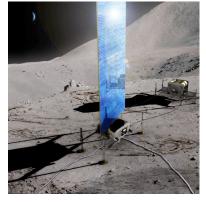
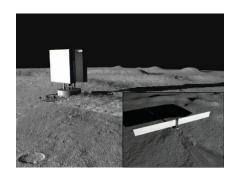

National Aeronautics and Space Administration

Energy Storage & Power Systems Technology Needs & Gaps





ESMD Technology Exchange Conference

Galveston Island Convention Center November 14 & 15, 2007

Dave Hoffman, ARES V Power Nang Pham, ARES V Power Rob Button, Lunar Lander Power Lead Joseph J. Nainiger (NASA Glenn) Lunar Surface Power Element Lead Constellation Lunar Surface Systems Office

Agenda

- ARES V
- Lunar Lander
- Surface Power (Lunar and Mars)

National Aeronautics and Space Administration

ARES V Power

Power for ARES V

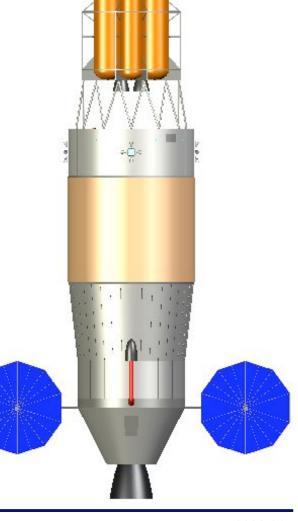
- Power for solid rocket booster (SRB) thrust vector control (potential use of electrohydrostatic actuators)
- Power for core stage systems
- Power for the Earth Departure Stage (EDS) systems (including potentially long Earth orbit loiters)
- Also EDS will supply TBD amount of power to Lunar Lander from launch through trans-lunar injection (TLI) burn

Power for SRB Thrust Vector Control

- Potential use of electrically-powered thrust vector control system has significant weight, operability, safety, and maintainability advantages
- Key component to power source is to have high specific power in order to attain desired weight reduction.
 - High voltage (e.g., 270VDC)
- This power source does not exist.
- Development of high power supply such as high power lithium-based battery or non-toxic turbine-electric power unit is necessary for this system to be viable

Electro-Hydrostatic Actuator

Non-toxic Turbine-electric Power Unit


EDS Power Architecture Options

Solar Array & Lithium-Ion Battery

- Provides for indefinite loiter times
- ↑ Lower heat rejection requirements
- ↑ Opportunity for commonality with Orion systems
- Performance may be impacted by vehicle attitude during loiter
- Requires deployment mechanisms & tracking gimbals
- ↓ Size array for TLI loads or jettison prior to TLI

• Primary Fuel Cell

- ↑ Opportunity for commonality with Lander systems
- Performance not impacted by vehicle attitude during loiter
- ↑ No significant mechanisms required
- ↑ TLI loads should not be an issue
- Loiter times constrained by reactant budget
- Higher heat rejection requirements

National Aeronautics and Space Administration

Lunar Lander Power

Lunar Design Analysis Cycle (LDAC) Summary

- Initial Lander DAC began 5/1/07, ended 6/30/07.
- Took a "minimal functionality" approach
 - Not intended to be a "flyable" vehicle
 - Provides a starting point for informed risk reduction
 - Provides key data point: if minimally functional vehicle doesn't fit in the architecture, the architecture is broken
- Primary LDAC1 design figure of merit: maximize payload to the surface of the Moon with a crewed Lander
- LAT strategy was to build up a lunar outpost by incremental deliveries with a crewed Lander
 - Goal of 6 metric tons delivery capability; strategy unworkable if delivery capability is less than 4 metric tons
- LDAC1 minimum functional Lander delivered less than the 4 metric tons of payload required with crewed Lander
- Conclusion: Cargo variant of Lander is required to build up the lunar outpost
- LDAC1 "delta"
 - Re-designed the Lander to focus on the Cargo lander capability.
 - Investigate new vehicle configurations in order to drive down structure and module mass.
 - LDAC1-delta completed October 31, 2007.

LDAC-1 Starting Point (cont.)

