
Sparse Representations for Image Decomposition with OcclusionsMike Donahue 1 Davi Geiger 2 Robert Hummel 2 Tyng-Luh Liu 21 IMA 2 Courant InstituteUniversity of Minnesota New York UniversityMinneapolis, MN 55455 New York, NY 10012AbstractWe study the problem of how to detect \interestingobjects" appeared in a given image, I. Our approach isto treat it as a function approximation problem basedon an over-redundant basis, and also account for oc-clusions, where the basis superposition principle is nolonger valid. Since the basis (a library of image tem-plates) is over-redundant, there are in�nitely manyways to decompose I. We are motivated to select asparse/compact representation of I, and to account forocclusions and noise. We then study a greedy and it-erative \weighted Lp Matching Pursuit" strategy, with0 < p < 1. We use an Lp result to compute a solution,select the best template, at each stage of the pursuit.1 IntroductionIn the �eld of signal processing and computer visionan input signal or image is a function f over somesubset of R or R2. To manipulate and analyze f , it isuseful to introduce a linear decomposition into basiselements fj , i.e., f = Pj cjfj . An example of a wellknown and useful decomposition of this type is theFourier series expansion.We study the object recognition problem via a ro-bust template decomposition approach. Let the imageto be recognized be I and the template library be L.The task of image recognition is reduced to a functionapproximation problem of the formI(x) =Xj Xi cijAi(�j)(x) =Xi;j cijTij(x) (1)where �j 2 L, Tij = Ai(�j) denotes an a�ne transfor-mation Ai, though in our studies we have just consid-ered translations, applied to the template �j , and cijis the choice of coe�cients that \best" decompose theimage. Typically the library L is large, we have anover-redundant basis leading to in�nitely many solu-tions, cij, to this problem. That is not the case for the

Fourier decomposition. The problem is then, to for-mulate a coe�cient selection criterion and a methodto compute the coe�cients that yields compact repre-sentations.Decomposition with Occlusions: Here we de-part from our previous work [14]. To decompose animage containing occluded objects, a special form of(1) is needed. Since occlusions occur at overlappingobjects, we introduce an occlusion function O suchthatO(Tij)(x) = 8<: Tij(x) if Tij is the toppest oneamong all covering x0 otherwise.The image decomposition problemwith occlusions canbe written as I(x) =Xi;j cijO(Tij)(x) : (2)We will treat O like a polymorphic function that it canalso be applied to a pixel x such thatO(x) = � 1 if pixel x is covered by some template0 otherwise.1.1 Coe�cient selection and concave opti-mizationOur approach is to construct an objective functionF (c) that when minimized selects a best representa-tion, c�, among all solutions c that satisfy the con-straint I(x) =PjPi cijO(Tij)(x) : We require1. Sparse Representation: represent (decompose)an image using as few templates as possible inorder to have an economical (minimal) represen-tation. Field [9] also argued for sparse image rep-resentations in the brain.



