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The Hugoniot of shock-compressed liquid helium was calculated using the activity expansion dense plasma
program. The predicted maximum compression is at 100 GPa and 58 000 K, at a density nearly six-fold that of
the initial state. Comparisons are made with recent path-integral Monte Carlo simulations, which predict a
smaller maximum compression of 5.24-fold, near 360 GPa and 150 000 K.
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I. INTRODUCTION

As helium is the second most abundant element in the
universe, its equation of state �EOS� at astrophysical condi-
tions is of great scientific interest. At the present time, only
shock-wave experiments have access to these extreme pres-
sures and temperatures, and the only shock-wave measure-
ments for liquid helium, reported to date, are those of Nellis
et al.,1 made using the Livermore two-stage gas gun. The
Hugoniot is the locus of states accessible by shock-
compressing a sample starting from a set initial state. With
liquid He, Nellis et al. obtained a maximum compression of
V0 /V=3.3, at a pressure of 15.6 GPa, and a calculated tem-
perature of 12 000 K. V0 is the initial volume of the liquid
being shock compressed, and V is the volume at maximum
compression. From the perspective of astrophysical model-
ing, an accurate knowledge of the maximum compression
attained on the Hugoniot places an important constraint on a
useful EOS model. In order to obtain an effective pair poten-
tial useful for theoretical modeling, Ross and Young �RY�
employed a soft-sphere fluid theory and fitted the potential to
the principal Hugoniot �single shock�, and to a second or
reflected shock near 56 GPa and 22 000 K.2 Subsequently,
Chabrier and co-workers3 used liquid hard-sphere perturba-
tion theory to obtain a potential from the Hugoniot measure-
ments.

The chemical picture methods2,3 are best suited to normal
liquids, but at the extreme conditions reached in astrophysi-
cal applications they become increasingly unreliable due to
He2

+ dimer formation, ion-ion scattering, and the treatment
of electron excitation leading to the fully ionized plasma
state. An advance in this direction was made recently by
Militzer.4 Using path-integral Monte Carlo �PIMC� and den-
sity functional theory–molecular dynamics �DFTMD� simu-
lation methods to calculate the He Hugoniot, Militzer ob-
tained a 5.24-fold maximum compression near 360 GPa and
150 000 K. With more powerful lasers,5 helium can be
shocked to pressures high enough to examine and help to
develop a variety of potentially useful theoretical models. In
this paper we report calculations of the He Hugoniot made
using the activity expansion �ACTEX� dense plasma program.
ACTEX predicts a 5.95-fold maximum compression near
100 GPa and 58 000 K. The method is described in Sec. II.
The results of calculations are in Sec. III and they are dis-
cussed in Sec. IV.

II. THEORY

Hugoniots are calculated from an equation of state by
solving the equation

E − E0 = �1/2��P + P0��V0 − V� . �1�

E, P, and V are the total energy, pressure, and volume of the
final shocked state, respectively, and the subscripted vari-
ables refer to the initial conditions. For liquid He at 4.2 K,
V0=32.4 cm3/mol. The starting point for the ACTEX EOS
program6–10 are the Coulomb interactions between all the
electrons and nuclei in the system, in bound, scattered, and
free states. The non-ideal Helmholtz free energy is expanded
in terms of two-body, three-body, etc., clusters, i.e., an Abe11

cluster expansion.6,7 The leading terms are

F − F0

VkT
= SR + �

i,j
Si,j + �

i,j,k
Si,j,k, �2�

SR=1/12��D
3 , where �D is the ion-ion Debye screening

length, and the higher-order terms are

Si,j = − ninj�Bi,j�T,�D� + 2��
0

� ��ui,j −
�ui,j

2
�r2dr� ,

and similarly for Si,j,k, etc.
Bi,j�T ,�D� is the second virial coefficient for a mixture of

ions and electrons in a static screened potential8,9 and �
=1/kT. The ui,j’s are the ion-ion, electron-electron, and
electron-ion potentials. Electron-ion potentials were obtained
for each electron shell by solving the Dirac equation itera-
tively, until a match with experimental ionization energies
was obtained. The potentials were fitted to an analytic
function.9 The free energy is transformed into an activity
expansion, in terms of a pressure,10 that accounts for the
formation of ions, atoms, and molecules. Quantum effects
are introduced by replacing the Boltzmann factors e−�u with
a trace and using the method of Cooper and DeWitt12 to
introduce electron degeneracy. Consequently, thermal excita-
tion and pressure ionization result naturally from the effect
of multiparticle Coulomb interactions on bound states and
without the introduction of ad hoc assertions. This is a defi-
nite advantage over the chemical picture methods in current
use, which introduce ad hoc models to obtain these effects.

