Biodiesel Technology and Use

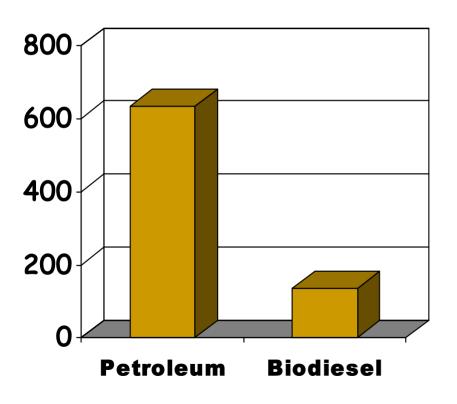
K. Shaine Tyson Rocky Mountain Biodiesel

Biomass Opportunity and Challenges in Indian Country

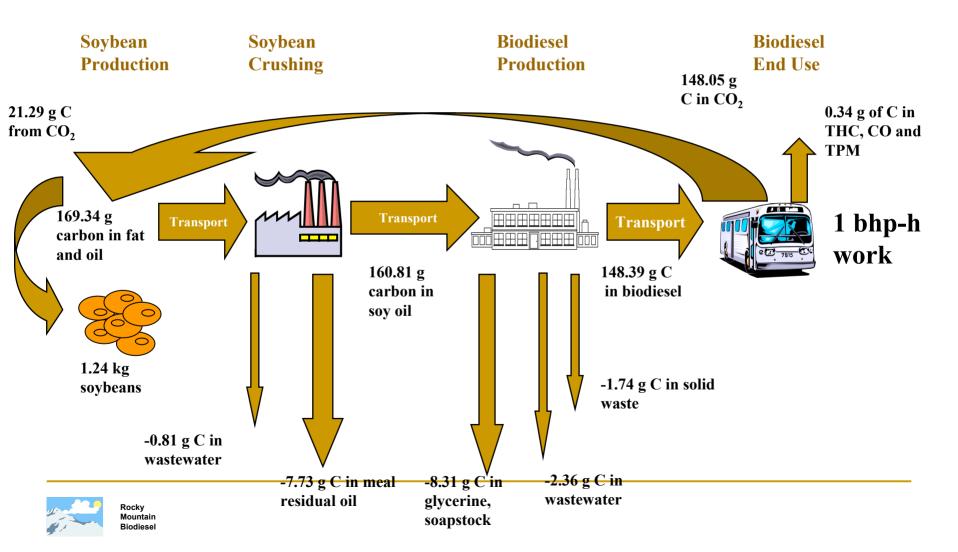
Denver, CO September 15, 2004

What is Biodiesel?

- A clean burning renewable fuel made from agricultural products
 - Soy bean oil
 - Sunflower oil
 - Canola and rapeseed oil
 - Animal fats
 - Recycled cooking oil (yellow grease or WVO)

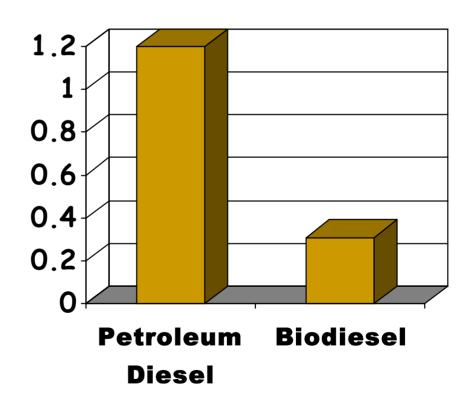

Benefits of Biodiesel

- Renewable
- Supports agriculture
- Supports recycling
- Displaces petroleum
- Adds value to petroleum fuels
- Environmental benefits