2. Occlusions: allow for partial occlusions, i.e., thecost of �tting a template must take into accountthat portions of the template may have a \badmatch".3. Noise: model noise via \noise templates" account-ing for the di�erence between the template �t andthe image. This leads us to search for cost func-tions that escalate with the magnitude of cij, butshould not dominate the �rst condition, i.e., therate of increase in cost as a function of jcijj shoulddecrease.The above consideration leads us naturally to adoptconcave objective functions. In particular, we will pri-marily study the objective functionFp(c) = MXj=1 NXi=1 !ijjcijjp ; (3)where N is the number of possible (translations) trans-formations and M is the size of the template library.The weights !ij are positive scalars, e.g., they may beset to 1 or to the inverse of the template and imagevariances.The sparsity of templates suggests p = 0 to countthe number of utilized templates (weighted by !ij).Noise templates should be paid according to how largethe \repair" is, i.e., how large the error cij is. Thebalance between both processes, sparsity of the tem-plates and noise modeling leads to values of 0 < p < 1.Furthermore, this balance also accounts for occlu-sions. Compared to conventional L2 methods (p = 2),0 < p < 1 will cost less for regions where the error islarge between the template and the image (occlusions).The objective function is non-convex, and in factthe optimization problem will generally have multiplelocal minima. It is possible to characterize all localminima and obtain the global one by visiting them [7].Since the number of local minima grows exponentiallywith the size of the template library we consider analternative greedy algorithm.Recently, and independently, Chen and Donoho[3, 4] studied the overcomplete signal representationproblems with L1 norm optimization. Their method isbased on linear programming, which is e�cient, butonly applies to the p = 1 case and still leads to a slowalgorithm.Comparison with principal component anal-ysis/Eigenfaces: Our approach is fundamentallydi�erent from the \eigenfaces" approach (PCA ap-proach) [17]. In our case the basis functions are �xed

and the adaptation of the method is on choosing theappropriate coe�cients (from a redundant basis) withthe occlusion factor taken into account, a non-linearprocess. In the PCA approach the choice of basisfunction, a linear process, is where the adaptation �rstoccurs, and the whole process of choosing coe�cientsis also linear. PCA works well when the task func-tion is a simple linear superposition of the basis func-tions. A clear scenario to show how di�erent thesemethods can be is the case of edge detection. Supposewe have a few di�erent images to train and anotherimage to test the edge detection for both approaches.Our method, would de�ne edges as step edges andthen \look" at any of the images (e.g., the test one) todecompose it into these operator and an ok edge de-tector would have been built. A PCA approach would�nd the \edge-eigenfunctions" from the training setof images, and hope to describe the next test imageby these edge-eigenfunctions (where the edges are notformed from linear superpositions of the training edge-images). It would be a disastrous edge detector! Thesame should occur for face recognition unless previ-ous \super-normalization" puts them aligned (includ-ing emotional expressions normalization).1.2 Matching PursuitInspired by Mallat and Zhang's work [15] and morerecently Bergeaud and Mallat [2], we consider a match-ing pursuit strategy where, at each stage, the crite-ria of best selection is based on minimizing an imageresidue. In regression statistics, this decompositionmethod is known as Projection Pursuit Regression ,a non-parametric method that is concerned with \in-teresting" projections of high dimensional data (seeFriedman and Stuetzle [10], Huber [11]).The original matching pursuit is based on the stan-dard L2 method. In recognition of image with occlu-sions, the L2 norm is not suitable. We propose an Lpmatching pursuit, 0 < p < 1, to improve the robust-ness. With 0 < p < 1, we lost the structure of innerproduct but the notion of projection can be recaptured,the criterion for a template to be \best matching" or\closest" to the image is to minimize a cost function.(We will adopt the term \Lp norm" though it is notreally a norm.) This modi�cation improves robust-ness of the pursuit scheme but the convergence of Lppursuit is now not guaranteed. The energy conserva-tion equation and so Jones' proof [13] of convergenceof projection pursuit no longer hold.2 Template Library and Image Coordi-natesWe �rst establish a well-de�ned over-redundant li-brary of templates containing non-canonical templates