Equation �2� recovers the plasma strong-coupling limit
when a sufficient number of terms are included.10 However,
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at low temperature and high density plasma-neutral and
neutral-neutral interactions become important. The Mayer
activity expansion13 has a very limited range of convergence
for repulsive interactions. In order to include the effect of
neutrals, we have developed an activity expansion method8

that converges similarly to the virial expansion for repulsive
neutral interactions. So far, we are only able to account for
terms of order of the second virial correction. Consequently,
the ACTEX method works best for partially ionized, low- to
moderate-density plasmas, and for multiply ionized plasmas.
This places a lower limit to the pressures that may be reliably
predicted. In such cases, potential energy functions for
He-He and He2

+ need to be introduced.
In principle there are an infinite number of He-He* ex-

cited states lying just below He2
+ in energy that would pro-

duce a divergent partition function in the absence of many-
body effects. These states make only a small contribution to
the EOS.14 In order to get an expansion that selects the rel-
evant species at a given temperature, it is necessary to split
the cluster coefficients into bound and scattering parts.6,10 At
the temperatures of interest herein, the rotovibrational and
scattering states are nearly classical and were calculated in
the WKB approximation.

The Hugoniot calculations reported here include potential
energy curves calculated for the ground state and the lowest
bound and scattered states of the He2

+ system. Since the
low-lying states have long been of importance to experimen-
tal and theoretical chemists, for studying the physics of
He-He+ scattering,15,16 it is necessary to include these inter-
actions in theoretical models analyzing shock data. The po-
tential energy curves for He2 and He2

+ were determined us-
ing Pople’s configuration-interaction method17 and
Dunning’s correlation consistent polarized valence triple zeta
basis set.18 These potentials are plotted in Fig. 1.

The 1�g
+ ground state of He2 has the electron configura-

tion �1�g
21�u

2� with no net bonding. The potential curve is
basically repulsive except for weak long-range polarization
forces. Analyses of highly accurate calculations19,20 on the
ground state of He2 have shown that these forces give rise to
a potential well of approximately 11 K. The He2

+ molecular
ion is formed by removing one electron from the �u anti-

bonding orbital of the ground state of He2, giving the X 2�u
+,

the bound He2
+ state with the electron configuration

�1�g
21�u�. The net number of bonding electrons leads to a

binding energy16 of 2.474 eV relative to the He+�1s�
+He�1s2� dissociation limit. The X 2�u

+ potential energy
curve in Fig. 1 has a well depth of 2.44 eV in good overall
agreement with previous calculations.20,21 The first excited
state of He2

+, A 2�u
+, has the configuration �1�g1�u

2� with a
net number of antibonding electrons. Consequently, the po-
tential energy curve is repulsive at the internuclear separa-
tions shown in Fig. 1. Bagawagan and Davidson22 have
shown that this state undergoes a curve crossing with the
C 2�g

+ excited state at an internuclear distance of 0.767 Å.
This state was not included in the Hugoniot calculations. It is
beyond the scope of our present effort to include all of the
excited species such as He-He* possibly present, but if in-
cluded they would likely reinforce the predictions of a large
compression by absorbing more shock kinetic energy and
constraining the temperature rise. In a fashion similar to that
described in Ref. 14, we reorganized the activity equations in
terms of the activities of electrons He2+, He+, He, and He2

+.

III. RESULTS

Plotted in Fig. 2 are the results of the present ACTEX cal-
culations: the Hugoniot measurements of Nellis et al.,1 ear-
lier calculations by RY,2 and the recent PIMC simulations of
Militzer.4 The RY Hugoniot, which was computed using only
the He-He potential increases smoothly and reaches its maxi-
mum compression at the ideal gas limit of V0 /V=4. The
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FIG. 1. Helium intermolecular potentials used in the ACTEX

calculations.
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FIG. 2. �Color� Helium Hugoniots. Shock pressure versus com-
pression V0 /V, V0=32.4 cm3/mol. Experimental measurements,
Ref. 1 �filled circles�. RY Hugoniot computed using soft-sphere
fluid variational theory using He-He potential fitted to the principal
Hugoniot �Ref. 2�. PIMC �solid curve� and DFTMD-el �small
dashed curve� calculations �Ref. 4�. ACTEX Hugoniots from left to
right: �a� He2

+ with scattering states �red curve�; �b� He2
+ with

bound and scattering states �black curve�; �c� omitting He2
+ bound

and scattering states �blue curve�; �d� He2
+ with bound states �green

curve�.
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PIMC simulations4 predict a Hugoniot with a maximum
compression near 5.24-fold at a pressure of 360 GPa and
150 000 K �kT=12.93 eV�. But the PIMC Hugoniot does not
converge to the experimental shock measurements. Instead, a
convergence of theory with experiment is achieved by em-
ploying a DFTMD simulation with electronic excitations
added on �DFTMD-el�.

As discussed above, the ACTEX calculations include
higher-order plasma corrections, but are currently limited to
second virial corrections for repulsive interactions that occur
at low temperature. The lowest temperature considered along
the Hugoniot in the present work is about 4000 K, where
neutral helium is the main contributor and PV /nkT is 1.45 at
15 000 K. At these values of PV /nkT, the second virial term
is dominant. The third virial term would make a small con-
tribution and has been neglected. In the case of deuterium,
considered in Ref. 8, PV /nkT is somewhat larger.