Recycles CO₂

g CO2 per bHP-h of work

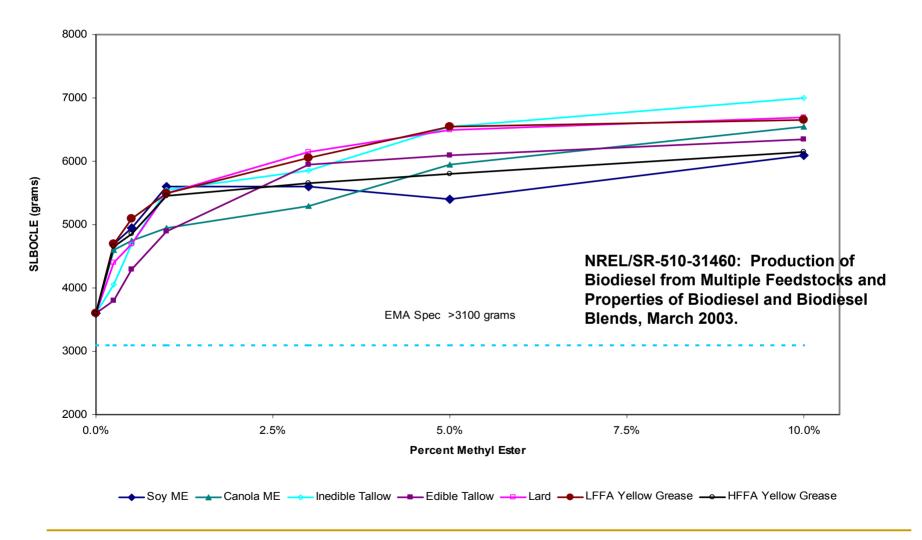
- Biodiesel emits 78.5%
 less CO₂ than
 petroleum diesel
- Blends exhibit proportionate benefits
 - B20 emits 15.66% less CO₂ than petroleum diesel


Biodiesel emits 78.5% less CO₂ than petroleum diesel

Energy Efficient

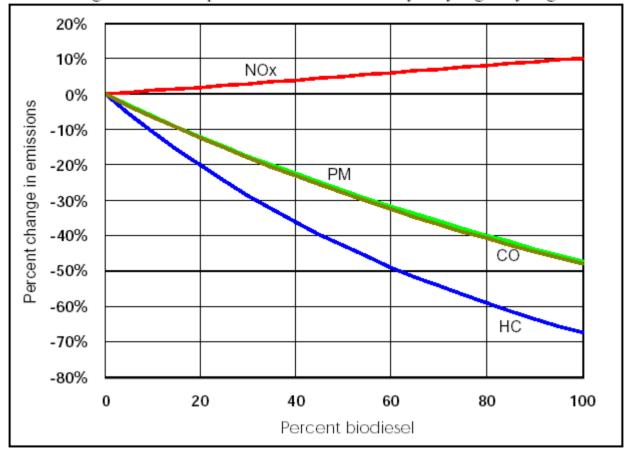
- Biodiesel yields 3.2 units of fuel energy for every unit of fossil fuel consumed in its life cycle.
- Petroleum diesel yields 0.83 units of fuel energy per unit of fossil energy consumed.