as well as one canonical template. A canonical tem-plate is a trivial template with zero gray-level valuepixels everywhere except one pixel at the extreme leftand top corner that its gray-level value is 1. More-over, we will assume we can apply translations to eachtemplate (in theory one could apply any a�ne trans-formationwith more computational cost). Clearly, thissingle canonical template plus a set of all translationsform a basis for the image space.Coordinate transformations: Assume that thetemplate library L = f�j : j = 1:::Mg, where wewill use �1 � �1 to represent the canonical template.Let the image to be recognized be I of dimension Nand each template �j be of dimension NT (we as-sume that both N and NT are perfect square num-bers). Furthermore, let P = fp1; p2; � � � ; pNg andQ = fq1; q2; � � � ; qNT g be the pixel sets of I and any �j ,respectively. (We order the pixels from top to bottomand left to right.) Let the translation Ai(�j) indicatethat the �rst template pixel q1 is positioned at the i-thpixel pi 2 P (see Figure 1). We can explicitly describesuch relation as follows:Q�!Ai 
i = fpk : k 2 �i ; �i � f1; 2; :::;Ngg � P: (4)The mapping formula for Ai is such that qr 7!pk = pk(r;i) where 1 k = i + (b r�1pNT c � N ) + (r � 1 �b r�1pNT c �pNT ) : Denote Tij = Ai(�j) and ei1 = Ti1 =Ai(�1) 2, then we have Tij(pk) = �j(qr). Using thesenotations, one can write (2) asI(pk) = NXi=1 ci1ei1(pk) + MXj=2 NXi=1 cijO(Tij)(pk)= NX�=1 c�e�(pk) + M:NX�=N+1 c�O(T�)(pk) (5)where � = �(i; j) = (j � 1) � N + i. We may writeI[k], e�[k] and O(T�)[k] instead of I(pk), e�(pk) andO(T�)(pk), respectively, for simpli�cation.3 Optimization Problem and SolutionEquation (5) can be written in matrix notation asTc = I where T is0BB@ e1[1] � � � eN [1] O(TN+1)[1] � � � O(TMN )[1]e1[2] � � � eN [2] O(TN+1)[2] � � � O(TMN )[2]... . . . ... ... . . . ...e1[N ] � � � eN [N ] O(TN+1)[N ] � � � O(TMN )[N ]1CCA ;1The expression bxc denotes the greatest integer less than orequal to x.2Note that ei1(pj) = ei(pj) = �ij , where �ij = 1 for i = jand �ij = 0 otherwise.
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pFigure 1: The pixel correspondences between I andT� = Tij = Ai(�j). We see that pixel q1 is positionedon pi and qr on pk, respectively.c = (c1; c2; : : : ; cMN )t and I = (I[1]; I[2]; : : :; I[N ])t :Note that if the prototype library forms a basis (lin-early independent), then M = 1, and there is no free-dom in choosing the coe�cients hc�i; the coe�cientsare uniquely determined by the constraint. If thereare linear dependencies in the prototype library, thenM > 1, the prototype library over-spans, and the set ofall solutions hc�i to the constraint forms an (M �1)Ndimensional a�ne subspace in the M:N -dimensionalcoe�cient space. Let S denote this solution space,i.e., dim(S) = (M � 1)N : Using the above matrix no-tations, our optimization problem can be formulatedas:Minc Fp(c) =Minc MNX�=1 !�jc�jp subject to Tc = I(6)where T 2 RN�M:N , c 2 RM:N , I 2 RN , M > 1. Theconstraint space, S, is the set of all c satisfying Tc =I, and is an a�ne subspace of dimension (M � 1)N .We will �rst study the Lp-cost function in (6). It isnatural when analyzing Fp in (6) as a function in thecoe�cient space hc�i to decompose the domain intooctants, where each coe�cient is of constant sign. Thisallows the removal of the absolute values in (6), so wemay treat Fp as a smooth function inside each octant.For example, if we consider the restriction of Fp tothe octant consisting of all points c such that c1 < 0,c2 < 0, and c� > 0 for � � 3, then the cost function in(6) becomesFp(c) = !1(�c1)p + !2(�c2)p +MNX�=3!�cp� :Moreover, it is clear that Fp(c)!1 as kck ! 1,so for minimization purposes it su�ces to considerbounded c. The bound will depend upon the con-straint equation (2), but, for example, if c0 is any
