The tortuous road to global standardization

Creat Jaffe Creat enzymatic

Creat dry chemistry

EC4 working group: IVD effects on the clinical use of creatinine

Remit dd June 7th 2004:

- Define current/expected problems regarding standardization and interpretation of creatinine data in blood and urine
- Assess discrepancies of IVD compatible data and formula's for creatinine clearance
- Assess problems to be expected in formula's for dosage
- Define solutions for the problems

EC4 working group on creatinine

Members:
J Delanghe, Belgium, chairman
M Panteghini, Italy
M Galteau, France
T Brinkmann, Germany
A Harmoinen, Finland
C Cobbaert, the Netherlands

Accuracy of creatinine measurement results: LIMITATONS OF THE AVAILABLE DATA!

HPLC "reference method" is not JCTLM endorsed
 Commutability of EQA materials has not been proven
 Consequence: MAB data are disputable; similar situation for the other countries participating in the EC4 creatinine WG

→ decision to study accuracy of creatinine measurement results after IVD implementation / international context!

LESSON J

- The degree of commutability of the EQAmaterial highly affects method mean & frequency distribution width.
- Solely the use of commutable, liquid frozen controls enables EQAS organizers to get rid of peer group means and unmeaningful consensus means.

LESSON II

The right "tools" are needed to judge lab harmonization and reduction of interlaboratory variability correctly.

" It's time to care about the quality of the sample"

L. Thienpont et al.

LESSON III

- Value assignment of the commutable EQA enables its use as a trueness control.
- Calibration 2000 brought along in 2003/2004
 - a significant reduction of the MAB to ≤ 5% for enzymes AND
 - a significant increase in the % of labs meeting the desirable bias criteria from 40% to > 75% for enzymes.

Creatinine International Trueness Verification Study

- I. Aim
- II. Participants
- III. Study design
 - A. Characteristics of the material
 - B. Value assignment
 - c. Trueness Verification Project
 - D. Time schedule

I. Aim

 To verify trueness of creatinine measurements after implementation of the IVD 98/79/EC <u>across different</u> instruments and methods from the major manufacturers
 How well was the IVD conformity job

done?

II. Participating laboratories

Selected laboratories from Belgium, France, Italy, The Netherlands, Germany, Finland Major manufacturers: Roche, Beckman, Dade Behring, OCD, Olympus, Abbott, Bayer Methods: Jaffe, enzymatic, dry chemistry Three labs per method group and/or per manufacturer and per country \rightarrow > 3 (x 3) x 5 x 6 = > 90 labs Promoted by the EC4 WG members; organization through the national EQA coordinators International coordinator: J. Delanghe

III. Trueness Verification Project

A. Characteristics of the material developed for trueness verification:
NCCLS C37A based (lab Weykamp, Winterswijk)
liquid frozen
commutable
At three levels: 75; 150 and 300 µmol/L
0.5 mL vials
Spiked with NIST 914a crystalline material

III. Trueness Verification Project

B. Value assignment
By JCTLM-endorsed IDMS RM/RL
Duplicate analyses in three independent runs
Expanded uncertainty of ≈ 2%

Also with "HPLC reference method" which was the accuracy base in the Netherlands for > 10 years

III. Trueness Verification Project

C. Project protocol

- Trueness verification material: transported and stored at - 80 °C; analyze within 4 weeks
- Instrument calibration and settings: exactly acc. to the manufacturer's instructions
- Analyse each level in 5-fold in one run.
- Complete result form and add the instrument settings used ---> send the completed form to the national and international coordinators

III. Trueness Verification Project D. Time schedule

2004	004 2005 2006		6
Kick off meeting	Q1/2	Q3/Q4	Q1/Q2
Problem ident.→	Project proposal>	> Trueness verification	tion study
Nov., A'dam	May, Glasgow	In 6 countries / > 90 labs	
Q3 2005			
1. Prepara	tion trueness verific	ation material: Ju	ly 2005 / ready
2. Value as	ssignment		
3. Sending	to national coordin	ators: Sept 2005	
Q4 2005 → Q	2 2006		
1. Analysis	and reporting: Oct	– Nov 2005	
2. Central	Central Data-entry and data verification		
3. Statistic	Statistical analysis		
4. Results	Results and concept publication		

Conclusions

IVD directive requires traceability
 JCTLM defines reference systems
 EC4 creat WG

- Commutable materials: essential for bias assessment
- Development of trueness controls NCCLS C37A based to assess IVD conformity within the context of EC4 creatinine WG
- Trueness Verification Study / international