MJ Fossil Used per MJ Fuel

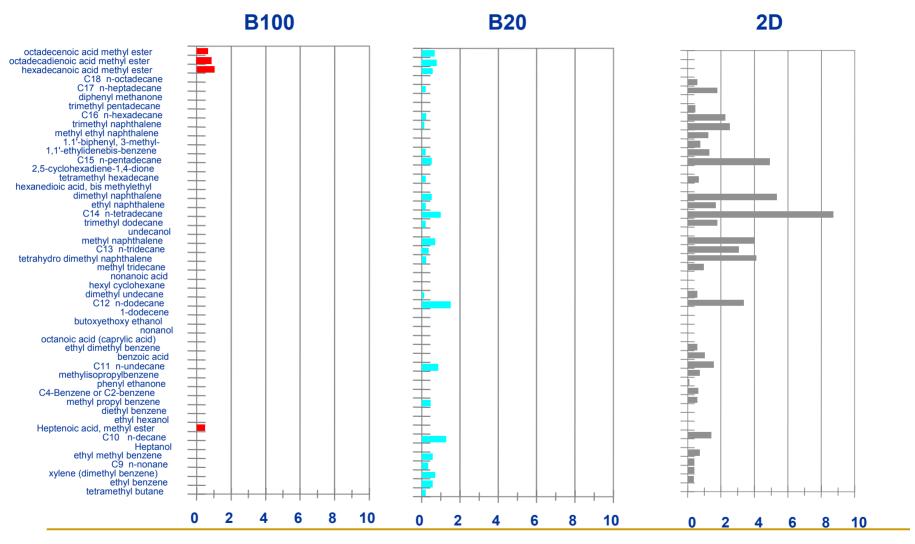


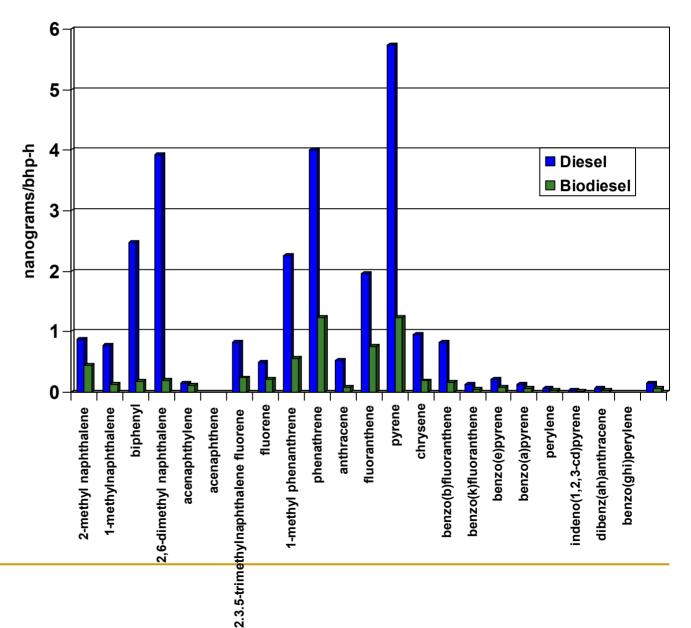
Energy Content

- B100 energy content averages 121,000 BTU/gal
 - ◆ Diesel No. 2 averages 131,000
 - Diesel No. 1 averages 126,000
- B20 reduces fuel economy, power and torque by 1-2%
- B5 has 99.5% of the energy content of diesel fuel

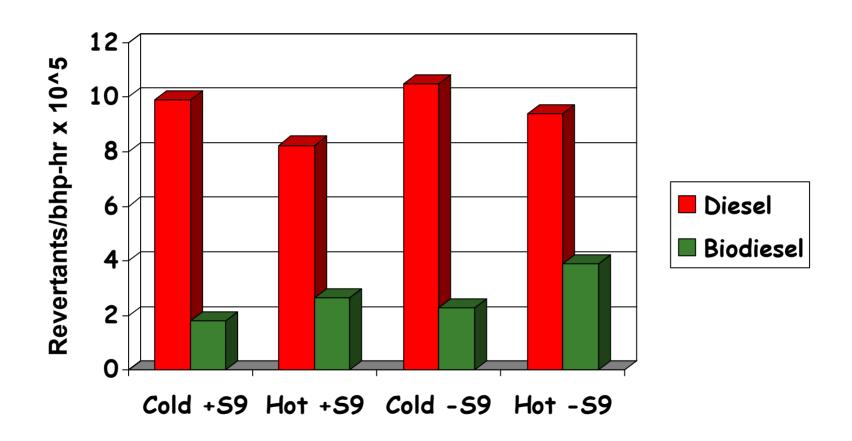

Biodiesel is a Lubricant

EPA Emission Analysis


Figure ES-A Average emission impacts of biodiesel for heavy-duty highway engines


HEAVY HC SPECIATION

- CUMMINS N14 ENGINE



PAH in Semi Volatile PM

Mutagenicity Testing

EPA Required Tier II Health Effects

- Testing at Lovelace Respitory Research Institute, 1999
- Exposed 10 wk old F & M F344 rats
 - ♦ 6 hrs/day, 5 days/wk for 13 weeks
 - Whole diluted emissions, 1998 Cummins B5.9
 - 100 % biodiesel produced from soybean oil
 - ♦ 3 levels (H, M, L) plus negative control