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c 2Figure 2: Illustration of a domain restriction polytopeobtained from the intersection of a 2 dimensional con-straint space S with a rectangular solid bound domainD in a 3 dimensional coe�cient space. In this examplethe intersection is a non-regular pentagon. If the re-stricted objective function F is concave, then its localminima occur at the vertices of the pentagon.solution to (2), then it su�ces to consider only thosec satisfying jc�j � (Fp(c0)=!�)1=p for all �. Recallthat each !� is a positive scalar and can be computedin advance. When combined with the restriction tooctants, we have a decomposition of the pertinent do-main of Fp intoM:N -dimensional cubes of edge length(Fp(c0)=!�)1=p.The intersection of the constraint space S with thesedomain cubes gives rise to convex polytopes, as illus-trated in Figure 2. The system of domain restrictionscan be written out explicitly. For the �rst (positive)octant they areTc = Ic� � d�; 1 � � �M:N (7)�c� � 0; 1 � � �M:N; (8)where previously we considered the case that each d�is at least as large as (Fp(c0)=!�)1=p.The relation c1 = (1; 0; : : : ; 0)t � c � d1 describes ahalf-space in the space hci, and the entire collection (7)and (8) together describe the intersection of 2MN half-spaces, i.e., a polytope with at most 2MN faces. Thegeneral inequality de�ning a half-space is v � c � d�,where v is a vector normal to the bounding hyper-plane, and d� determines an o�set from the origin. Soan arbitrary convex polytope having N 0 faces can bedescribed in the form Bc � d, where B 2 RN 0�M:N ,d 2 RN 0 , and the inequality is interpreted coordinate-wise. So the generalized constraint relations can be

written: Tc = IBc � d: (9)The relations (9) can be viewed as de�ning a poly-tope inside the a�ne space S. If we were to perform abasis transformation to obtain coordinates conduciveto representations inside S, then Fp under the sametransformation would loose its simple form. Evenwithout this consideration, it is useful to study moregeneral objective functions. The speci�c property ofFp of interest to us is concavity. A function F map-ping from a convex domain 
 of a vector space X toR is concave ifF (�x+ (1 � �)y) � �F (x) + (1� �)F (y)for all x and y in 
 and � 2 [0; 1]. The result wedesire (Proposition 1) actually requires only a weakerproperty, which we call pseudo-concave. A functionF : 
! R as above is pseudo-concave ifF (�x+ (1� �)y) � MinfF (x); F (y)gfor all x and y in 
 and � 2 [0; 1]. Clearly any concavefunction is also pseudo-concave.Proposition 1 Let 
 be a closed, bounded, convexpolytope in a vector space X , and let F : 
 ! R bepseudo-concave. Then the global minimum of F on 
occurs at a vertex of 
.4 Multiple Templates and MatchingPursuitLet us assume that the residue at the initial stageis the input image, i.e., R0I = I. Then, at stage n, ifa transformed template T�n(= Tinjn = Ain(�jn )) andcoe�cient c�n are chosen, the n-th residual image canbe updated by \projecting" the Rn�1I in the directionof T�n . More precisely,RnI[k] = Rn�1I[k]� c�nT�n [k](1�O[k]) ; (10)where k = 1:::N and �n = (jn � 1) � N + in. Notethat T�n is only of dimensionNT and we have assumedthat T�n [k] = 0 if k =2 �in as de�ned in (4).Let � be the index set of matched pixels (those cov-ered by the selected transformed templates in the pro-cess of Lp matching pursuit). Clearly, � = ; initiallyand is updated, say at stage n, as �  � [ �in . Sup-pose that Lp matching pursuit is completed inm stagesand T�n is the best selected template with an associ-ated index set �in at stage n, 1 � n � m. Then, we



