Quality Control Procedures: one lab director's perspective

Greg Miller, Ph.D., DABCC, FACB

Professor of Pathology Director of Clinical Chemistry Director of Pathology Information Systems Virginia Commonwealth University Richmond, VA

Integrated Quality System

What the lab director needs to know

Result has a high probability to be correct

- Information needed:
 - What can go wrong (risk assessment)
 - How to monitor the measurement process
 - Data to support the result is correct

What can go wrong

- Manufacturing
- Transportation
- Storage
- SOP by user
- Measurement process

What can go wrong: transportation and storage

- Temperature and humidity
- Stability after opening

What can go wrong: SOP by user

- Sample handling
 - Incorrect volume
 - Incorrect fluid, anticoagulant, preservative
 - Evaporation, storage, mixing
 - Pretreatment
- Reagent lot with incorrect calibrator
- Procedural errors

What can go wrong: measurement process

- Calibration drift or shift
 - Reagent stability (esp. after opening)
 - Calibrator stability (esp. after opening)
 - Dirt (e.g. spilled reagent or sample)
- Imprecision deterioration
- Component failure
 - Fluid handling
 - Temperature and humidity control
 - Electronics

How to monitor the measurement process

- Traditional QC
 - Assess overall performance with surrogate samples
- Measurement system monitors, e.g.:
 - Volumetric parameters
 - Signal magnitude and stability
 - Electronic simulator
- Equivalent QC
 - Internal controls

Essential components of QC

- Know method performance characteristics when it is working correctly (i.e. is stable)
- Have stable monitoring processes
- Define acceptance criteria for the monitoring results that can verify stable method performance
- Document the process

Statistical Process Control

Verify that a measurement system is performing as expected

- 1. Calibration has not changed
- 2. Imprecision is within the expected variability
 - Must include all sources of variability over an extended time period

Sources of variability; normal operation

- Gaussian error distribution
 - Pipet system
 - Temperature control
 - Electronic noise, detector response
- Non-Gaussian error distribution
 - Reagent, calibrator or QC deterioration (esp. after opening)
 - Calibration cycles
 - Reagent lot changes
 - Calibrator lot changes
 - Instrument maintenance, component replacement
 - Environmental control (temp., humidity)

Variability must include all sources

Variability must include all sources

Important limitation of QC materials

- Frequently, QC materials are NOT commutable with native clinical samples
- Commutable means a QC material has the same numeric relationship between two methods, or reagent lots, as observed for native clinical samples

Reagent lot change: patient samples comparison

Reagent lot change: QC samples

QC Acceptance Criteria

- Method stability
- Clinical requirements

Interpretive rules are based on:

- Probability to detect an error of magnitude that can impact clinical care
- Low false alert rate

Most common causes of QC alert

- 1. QC material has deteriorated
 - Mishandled after opening or reconstituting
 - Analyte stability less than desired
- 2. False alert due to inappropriate acceptance criteria
 - Reagent lot change causes change in target value
 - The inherent variability in the measurement procedure was underestimated
 - 1-2_s rule was used
- 3. Measurement procedure problem

QC Fault Response

Further technical investigation

- 1. Identify and correct the problem.
 - Do not assume an "outlier"
- 2. Repeat patient samples.
 - Sample patients over affected time interval to determine if/when clinically significant changes occurred
 - Written acceptance criteria
 - Correct reported results if a clinically significant analytical problem occurred

QC alerts requiring intervention (Does not include QC material degradation, nor new lot mean adjustment issues)

Most common causes of variability in patient results

- Calibrator lot to lot variability
- Reagent lot to lot variability
 - which always requires a re-calibration

Lot to lot variability: T4

Patient samples comparison

Lot to lot variability: TSH

Patient samples comparison

Lot to lot variability: Troponin I

Patient samples comparison

Point of Care / Near Patient Testing

- MD expects same reliability as main lab
 - Typically less precise
 - May have different measuring range
 - May have different specificity (interferences)
 - Need sophisticated internal controls

B-type Natriuretic Peptide

POC Meter		Lab	Meter	Lab
Mean, pg/mL	94	50	1586	1785
SD, pg/mL	14	5	357	160
CV	16%	10%	23%	9%

Hemoglobin A1c

POC Meter		Lab	
Mean, %	4.4	5.8	
SD, %	0.3	0.2	
CV	6%	4%	

Meter	Lab		
9.4	10.7		
0.5	0.4		
5%	4%		

Key information needed from mfr.

To define QC monitoring procedures:

- Precision near limits (esp. lower) of AMR
- Expected variability between lots of reagent and/or calibrator
- Results of risk assessment
 - What needs to be monitored
 - Additional risk factors at laboratory level (out of manufacturer's control, but not responsibility)
- Maintenance; what to do, and at what frequency, to prevent problems

Internal controls

- Control for all likely risks, e.g.:
 - Sample volume and type
 - Reagent volume(s)
 - Reagent stability
 - Calibrator integrity, and matched to reagent lot
 - Calibration stability
 - Measurement system integrity
 - User errors
- Disable result if a defect is identified

QC: sampling frequency

Method stability

→ Consider all sources of error

Clinical requirement

- → Patient impact of incorrect results
- → Value of documenting that no error condition was present when result was reported

QC frequency: cost considerations

 Cost of QC materials and reagents to perform the assays

Balanced by:

- Cost of erroneous medical procedure(s)
- Cost of repeating previously reported patient results
- Cost of recollecting samples for those QNS to repeat

Thank you for your attention

Questions?

Comments

Discussion