LRRI Health Evaluations

- General Toxicity:
 - Body Weight & Feed Consumption, Clinical Observation, Mortality, Hematology (cell counts), Clinical Chemistry (liver & kidney function)
- Pathology (gross and histopathology, all organs)
- Ophthalmology
- Neuropathology
 - Histopathology of brain, spinal cord, nerves
 - Brain glial fibrillary acidic protein
- Reproduction
- DNA Damage:
 - Micronucleus in bone marrow red blood cells
 - Sister chromatid exchange in lymphocytes

Tier II Results

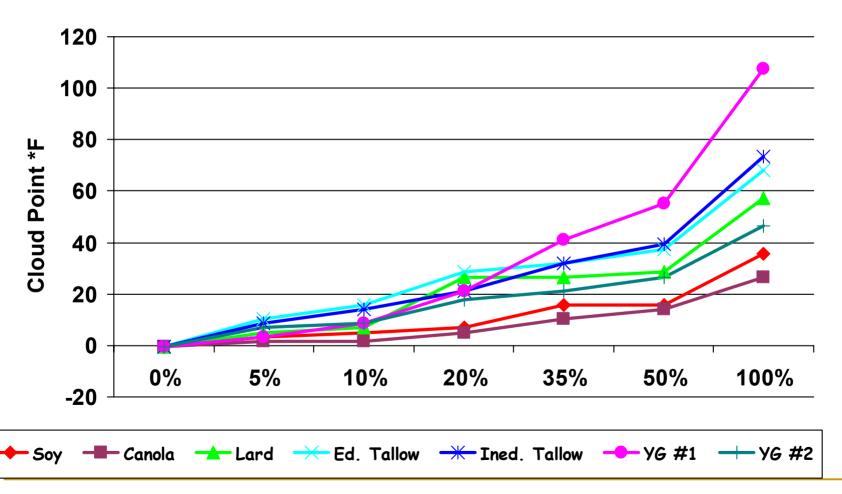
- No Significant Exposure-Related Effects On:
 - Feed Consumption, Clinical Condition, Mortality,
 Ophthalmology, DNA (Micro-nucleus, Sister Chromatid),
 Neural Parameters, Reproduction (Fertility, Teratology)
- Minor Exposure Effects Deemed Not Biologically Significant
 - Body and Organ Weights:
 - Lower liver weight, Higher relative lung weight in F,
 Higher relative testis weight in M
 - Clinical Chemistry:
 - 4 Liver-related parameters decreased, Glucose increased

Tier II Results cont.

- Minor Exposure Effects:
 - Lung Histopathology:
 - Dose-related increase in macrophages containing particulate matter
 - Minor alveolar cell changes in 4/30 females in the high level group
 - Caused by particles, but not toxic effect
 - Effect diminished after 28 days non-exposure
- Only Biologically Significant Biodiesel Exhaust Exposure Effect was a Small Effect in Lungs at the High Exposure Level:
 - Increased macrophages in M & F
 - Slight increase in F lung weight
 - Cellular changes in a few F
- Based on this, the No Observable Adverse Effects Level (NOAEL) was the Medium Level

Biodiesel—The Healthy Alternative

- Based on the health benefits established for biodiesel emissions, many groups are using biodiesel to reduce health risks
 - Miners
 - School bus fleets
- Some people think the exhaust smells good too! Even B20 exhaust has a more pleasant odor than diesel No. 2.



