
Optimizing Parallel Sparse Matrix-Vector
Multiplication by Corner Partitioning

Michael M. Wolf1,2, Erik G. Boman2, and Bruce A. Hendrickson3

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2 Scalable Algorithms Dept, Sandia National Laboratories, NM, USA ??

3 Computer Science and Informatics Dept, Sandia National Laboratories, NM, USA
mmwolf@illinois.edu,egboman@sandia.gov,bahendr@sandia.gov

Abstract. The multiplication of a vector by a sparse matrix is an im-
portant kernel in scientific computing. We study how to optimize the
performance of this operation in parallel by reducing communication.
We review existing approaches and present a new two-dimensional parti-
tioning method for symmetric matrices, called corner partitioning. Our
method is simple and can be implemented using existing software for hy-
pergraph partitioning. Experimental results show our method often pro-
duces better quality than traditional one-dimensional partitioning meth-
ods and is competitive with two-dimensional methods. It is also fast to
compute. Finally, we propose a graph model for an ordering problem to
further optimize our approach. This leads to a graph algorithm based on
vertex cover or vertex separator.

Key words: parallel algorithms, combinatorial scientific computing, par-
titioning, sparse matrix-vector multiplication

1 Parallel Matrix-Vector Multiplication

Sparse matrix-vector multiplication is a common kernel in many computations,
e.g., iterative solvers for linear systems of equations, eigensolvers, and PageRank
computation (power method) for ranking web pages. Often the same matrix is
used for many iterations. An important combinatorial problem in parallel com-
puting is how to distribute the matrix and the vectors among compute nodes
to minimize the communication cost. Such “communication” is also important
on serial computers with deep memory hierarchies, where slow memory is typi-
cally much slower than fast memory. Since processor speeds increase much more
rapidly than memory, we expect memory latency and bandwidth to grow in
importance.

We focus on minimizing the total communication volume while keeping the
computation balanced across compute nodes. Sparse matrix-vector multiplica-
tion y = Ax is usually parallelized such that the compute node that owns element
?? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-

Martin company, for the US Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

2 Optimizing Parallel Sparse Matrix-Vector Multiplication

aij computes the contribution aijxj . This is a local operation if xj , yi and aij

all reside on the same compute node; otherwise communication is required. In
general, the following four steps are performed [4, 9]:

1) Expand: Send entries xj to compute nodes with a
nonzero aij for some i.

2) Local multiply-add: yi := yi + aijxj

3) Fold: Send partial y values to relevant compute nodes.
4) Sum: Sum up the partial y values.

Usually steps 3 and 4 are combined to reduce communication. Clearly, the com-
munication will depend on the data distribution, and thus partitioning to obtain
this distribution is important for obtaining high parallel efficiency.

In this paper, we review current one- and two-dimensional data distribu-
tions (section 2), and introduce a new two-dimensional partitioning method (sec-
tion 3). This “corner” method focuses on partitioning matrices with symmetric
nonzero structures although in section 6 we describe an extension for partition-
ing square matrices with nonsymmetric nonzero structures. Our objective in
developing the “corner” method is to obtain a method that yields partitionings
of better quality than 1-D partitioning methods and similar quality to the best
2-D methods, while being faster to compute than the 2-D methods.

2 One- and Two-Dimensional Partitioning

In one-dimensional sparse matrix partitioning, each compute node (partition)
is assigned nonzeros belonging to a set of rows (1-D row partitioning) or a set
of columns (1-D column partitioning). The rows (or columns) in a partition
do not have to be consecutive. Catalyurek and Aykanat [4] showed that parti-
tioning matrix rows to minimize communication can be accurately modeled as
hypergraph partitioning. In their row-net model, each column corresponds to a
vertex and each row to a hyperedge. One-dimensional partitioning works well
for many problems, and many parallel applications distribute matrices in a one-
dimensional manner. However, for particular problems, one-dimensional parti-
tioning is potentially disastrous in terms of the communication volume. The “ar-
rowhead” matrix shown in Figure 1(a) is an example for which one-dimensional
partitioning is inadequate. For the bisection (number of partitions, k, is 2) case
shown in the figure, any load-balanced one-dimensional partitioning will yield a
communication volume of approximately 3

4n for the matrix-vector product. This
is far from the minimum communication volume of 2 for this problem and it is
unacceptable for the communication volume to scale as n for this matrix. Thus,
we need more flexible partitioning than traditional one-dimensional partitioning.