In the present study, four sets of ACTEX Hugoniot calcu-
lations were made, each with a different combination of
bound and scattering states, the purpose being to gather in-
sight into the influence that different interactions play in
shaping the Hugoniot. All four sets of calculations included
the He-He ground state, thermal electronic excitations, and
ionization and connected smoothly to the gas gun shock
measurements near 16 GPa. The most physically correct of
the ACTEX calculations, the “full model” �black curve� in-
cludes both the bound He2

+X 2�u
+ and A 2�g

+ scattering state
interactions. This Hugoniot softens with increasing pressure,
reaching a maximum compression near of 5.95-fold at a
pressure of 100 GPa and a temperature of 53 000 K �kT
=4.57 eV�. Above 360 GPa, the PIMC and ACTEX results
begin to converge, and with increasing pressure and tempera-
ture approach the fourfold compression limit of an ideal gas
plasma.

The Hugoniot that includes the bound state X 2�u
+ but

omits the scattering state A 2�g
+ �green curve� leads to an

increase in the maximum compression relative to the full
model. Omitting the bound state and keeping just the repul-
sive scattering state gives the least compression �red curve�.
In a fourth calculation, both bound and scattered states are
omitted. This leads to some cancellation, but is shifted to-
ward higher compression than if bound and scattering states
are included. The reason is that, while the bound state X 2�u

+

is attractive and pushes to greater compression, and the re-
pulsive scattering state A 2�g

+ pushes to less compression,
dropping both states creates more compression due to the
removal of the more repulsive scattered state. The calculated
temperatures are plotted in Fig. 3. Surprisingly, the nearly
linear relationship is virtually the same for PIMC,
DFTMD-el,4 and all four ACTEX calculations. The RY tem-
peratures are the highest at all the pressures due to the ab-
sence of any thermal excitations. ACTEX was not used to
calculate the second shock point of Nellis et al.1 at 56 GPa.
This point, which has a large uncertainty, had been calcu-
lated in the earlier report2 by RY employing soft-sphere fluid
theory and using only the He-He potential. Some insight into
the physical changes occurring along the Hugoniot may be
drawn from an examination of the species concentration
shown in Fig. 4. Starting from the liquid, and up to
15.6 GPa, the gas gun experiments show no evidence for

electronic excitation. This is consistent with our calculations,
which show that, starting near and above 20 GPa, thermal
excitation initiates formation of the low-lying X 2�u

+, the
bound He2

+, and the A 2�g
+ scattering states. Near 60 GPa,

the X 2�u
+ He2

+ species reaches its maximum concentration at
about 20%. The He+ concentration up to this pressure is
mostly associated with the scattering state and is also near
20%. With increasing pressure the concentration of bound
He2

+ decreases while the fractions of He+ and He2+ increase
due to K-shell ionization.

Over the entire pressure range, the repulsive fraction of
He atoms steadily decreases and the total fraction of ions
increases. The two curves cross near 170 GPa. Above this
pressure, the system becomes increasingly dominated by the
dense plasma phase. It is arguable that the crossing near
170 GPa is related to the maximum compression predicted to
occur near 100 GPa. Since the PIMC calculations predict a
maximum compression near 360 GPa, a scaling argument
would predict that the atom and ion curves cross near
500 GPa and that ionization increases less rapidly with pres-
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FIG. 3. Calculated helium shock temperatures versus compres-
sion. PIMC and DFTMD-el results were taken from Ref. 4. The
ACTEX Hugoniot temperature calculations include He2

+ bound and
scattering states �solid curve�.

FIG. 4. Concentration of species �indicated� calculated along the
ACTEX He Hugoniot, plotted in terms of ion fraction and pressure.
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sure in the PIMC calculations than by ACTEX. In order to
obtain a better understanding for the origin of these differ-
ences, it is necessary to have knowledge of the species frac-
tions present along the PIMC Hugoniot.

IV. DISCUSSION

To some extent, the interest in the shock compression of
liquid He stems from the controversy, regarding shock-
compressed liquid deuterium �where the maximum compres-
sion measured experimentally and predicted theoretically�,
which lies over a wide compression range from 4.3-fold
�Ref. 23� to near six-fold.24,25 For the case of D2, a PIMC
calculation predicts a maximum compression near 4.2-fold
�Ref. 26� and for He near 5.24-fold,4 while ACTEX consis-
tently predicts maximum compressions nearer six-fold.8

In the case of He, thermal electron excitation is the domi-
nant mode of change along the Hugoniot, in contrast to D2

where it is molecular dissociation, making any casual com-
parisons likely to be deceptive. However, considering the
relative simplicity of the He atom and the fact that four
variations of the present model made only relatively small
differences in the Hugoniots, it is likely that theoretical pre-
dictions of the maximum compression for He will be more
reliable than for D2. For example, the He predictions of
PIMC �5.24-fold� and ACTEX �5.95-fold� calculations aver-
age to a maximum compression of 5.6 and are in better
agreement than for the case of D2.
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