Benefits of Biodiesel

- Blends with petroleum diesel
- Blends up to 20% biodiesel can be used in any diesel equipment with out modification
 - Vehicles
 - Storage
 - Off-road
 - Heating oil
 - Boiler fuels
- No new investments required

Cloud Point Rises as Biodiesel Fraction Increases

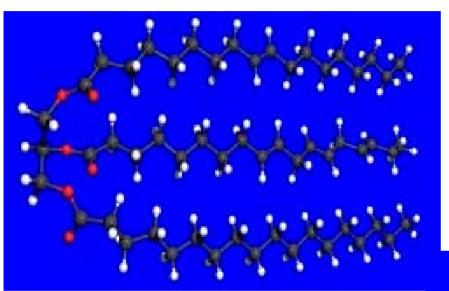
ASTM Biodiesel Definition

- biodiesel, n. -- a fuel comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, designated B100.
- biodiesel blend, n. -- a blend of biodiesel fuel with petroleum-based diesel fuel designated BXX, where XX is the volume percent of biodiesel.

Biodiesel Ingredients

- ♦ Oil or fats + ♦ Alcohol
 - Soy
 - ♦ Corn
 - Sunflower
 - Canola
 - Rapeseed
 - Mustard
 - Cottonseed

- - Methanol
 - **Ethanol**



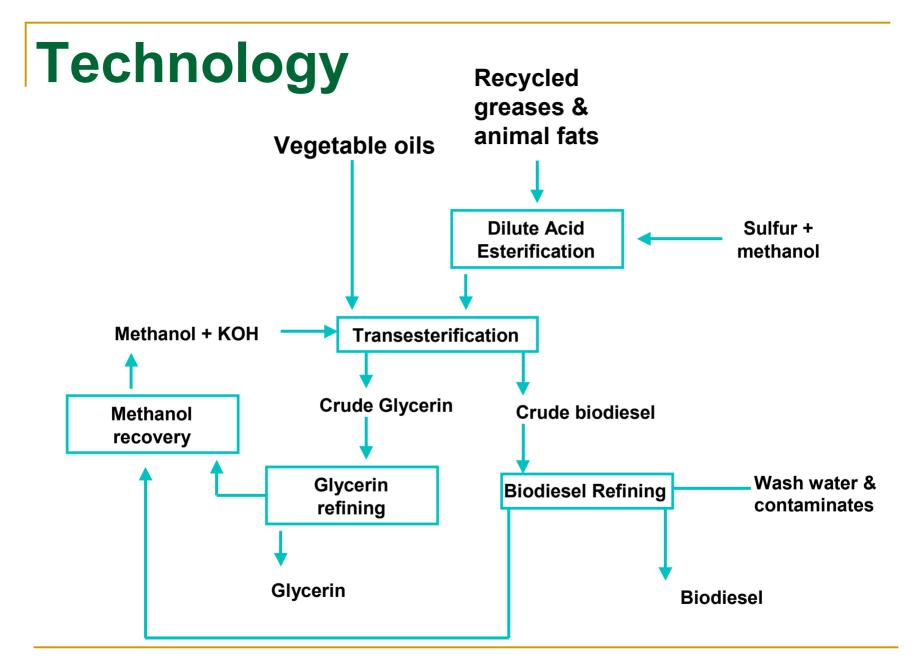
- Catalysts
 - Sodium hydroxide
 - Potassium hydroxide

- Plus
 - Heat
 - Mixing

What are fatty acid alkyl esters?