- 3 DRMs with Mission Timelines and Functional Allocations
 - Sortie Mission to South Pole
 - 4 Crew / 7 Days on Surface / No support from surface assets
 - No restrictions on 'when' (accommodating eclipse periods)
 - Outpost Mission to South Pole
 - 4 Crew with Cargo Element (LAT2 Campaign option 2)
 - Outpost provides habitation on surface (down and out)
 - 210 Days with surface support (power)
 - Cargo Mission to South Pole
 - Short duration, large payload
- One Lander design, with variants (kits) if required for the different DRMs

LDAC1 Lander Sortie Configuration

LDAC1 Power Subsystem Operational Concepts

- Operational Concepts for a minimally functional vehicle
 - Lander is launched un-powered.
 - Shortly after achieving LEO, the Lander is powered-up and "checked out" for 3 hours.
 - Following check-out, the Earth Departure Stage (EDS) provides 1.5kW to Lander for quiescent power requirements during a 14-day loiter.
 - The CEV (Orion) docks to Lander in LEO. Prior to the Trans-Lunar Insertion (TLI) burn, the EDS cuts off power and Lander gets 600W from CEV while in LEO.
 - Lander may have to augment or provide own internal power during this period.
 - Following TLI, CEV provides 1.5kW to Lander
 - Lander powers-up 24 hrs prior to the Lunar Orbit Insertion (LOI) burn.
 Provides full power to itself through the rest of the mission.
 - About 50 hrs. during in-flight and landing phases.
 - About 168 hrs. during a 7-day Sortie mission on the lunar surface.
 - The Outpost and Cargo Lander plug-in to a surface power system to maintain the Lander during a 210-day waiting period prior to ascent.
 - The Lander is self-powered during ascent to CEV and through short docking period.
 - It then un-docks and is disposed of in lunar orbit or a de-orbit burn into the lunar surface.

Technology Needs

- Fuel cell technology needs
 - High power density and high efficiency fuel cell stack.
 - Long life (5000 hours), maintenance-free operation.
 - To be common with surface
 power
 - Passive "balance of plant" components to decrease power use
 - Increase the reliability and fault tolerance of fuel cells system without adding redundancy.
 - Passive dissolved gas removal from water
 - Ability to separate/filter GHe from mixtures of GH₂/GHe and GO₂/GHe.

- Battery technology needs
 - High energy density secondary battery (200Whr/kg battery)
 - Limited cycles (10 max.)
 - Short shelf/operational life (2 years)
 - Discharge capability between 1-4C
 - Low mass, high reliability circuitry to isolate failed cell(s) or strings.
 - Space qualified fuse for low voltage (24-36Vdc) and high currents (100A cont., 200A peak)
- Power Distribution needs
 - Modular, low-mass remote power controller (28Vdc, 1-2A)
 - Reliable, low-loss primary switchgear (28Vdc, 100-200A)

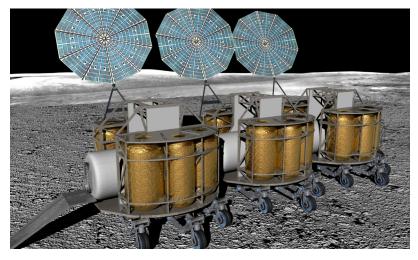
National Aeronautics and Space Administration

Surface Power

www.nasa.gov 12

Lunar Architecture Team (LAT) Summary

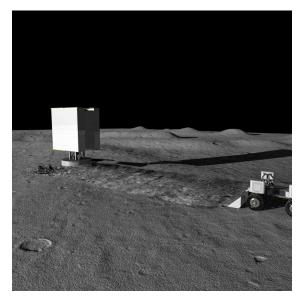
- LAT II began 1/22/07, ended 8/31/07
- Architectural options evaluated (all at Shackleton Crater rim site)
 - Option 1: All elements delivered with crewed flights (LAT 1)
 - Option 2: Derivative of LAT 1 except uncrewed lander can deliver hardware to surface provided all elements must be sized to fit on a crewed lander.
 - Option 3: A single large, fully outfitted and pre-integrated habitation launched and landed on a single uncrewed mission
 - Option 4: The lander has integrated surface mobility (mobile lander)
 - Option 5: Long range, pressurized rover delivered as early in the sequence as possible (Captured in each)
 - Option 6: Nuclear power used for the surface power in lieu of solar
- Power systems
 - For options 2 and 3 multiple stand alone solar array units with multiple standalone regenerative fuel cell (RFC) energy storage units
 - For option 4 integrated solar arrays and RFC units with mobile surface landers
 - For option 6 a single fission surface power system emplaced below lunar surface to take advantage of regolith radiation shielding
 - For options 2, 3, and 6 extensive power management and distribution (PMAD) network (including power cabling)
 - For option 4 integrated PMAD with mobile landers