Two-dimensional partitioning is a more flexible alternative to one-dimensional
partitioning, in which no specific partition is assigned to a given row or column.
Rather, we have to specify the partition for particular sets of nonzeros. In the
most flexible method each nonzero is assigned a partition independently. This

Optimizing Parallel Sparse Matrix-Vector Multiplication 3

problem can be modeled as a fine-grain hypergraph[5], where each nonzero is rep-
resented by a vertex in the hypergraph. Each row is represented by a hyperedge
in the hypergraph (h1-h8 in Figure 1(b)). Likewise, each column is represented
by a hyperedge in the hypergraph (h9-h16 in Figure 1(b)). The vertices are par-
titioned into k equal sets (k = 2 in Figure 1(b)) such that the sum of the costs
over the cut hyperedges is minimized. A cut hyperedge contains vertices assigned
to different partitions. The cost associated with a cut hyperedge is the number
of different partitions, minus one, assigned to its vertices. The communication
volume is equivalent to this hyperedge cut metric. Catalyurek and Aykanat [5]
proved that this fine-grain hypergraph model yields a minimum volume parti-
tioning when optimally solved. In Figure 1(b), we see the fine-graph hypergraph
partitioning of the 8×8 arrowhead matrix. The resulting communication volume
is 2, a significant improvement over the communication volume of 3

4n = 6 from
the optimal one-dimensional partitioning.

(a) 1-D, volume=6

h7

h8

h16

h1

h2

h3

h4

h5

h6

h9 h10 h11 h12 h13 h14 h15

(b) 2-D, volume=2 (c) “Corners”

Fig. 1. Arrowhead matrix. (a) 1-D row-wise bisection. (b) 2-D fine-grain hypergraph
bisection. Cut hyperedges are shaded. (c) “Corners” in 2-D fine-grain partitioning.

Like 1-D hypergraph partitioning, solving the fine-grain hypergraph model
optimally is NP-hard but there are heuristics that work well in practice in
near-linear time. Unfortunately, the resulting fine-grain hypergraph problem is
a larger NP-hard problem than 1-D partitioning and thus, may be too expen-
sive to solve for large matrices. However, the fine-grain hypergraph method, in
general, yields low communication volume partitionings. Thus, when developing
new two-dimensional methods, our goal is to obtain similar quality partitionings
to the fine-grain method with methods that are similar to one-dimensional par-
titioning methods in runtime. The recent 2-D Mondriaan method [9] is based
on recursive 1-D partitioning. It is more restrictive than the fine-grain hyper-
graph method but is fast in comparison. A symmetric variation of Mondriaan
is described in [9] but the limited results were inconclusive. We propose a new
method that combines the simplicity of 1-D partitioning with the symmetric
partitioning approach.

4 Optimizing Parallel Sparse Matrix-Vector Multiplication

3 Corner Partitioning for Symmetric Matrices

An examination of the minimum cut fine-grain hypergraph partitioning in Fig-
ure 1(b) suggests a new partitioning method. We see that each partition consists
of a set of “corners” (more easily seen in Figure 1(c)), which are basically one-
dimensional partitions reflected across the diagonal. Using these “corners”, the
hope is that we could reproduce an optimal fine-grain partitioning using a less
costly one-dimensional partitioning method for certain matrices. Our corner par-
titioning algorithm for a symmetric matrix A has the following steps:

1. Let L be the lower triangular part of A.
2. Partition L along columns (or rows). This assigns lower triangular nonzeros

to compute nodes. Aij is assigned to the partition of Lij for i ≥ j.
3. Partition the remaining nonzeros in A (those above the diagonal) to obtain

a symmetric partition. Aij is assigned to the partition of Lji for i < j.

This partitioning algorithm is a 1-D partitioning of the triangular part which
is then reflected around the diagonal, giving the corner structure. We remark
that this is a special case of symmetric partitioning as described in [1]. Figure 3
illustrates the method on a test matrix with 36 rows (cage5 matrix [7]). Version
(a) partitions rows/columns consecutively, while (b) is the result of hypergraph
partitioning. For the hypergraph model used in (b), there exists a vertex vi for
every column i in the lower triangular part of A. There is a hyperedge for every
row in the lower triangular part of A, containing vertices that correspond to
columns for which there are nonzeros in this row. Variation (b) will always be at
least as good as (a) since (a) is contained as a special case. Thus we only show
(a) as an illustration and do not consider the method any further.