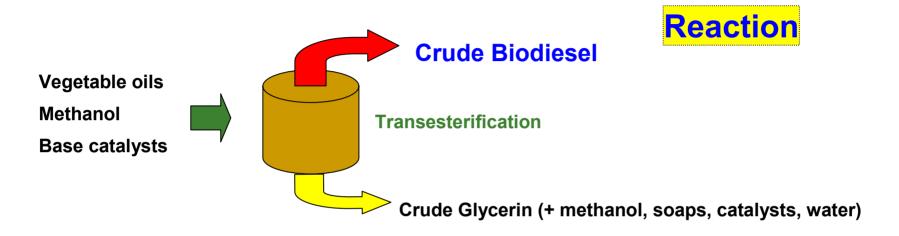
Triglyceride: Fat or Oil molecule

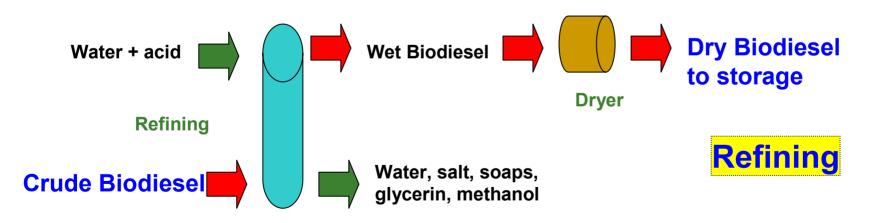
Biodiesel molecules



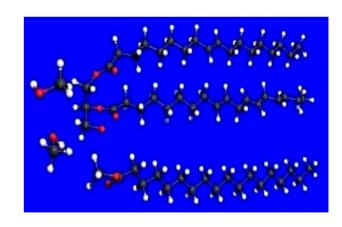
Pictures courtesy of Campa® als Kraftstoff

Glycerin molecule





Quality Processing


Good Production Technology

Reaction

- Transforms 99% (or more) of fats and oil molecules to fatty acid esters
- Minimizes unreacted or partially reacted fatty acids

Refining removes

- Neutralized catalysts
- Methanol
- Glycerin
- Soaps
- Water

ASTM D 6751 -- B100 for Blending

Property	ASTM Method	<u>Limits</u>	<u>Units</u>
Flash Point	93	130.0 min.	degree C
Water & Sediment	2709	0.05 max.	vol.%
Carbon Residue (100% sample)	4530	0.050 max.	wt. %
Sulfated Ash	874	0.020 max.	wt. %
Kinematic			
Viscosity, 40C	445	1.9-6.0	mm²/sec.
Sulfur	5453	0.05 max.	wt. %
Cetane	613	47 min.	
Cloud Point	2500	By Customer	degree C
Copper Corrosion	130	No. 3 max.	
Acid Number	664	0.80 max.	mg KOH/g
Free Glycerin	6584	0.020	wt. %
Total Glycerin	6584	0.240	wt. %
Phosphorus	4951	0.0010 max	wt, %
Vacuum distillation	1160	T-90 <u><</u> 360	°C max

Commercial Technology

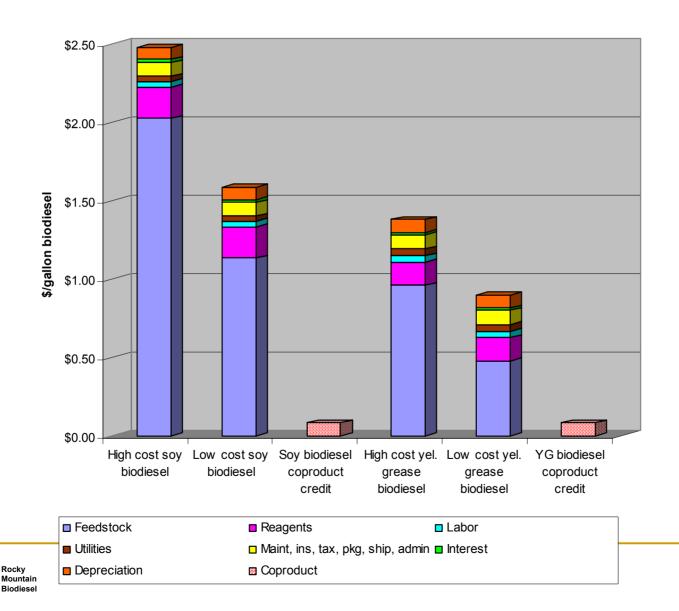
- Century old technologies
- Numerous patents
- Dozen + technology vendors
- ♦ 99% + yields
- Any feedstock
- Sizes from 0.5 million gal/yr to 60 mil gal/yr
- With and without crushing technology

