 , ! $�������	� , � is a constant and

� 0�!(6�$ $ T 0�! 6$ T 0�!&% ��6 5

where $ T is the cumulative density function of a noise sample. Computing likelihoods via (2) requires a table lookup or

computation in order to determine
� 0'!(6 . This can be eliminated by replacing

� 0�!(6 with an estimate independent of ! . We

have observed negligible degradation when
� 0�! 6 is replaced with its mean. Substituting � 02#(� C !B6 for the AWGN channel we

have � 0 + 02# 6>C !B6*)�� � ] 0 � 0'!(6H6,+-�,.X0��0/DPQV W 6 5�C j � C�$ �
� 5�C j � C�$ ��5 (3)

where 1 is the element of 
 such that j#/M$ � . Figure 3 illustrates performance with
) I :'��5 $�5�h�5�m�5 !A@ for cc3 L APPM.

All cases use m iterations and a h ��i ( -bit spread interleaver. We see ��< � dB degradation when �DP�(�h of the likelihoods are

kept, and negligible degradation when �DP�n'$ are kept.

3.1 Complexity, channel likelihoods

On observation of #32 , the
)

largest elements of #32 are determined, their corresponding likelihoods are computed and stored.

Table 2 lists the number of operations and storage required to complete this operation with full and partial statistics. To

assess sorting cost, we assume the first
)

observations are sorted by insertion and the following ! -
)

by a heapsort [4,

pp.344]. In addition to storing the floating point values, we must save the addresses of the
)

largest values, which we assess

a cost of
) dUf�g ) bits.

For our case of interest, the code is APPM, such that C 4 C�$ $ and C 5�CB$ $ ! . With ! $ $ & (�5 ) $ m and � $ h , partial
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Figure 2: Performance with full statistics, ! $ $ & ( , ) *KL APPM with C � C�$&h'��i'(
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Operations Storage(bits)
mult. exp. comparisons in sort addresses likelihoods

full ! ! – – ! �
partial

) ) 0 ) % �D6 W ' 0 ! % ) 6�dUf�g ) ) dUf�g ) ) �
Table 2: Storage and computation cost to compute channel likelihoods

statistics require ) �DP �=m times the storage as full. The computational complexity depends on the platform, since we are

trading off comparisons (additions) for multiplications and exponentiations.

4 Complexity, forward-backward algorithm

The inner code maps a block of information symbols � $ 0'� � 5><=<><>5 ��� 6 to codeword !J$ 0 ! � 5=<><><=5�!�� 6 , where � 2�5 ! 2 are

binary vectors with G th component � 2�� , 5�! 2�� , . The code is described by a time-invariant graph (straight-forward modifications

would treat time-varying graphs) consisting of a set of states 4 , and a set of directed, labeled edges 5 . Each edge � I 5 has

an initial state G 0	�Q6 , a terminal state

 0��Q6 , an input label � 0��Q6 and output label j�0��Q6 . We assume that encoding proceeds by

following a path through the graph and reading off the output edge labels as follows. Let  2 k � be the state at time ��% � ,
and � 2 the edge with G?0	� 2 6 $� 2 k � and � 2 $�� 0�� 2 6 . Then ! 2 $ j�0�� 2 6 and  2 $ 
 0	� 2 6 . Throughout we use shorthand� 0'� 2 6 $ � 0'� 2 $�� 6 when the realization is clear from context.

Each iteration, the forward-backward algorithm [5] begins by computing

� 2�0��Q6 $ � 0 � 2 $�� 0	�D6�6 � 0 + 0 #(2B6>C ! $ j�0	�Q6H6?5
for each edge in the trellis, which changes each iteration as � 0'� 2�6 is updated by the outer code. However, with partial

statistics, there are only
) ' � distinct values of � 0 + 0 # 6=C ! 2 6 . One can take advantage of this and use a reduced complexity

time-varying trellis with C 4 C states and at most C 4 C 0 ) ' C 4 C 6 edges, reducing the computational complexity in our cases of

interest.

Let � 2 0��Q5���5���6 be the collection of parallel edges in the � -th trellis stage with channel likelihood � ,

� 2�0��Q5��B5���6 $ :���C G?0��Q6 $��Q5 
 0��Q6 $���5 � 0�+ 02#(2�6=C ! $&j�0��Q6�6 $���@-<
Form a partial trellis by replacing the edges in � 2 0��Q5���5���6 with a single edge ��0��Q5��B5���6 with initial state � and terminal state

� . Let 5� 2 be the collection of modified edges. The partial trellis will have C 5! 2 C � C 4 C 0 ) ' C 4 C 6 . For �7I 5� 2 we put

� 2�0��Q6 $ � 0 � 2�0	�Q6(I"� 2�0 G?0��Q6?5 
 0��Q6?5 � 0�+ 02#(2B6=C !M$ j�0	�D6�6H6�6 � 0�+ 0 #(2-6>C ! $&j�0��Q6H6a<
We proceed to compute # 2�0��Q6 $ � 0	�,2 $��-5�# 6 for each edge in the partial trellis using the forward-backward algorithm.

Note that for �7I$� 2�0��Q5��B5���6 8 5 ,
#�2�0��Q6 $%# 2�0H0���0��Q5��B5���6�6 � 0 � 2 $�� 0	�Q6H6� 0 � 2 0��Q6(I$� 2 0��Q5��B5 � 0�+ 0 # 2 6>C !M$&j�0	�Q6H6H6�6 (4)
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Hence, after computing the # ’s on the partial trellis we may compute the bit likelihoods � 0'��2�� , C # 6 as

� 0 � 2�� , $ �FC # 6 $ �� 0 # 6 �

��� ����� � �
	�� ���� [ #�2�0	�D6
$ �� 0 # 6 �

��� ��������

#�2�0��Q6� 0'� 2�0��Q6 I$� 2�0 G?0	�D6a5 
 0	�D6a5 � 0 + 0 #(2B6>C ! $&j�0��Q6H6 $���6H6�� (5)

�

� � ��� � � , � �� � ��� �� � �  � ��	�� � � �� [
� 0'� 2 $�� 0��Q6H6 (6)

For the inner code APPM with ! $ $ & (�5 ) $ m we require n'$ % fewer operations on the partial trellis relative to the

full trellis. Storage requirements per trellis stage are also reduced, but we presume the algorithm is implemented with a

sliding-window such that the storage costs are dominated by the channel likelihoods.

5 Conclusions

We have illustrated performance within �B< & dB of capacity is achievable via iterative decoding of a simple serial concate-

nation of a convolutional code with accumulate-PPM through a relatively short bit interleaver. For channels that modulate

to a high PPM order, the storage required for the channel likelihoods may be a bottleneck in implementing iterative de-

coding. We have shown that a small subset of the channel likelihoods may be used with negligible degradation, by setting

the remainder of the likelihoods to an appropriate constant. In addition, a reduced complexity trellis may be used for the

forward-backward algorithm, reducing the number of operations required.
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