(a) Consecutive (b) Hypergraph

Fig. 2. cage5 matrix partitioned with corner method.

We now show that the communication volume for corner partitioning is
closely related to that of 1-D partitioning.

Optimizing Parallel Sparse Matrix-Vector Multiplication 5

Lemma 1. The communication volume for matrix-vector multiplication with a
corner distribution is exactly twice that of the corresponding 1-D distribution in
the lower (upper) half.

In this proof, we assume the lower triangular part is partitioned by columns. In
the expand phase, vector entries are communicated to processors that need them
based on the columns in the matrix. Similarly, the communication in the fold
phase is “along rows”. In the symmetric case, the communication volumes are the
same in each phase. Consider the row-wise phase of communication. By design,
there is no communication caused by the upper triangular part of the matrix
since rows to the right of the diagonal are wholly owned by a single compute node
(partition). Thus, the only communication is caused by the lower triangular part,
which has a 1-D distribution. Similarly all the communication in the column-
wise phase of communication is caused by the upper triangular part. It follows
that the upper and lower triangular parts have the same communication volumes
although they result from different phases.

Theorem 1. Hypergraph partitioning is the optimal partitioning method for cor-
ner partitioning.

This result follows directly from the above lemma and the optimality of the
hypergraph model for 1-D distribution.

4 Results

We used PaToH [4] for hypergraph partitioning in order to implement one-
dimensional column, two-dimensional corner, and two-dimensional fine-grain
partitioning. We studied the partitioning of five symmetric matrices [7, 8] (first
5 matrices in Table 1) used as a benchmark set in [9] for these three methods.
We partitioned these matrices into 4, 16, 64, and 256 partitions. The result-
ing communication volumes are reported in Table 2. In general, we see the
corner method yielded significantly higher quality partitionings than the one-
dimensional method. With the exception of the lap200 matrix and a few k = 256
and bcsstk32 data points, the corner method yielded similar or slightly better
partitionings than the fine-grain hypergraph method. In Table 2 (columns 4,
7, 10), we see that the corner method was much faster to compute than the
fine-grain hypergraph method, and also faster than 1-D.

4.1 Results for matrices where 1-D partitioning is inadequate

We have observed that 1-D partitioning performs relatively poorly on some ma-
trices, so these are of particular interest. We selected three matrices where fine-
grain partitioning gave substantially lower communication volume than 1-D, and
studied corner partitioning. The corner results varied wildly, and for one problem
(c-73) were in fact worse than standard 1-D partitioning. A closer look revealed
this was due to the orientation of the “corner” being poorly aligned with the

6 Optimizing Parallel Sparse Matrix-Vector Multiplication

Table 1. Matrix Info.

Name rows/cols nonzeros application

cage10 11397 150645 DNA electrophoresis
lap200 40000 200000 2-D Laplacian

finan512 74752 596992 portfolio optimization
bcsstk32 44609 2014701 structural engineering
bcsstk30 28924 2043492 structural engineering

asic680ks 682712 2329176 circuit simulation
c-73 169422 1279274 non-linear optimization

Dubcova2 65025 1030225 PDE Solver
c-big 345241 2341011 non-linear optimization

matrix structure. A simple alternative was to partition the lower triangular part
by rows, not by columns. The results are shown in Table 3. We see that corner
partitioning based on either rows or columns always outperforms 1-D; thus we
recommend to try both and pick the best. In the next section, we introduce an
extension to this method that can improve upon this.

5 Reordering Strategies

The observation that corner partitioning based on partitioning along rows or
columns can give very different results, has led us to consider reordering the
matrix. Let P be a permutation matrix. We can then form Â = PAPT and
partition Â. To compute y = Ax, we can compute y = PT ÂPx. Simpler yet,
let ŷ = Py and x̂ = Px. Then ŷ = Âx̂. In many applications, repeated multi-
plications are needed, and then x and y could be permuted (redistributed) only
once, so we ignore the cost of doing that step. The problem then is to find a
good permutation P .

