Signature-Based Global Searches at CDF

Andy Hocker Fermi National Accelerator Laboratory for the CDF Collaboration DIS 2008

Motivation

We all know today's SM is not the full story

- At the very least, need EWSB mechanism
- What we don't know is how the SM will extend

- Lots of model classes ...with lots of submodels ...with lots of free params
- Wouldn't stake your life (= your experiment) to any one model
- Systematically search the entire high- p_{T} dataset for something we can't explain
 - Fight about what it is later

A. Hocker, DIS '08, London

Model-Independent Search

The overall approach is two-tiered:

- "VISTA" --- model-independent
 - Obtain "panoramic view" of entire high- p_T dataset
 - Can SM (plus detector simulation, plus brains) describe gross features of the high-p_τ data?
 - Number of events, basic kinematics, etc.

"BumpHunter" ----

resonance search

- Cluster objects and form invariant mass
- Look for excesses in varying mass windows

"SLEUTH" --- quasi-modelindependent

- We're looking for new physics at the EWSB scale
- Search the high ∑p_T tails of the data for excesses

VISTA algorithm

- Identify physics objects w/ p_τ > 17 GeV
- Filter events of interest
 - μ > 25 GeV, γ > 60 GeV, b > 25 GeV
 + γ > 40 GeV, etc.
- Sort into exclusive final states
 - 3j, eej, μ2bγ, etc.

Description	Value	Cnstrnt?	
Luminosity	1.990±0.05 fb ⁻¹	Y	
σ (4j,hi p_{T}) kfact	1.06±0.03	Ν	
e ID eff. corr.	0.978±0.006	Y	
b fk rate, lo p_T	0.0183±0.002	Ν	
μ trigger eff.	0.916±0.004	Y	

...plus 38 more...

- Get SM prediction for each final state
 - Detector simulation of object ID needs correcting
 - LO theory cross sections need correcting
 - Correction factors determined by global
 fit to all final states, subject to external constraints
- Compare data and SM predictions

9-APR-2008

A. Hocker, DIS '08, London

BumpHunter results

- All possible combinations of objects in a FS are considered
- Scan mass distributions with a window of width = $2\sqrt{\Delta m}$
- Quantify significance of any bumps found

SLEUTH nutshelled

- SLEUTH sharpens the focus by making three (not very restrictive) assumptions on new physics:
 - It will appear as an excess...
 - ... in the high $\sum p_T$ tails...
 - ...in predominantly one final state (FS)
- Find the tail of a FS's ∑p_T distribution with maximal data-SM discrepancy
- Pseudoexpts to determine probability of SM to produce that discrepancy (scriptP)
- For FS with smallest scriptP, quantify probability for SM to produce a FS (any FS) with that scriptP (or worse)
 - Takes into account the "trials factor"
 - If this probability (tildeScriptP) < 10⁻³, get excited (roughly equivalent to a 5σ effect w/o trials factor)

default

A topless SM... tildeScriptP << 10⁻³

SLEUTH easily discovers top in Run 2... and can do so with luminosities comparable to Run 1

SLEUTH results

CDF Run II Preliminary (2.0 fb⁻¹) SLEUTH Final State \mathcal{P}

$\ell^+\ell'^+$	0.00055
$\ell^+\ell'^+ \not p j j$	0.0021
$\ell^+\ell'^+\not\!$	0.0042
$\ell^+\ell^-\ell'p$	0.0047
$\ell^+ \tau^+ p$	0.0065

...plus 82 more (less and less discrepant) final states

$\tilde{\mathcal{P}} = 0.08$

<< 10⁻³... no indication of new physics

Most "discrepant" FS

9-APR-2008

Conclusions

- CDF has developed a broad search for new physics that is not beholden to any particular new physics model
 - Complements direct searches targeted at specific models
- Data-driven nature of the approach lessens chance of new high- p_T physics slipping through the cracks
- The search has revealed no indication of new high- p_T physics in ~2 fb⁻¹
- Keep at it for Run 2, look forward to similar work from D0
- More details: hep-ex/0712.1311 (appearing in PRD)

Sensitivity

What xsec's could trigger a SLEUTH discovery in 1 fb⁻¹?

FOR ENTERTAINMENT PURPOSES ONLY (no systematics, etc.)

9-APR-2008

A. Hocker, DIS '08, London