have � = Smn=1 �in andI(x) = mPn=1 c�nO(T�n )(x) + NPk=1 ckek(x) (11)= mPn=1 c�nO(T�n )(x) + Pk2� ckek(x) + Pk=2� I[k]ek(x) ;where Pmn=1 c�nO(T�n) is the main decomposition,andPk2� ckek is the residual decomposition. The de-composition cost Fp for (11) ismPn=1!�n jc�n jp + Pk2�!kjckjp + Pk=2�!kjI[k]jp =mPn=1!�n jc�n jp + Pk2�(!kjrkjp � jI[k]jp) + Pk2f1::Ng jI[k]jp :(12)The weights related to selection of canonical templateare de�ned as !k = 1 if k =2 � or !k = !�n if k 2 �and T�n is the toppest one covering pk. For every possibledecomposition of I, the set � in (11) could be di�erent butthe last term in (12) is common for all decompositions.The cost Fp in (6) and (12) are total cost. We needto formulate a stage-wise cost function, denoted as Fp, forthe pursuit. Note that Fp is a function of one c ( a scalar)and we have also approximated the computation of Fp toexclude the overlap region and only after a best matchingis decided we resolve overlapping ambiguities if there areany. Intuitively, one may de�ne Fnp for selecting T�n withcoe�cient c�n , at stage n, as!�n jc�n jp + Xk2�in(!�n jrkjp � jI[k]jp)(1� O[k]) ; (13)where rk = jRn�1I[k]�c�nT�n [k]j is the residue at pk. Ourexperiments show that the cost (13) may prefer to matchwhite regions (0 is black, 255 is white). In stead, we de�neFnp (c�n ) as1��n 0@!�n + Xk2�in (!�n jrkjp � jI[k]jp)jc�n jp (1� O[k])1A ;(14)where ��n is the number of pixels covered by T�n withO[k] = 0 and !�n = 1=jV ariance(�jn )j p2 . Our experimentresults show by adapting (14) as the stage-wise cost func-tion, the pursuit can avoid \over-utilization" of templateson dark or white regions, since it is possible for a templateto match very well in a darker region due to a small valueof jc�n j. The weight !�n give the bene�ts of choosing atemplate with more variation (large variance) over a plainone.5 Matching Pursuit ExperimentsSynthetically Randomized Images : Let's beginwith a simple but instructive experiment to test our tem-plate matching algorithm for a synthetic example. In this

(a) (b) (c)(d) I1 (e) R1 (f) R2Figure 3: (a), (b), (c) are synthetic template type 1,type 2 and type 3, respectively. (d) Test image I1 withnoise added and occlusion. (e) Result of the decom-position for the Lp with p = 0:25. (f) Results once thebreakdown limits are reached, and occluded objectsare not recognized when p � 0:75.experiment, the template library L consists of three di�er-ent types (or shapes) of templates ((a), (b), (c) in Figure3). There are 40 templates for each type so that L includes120 non-canonical templates and one canonical template�1. Each of the non-canonical template is a syntheticallyrandomized image with gray-level values between (0; 200)generating from a random number generator. To constructa test image I1 (as in Figure 3-(d)), we �rst select one non-canonical template randomly from each template type in Lto form the base (exact) image then add noise and an oc-cluded square derived from uniform distribution in (0; 10)and (245; 255), respectively. The threshold values used insimulation vary with respect to the value of p for Lp match-ing pursuit. Our results suggest for p 2 (0:25; 0:75), theLp pursuit is rather robust. But, as shown in Figure 3-(f)R2, it failed to recognize the occluded object for p � 0:75.Face Recognition : A small library of face templateshas been established (see Figure 4 (a)-(j)). The dimensionof all 10 face templates is 64� 64. Numerous experimentshave been carried out to test our algorithm. To illustrate,consider the two real images, I1 and I2, in Figure 5 (a)-(b). We obtained decomposition results R1 and R2 shownin Figure 5, for p = 0:25. (Similar results are derivedfor p = 0:50, 0:75.) When p = 2, it is indeed the L2matching pursuit method and the recognition results areR3 and R4. Our proposed Lp matching pursuit has therobustness advantage over the L2 one.References[1] J. Ben-Arie and K. R. Rao, \On the Recognition ofOccluded Shapes and Generic Faces Using Multiple-Template Expansion Matching", Proceedings IEEEInternational Conference on Pattern Recognition, NewYork City, 1993.



(a) (b) (c) (d) (e)(f) (g) (h) (i) (j)Figure 4: (a) - (j) are the 10 face templates used inthe face recognition experiment.
(a) I1 (b) I2(c) R1 (d) R2(e) R3 (f) R4Figure 5: (a),(b) The test images, where some tem-plates are present with small distortions (scale andviewing angle), noise and occlusions. (c),(d) Imagedecomposition for Lp matching pursuit with p = 0:25(similar results are obtained for p up to 0:75). (e),(f)Image decomposition for p = 2:0 and recognition is de-stroyed (this is equivalent to use correlations methods,like in the L2 matching pursuit). Note that in decom-position for I2, we have used two booklike templatesbesides the face templates.
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