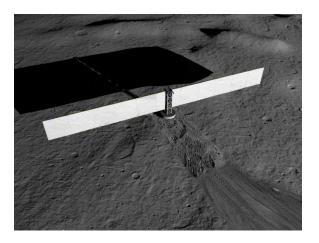


LAT II Photovoltaic - Regenerative Fuel Cell Systems

Two PV power system design concepts

- Stationary solar array included in options 2 and 3
 - Concept derived from rectangular ATK Aurora design
 - Vertical orientation mitigates dust interaction and potential synergy with communications tower
- Circular array based on ATK Ultraflex design included in option 4
 - May be better for mobile applications
 - Has greater structural integrity
 - Some commonality with Orion arrays
- Both array types deployed with some potential for limited retract and deploy cycles
- Both assume 32-percent (BOL) multijunction cells
- Options 2, 3, and 4 assume regenerative fuel cells for energy storage
 - Batteries would be prohibitively massive to meet the energy storage demands





LAT II Fission Surface Power System (FSPS)

- Primary outpost power generation for option 6
- Study trades included
 - Reactor design
 - Power conversion methodology
 - Shielding approaches
- FSPS System characteristics
 - Low temperature, NaK cooled, UO2 reactor
 - Use of regolith for shielding
 - Stirling power conversion
 - Water heat pipe radiators

Surface Power Users

- Primary surface power sources must provide power for
 - Habitats
 - Recharge of rovers
 - Crewed (unpressurized and pressurized)
 - Un-crewed
 - ISRU
 - Keep-alive/standby (Including lander ascent stage and payloads)
 - All of the above for:
 - Each stage of surface outpost build-up
 - When in sun and eclipse/shadow (i.e., must rely on energy storage for solar based power systems)

Lunar Surface Power Requirements

- Location
 - At Shackleton Rim lunar outpost
 - Solar insolation times vary from nearly 100% during summer lunation to 70% during worst case winter lunation
 - Longest eclipse period is ~ 122 hours occurring once/year
 - At locations > 4 degrees latitude from the poles
 - Insolation/lunation is ~ 50%
 - Surface is in eclipse 14.75 days (354 hours) or more
- For solar based power systems at either location, energy storage will pose a significant challenge
 - High energy density, long-lived regenerative fuel cells will be required
- Lunar environments need to be accommodated or mitigated
 - Surface dust
 - Thermal extremes
 - Radiation exposure

Surface Mobility Power Requirements

- Desired mobility capabilities include:
 - Un-pressurized traverses
 - Longer range pressurized mobile explorations
 - Potentially transporting large habitats and other lunar surface assets over long distances
- Power challenges for mobility systems include:
 - Long-lived and reliable energy storage systems
 - With increasing mobility range, power requirements must be met over changing solar insolation, thermal, and terrain features

Power Management and Distribution Challenges

- Potential need to transmit power 100s of meters to potentially 1000s of meters
- Need to transmit power safely and efficiently at high voltages
- Need
 - Highly efficient converters/inverters and switchgear
 - High voltage, lightweight, reliable, and efficient cables

Nuclear Power

- Either fission or radioisotope power systems might be considered for surface applications
- Fission surface power
 - Could be considered for stationary surface outpost
 - Use of lunar regolith for radiation shielding is highly desirable to minimize system mass
- Radioisotope power systems
 - Stand-alone science packages (ala RTG powered Apollo Lunar Science Experiments)
 - Keep-alive power source for lunar lander ascent stages/payloads
 - Power for mobility systems (unpressurized or pressurized)

Summary

- Power and energy systems will required for human exploration of the moon and Mars
 - Human life support
 - Communications and navigation
 - Human and robotic mobility systems
 - Planetary surface in-situ resource utilization (ISRU)
 - Vehicle/surface ancillaries
 - Scientific activities
- These systems
 - Need to be highly reliable
 - Have the ability to operate in unique deep space or planetary surface environments
 - Need to be long-lived
 - Need to be "affordable"
- Existing and future technology efforts are charged with meeting these requirements