Vendor Qualifications

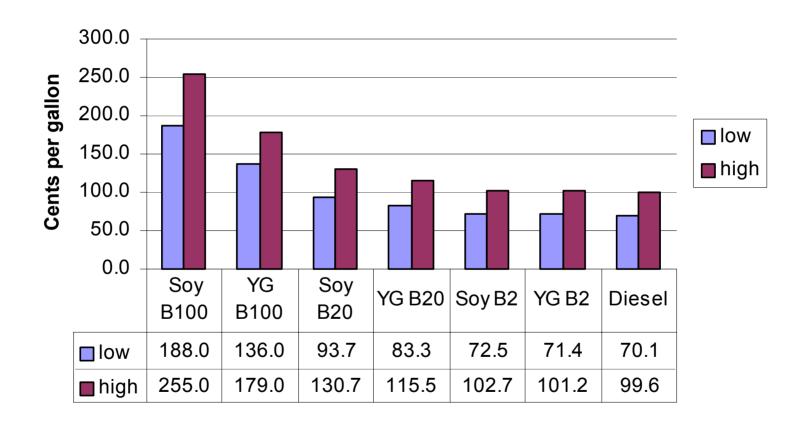
- Existing facilities operating in good standing
- Performance guarantees
 - Quality guarantees (ASTM)
 - Cost guarantees
 - Yield guarantees
- Technical support
- Training
- Feedstock optimization

Feedstock Variables

- What kind of feedstock
 - Free fatty acid content
 - Price
 - Cold flow characteristics
 - Supply volumes
- Mixing feedstocks
 - Controls price
 - Controls properties
 - Complicates USDA payments
 - Complicates potential excise tax incentives



Scaling up "home brew"


- Home brewers' DO NOT make ASTM quality biodiesel on a consistent basis
 - Generally using low temperatures, no pressure
- You can invest in scale up development
 - Include extra costs for
 - Engineering
 - Longer shakedown period
 - Equipment replacement
 - Technical assistance
 - Higher working capital

Production Costs

B2 to B20 Can be Affordable Premium Fuels

Biodiesel Markets

- **▶** B100
 - Expensive, technical limitations, not recommended
- **▶** B20
 - Bulk fuel fleets, primarily government, some retail
 - High cost offset by emission benefits
- ▶ B2
 - Commercial as premium diesel
 - Lubricity value, fuel diversity

Market Issues

- What markets are available?
 - B20, who are they
 - ▶ B2, which petroleum distributors?
- What volumes will move
 - In the first six months
 - By the second year
- What will you have to do to compete?
 - Vis-à-vis other biodiesel distributors/producers
- How will you build your markets?

Potential Incentives

- Federal Excise Credit
 - Reduces on road taxes paid by <u>Blenders</u>
 - 1 cent per 1 percent vegetable oil biodiesel
 - 0.5 cent per 1 percent WVO biodiesel
- Blenders' Income Tax Credit
 - Same as above except for OFF-road uses
 - Limited by income tax obligations
- States offering a variety of incentives

Renewable Fuel Standard

- X% of (on road gasoline + on road diesel) must be renewable by 2012/2015
 - Not passed into law yet
 - Ethanol is cheaper per gallon than biodiesel
 - Refiners will use ethanol
 - Some refiners will use biodiesel
 - Farm belt
 - Won't create big markets for biodiesel without the excise tax credit

Near Term Biodiesel Supplies

Current
Supplies
equivalent to
using 5.5%
biodiesel in all
on-road diesel
markets in the
U.S. in 2003

	Million	Million	Million
	Lbs/yr	Gal Oil	Gal B100
		Per year	Per year
Soy	2,250	292	304
Corn	1,130	147	153
Sunflower	465	60	63
Canola	0	0	0
Cottonseed	140	18	19
Peanut, Safflower, Linseed	190	25	25
Edible tallow	465	60	63
Lard	85	11	11
Inedible tallow & greases	2,837	368	383
Other fats & oils	399	52	54
Poultry fat	221.5	29	30
Fish oils	27.9	4	4
Yellow grease	406	53	55
Trap grease	3,808	495	514
Total biomass oils	13,424	1,614	1,677

Summary

- Feedstocks are available
- Feedstock cost generally higher than petroleum diesel wholesale cost
- Production technology available for most feedstocks/scales
- Environmental, health benefits creating demand
- B2 & B20 markets growing
- Off-road uses growing
- Without incentives, economics not strong
- Incentives could create a boom