A simple case is when P is the reverse permutation operator, that is, Px
is the same as x but with the entries in reverse order. In this case, performing
a column-based corner partition of PAPT is the same as a row-based corner
partition of A. We observed in section 4 that this could make a big difference.
This indicates that ordering is important and that reordering can be potentially
exploited to decrease the communication volume for a corner partitioning.

Note that reordering is irrelevant for one-dimensional partitioning since the
related graph and hypergraph models are invariant to ordering.

5.1 Graph model for optimal ordering for corner partitioning

Although we initially used a hypergraph model for corner partitioning, in this
section we found a graph model to be more useful. We can model the communica-
tion volume for the corner partitioning/ordering problem using a graph G(V,E),
where vector entries are represented by a set of vertices V and the off-diagonal
nonzeros are represented by edges in the graph such that if ai,j 6= 0 for i 6= j

Optimizing Parallel Sparse Matrix-Vector Multiplication 7

Table 2. Communication volume and runtimes (in s) for k-way partitioning of sym-
metric matrices using different partitioning methods. Improvements are relative to 1-D.

1-D hypergraph fine-grain hypergraph corner column
Name k volume runtime volume % impr. runtime volume % impr. runtime

cage10 4 5379.0 13.1 4063.7 24.5 28.3 4089.3 24.0 5.8
16 12874.5 25.0 8865.5 31.1 46.7 8920.9 30.7 12.0
64 23463.3 41.3 16334.7 30.4 68.9 17164.0 26.8 20.8

256 40830.9 66.7 29239.0 28.4 101.9 32138.0 21.3 38.2

lap200 4 1535.1 7.9 1538.5 -0.2 19.0 1640.0 -6.8 6.0
16 3013.9 15.2 3017.9 -0.1 30.2 3336.5 -10.7 10.2
64 5813.0 25.2 5786.4 0.5 44.4 6656.4 -14.5 18.4

256 11271.8 51.4 11061.4 1.9 71.9 13342.8 -18.4 33.6

finan512 4 295.7 23.8 261.2 11.7 82.8 215.0 27.3 13.7
16 1216.7 48.6 1027.4 15.6 128.3 845.0 30.5 26.0
64 9986.0 90.9 8624.6 13.6 185.4 8135.2 18.5 50.1

256 38985.4 142.5 26471.6 32.1 253.0 42248.6 -8.4 91.4

bcsstk32 4 2111.9 58.5 1611.4 23.7 470.7 1751.3 17.1 25.1
16 7893.1 102.0 6330.8 19.8 718.4 7220.0 8.5 42.7
64 19905.4 152.7 18673.1 6.2 922.6 19616.4 1.5 65.4

256 46399.0 215.2 46469.7 -0.2 1133.1 47695.8 -2.8 101.1

bcsstk30 4 1794.4 76.0 1935.7 -7.9 688.6 1531.0 14.7 30.4
16 8624.7 139.7 9774.8 -13.3 1076.5 7232.2 16.1 53.2
64 23308.0 205.7 25677.2 -10.2 1381.1 20351.4 12.7 83.1

256 56100.4 262.4 57844.8 -3.1 1639.8 50689.4 9.6 110.7

then (i, j) ∈ E. Each vertex is given both a position, which refers to the position
of the corresponding diagonal elements after reordering, and a set number, cor-
responding to the compute node that owns the matrix diagonal entry (and also
the corresponding vector entry). Let πi be the position of vertex vi and let si be
the set of vi. Again, we analyze the column-based version of the corner method.
Consider row (column) i. Clearly, no communication is required if all nonzeros
in row i are in the same set. By design, all nonzeros aij with j > i will be in the
same set, so we only need to examine the nonzeros where j < i. Thus, it follows
that a vertex vi is involved in communication if and only if it is connected to at
least one additional vertex vj such that the vj is assigned a position πj less than
πi. As a consequence, we have the following theorem for the bisection case:

Theorem 2. The communication volume of the matrix-vector product resulting
from corner partitioning and bisection (k = 2) is equal to Vol = 2

∑
vi∈V ci,

where

ci =
{

1,∃vj : πj < πi, (vi, vj) ∈ E, si 6= sj

0, otherwise .

First, we focus on a simplified version of the partitioning/ordering problem
in which we will partition first and then reorder the rows/columns symmetrically
to obtain minimal communication volume for the particular partitioning of the
nonzeros. With a fixed partitioning we know that the si in the graph model do

8 Optimizing Parallel Sparse Matrix-Vector Multiplication

Table 3. Communication volume for k-way partitioning of symmetric matrices using
different partitioning methods. Asterisks designate runs that did not achieve the desired
3% load-balance tolerance.

1-D hyp. fine-grain hyp. corner col corner row
Name k volume volume % impr. volume % impr. volume % impr.

asic680ks 4 3560.4 1813.3 49.1 2214.2 37.8 4015.4 -12.8
16 9998.5 4634.0 53.7 5562.8 44.4 11343.9 -13.5
64 21785.8 9554.9 56.1 11147.3 48.8 26379.8 -21.1

256 38869.4 19128.1 50.8 21024.0 45.9 47509.9 -22.2

c-73 4 42363.0 1611.8 96.2 90410.5 -113.4 1656.4 96.1
16 98617.7 5058.1 94.9 255484.8 -159.1 5009.3 94.9
64 219429.0* 15067.8 93.1 450166.1* -105.2 14596.6 93.3

256 168176.2* 38566.7 77.1 453705.1* -169.8 38219.3 77.3

Dubcova2 4 1825.3 1460.7 20.0 3091.1 -69.3 1724.3 5.5
16 5613.7 4508.0 19.7 9517.7 -69.5 5456.3 2.8
64 13492.7 10846.1 19.6 23225.2 -72.1 13208.1 2.1

256 30110.9 23847.0 20.8 26140.9 13.2 30354.7 -0.8

c-big 4 34360.8 14903.3 56.6 25443.9 26.0 40034.2 -16.5
16 63139.9 32514.5 48.5 55718.1 11.8 66792.1 -5.8
64 95836.7 54998.6 42.6 94232.3 1.7 95169.6 0.7

256 135631.3* 84249.8 37.9 142318.1* -4.9 121532.8 10.4

not change during the reordering process. As explained above, a vertex vi in
the graph model contributes to the communication volume only if ∃vj : πj <
πi, (vi, vj) ∈ E, si 6= sj . Thus, we want to minimize the number of vertices with
this property. This is equivalent to finding a minimum vertex cover of the edges
that contain vertices in different partitions (edges in the bipartite graph on the
boundary between the two partitions) and order these cover vertices last. We can
find this minimum vertex cover of the bipartite graph in low polynomial time
and thus efficiently find an optimal ordering for our fixed corner partitioning.

It is important to note that the cover vertices for the bipartite graph form
a vertex separator for the original graph. This indicates that an alternative
algorithm is to find a small balanced vertex separator directly. A more general
partitioning method based on that idea was proposed in [2] and we are pursuing
this method further [3]. However, this separator approach can also be used in a
more specific manner with the corner method to further reduce communication
resulting from the method with an improved partitioning/ordering.

The first step in this improved partitioning/ordering algorithm is to find
a small balanced vertex separator S for the graph. We can obtain this vertex
separator using any vertex separator algorithm (including the method outlined
above). Using this separator, we can divide the vertices into three disjoint sub-
sets (V1, V2, S) as shown in Figure 3(a). The vertices in subsets V1 and V2 are
assigned to different partitions in the bisection. We have flexibility in how we
assign partitions to the separator vertices S for bisection since the communica-
tion volume is independent of this assignment. One possibility is to assign the
partitions of these separator vertices to maintain load-balance. Next, we assign

Optimizing Parallel Sparse Matrix-Vector Multiplication 9

positions to the vertices based on the subsets (V1,V2,S) in order to minimize
communication. In particular, we assign the last |S| positions to the vertices in
S so that these separator vertices are positioned after V1 and V2. Although it
does not affect the communication volume, we position the vertices in V1 before
the vertices in V2 for visualization purposes. Using these positions assigned to
the vertices, the matrix can be permuted. From the partitioning of the vertices,
we can obtain a corner partitioning for this permuted matrix. Figure 3(b) il-
lustrates the resulting nonzero structure from the corner partitioning/ordering
of a matrix. Note that the V1 “corners” are ordered first, followed by the V2

“corners”, and finally the S “corners.” We can recursively apply this method to
V1 and V2 to obtain a larger number of partitions.

V1 V2

S

(a) Partitioned graph (b) Resulting Matrix

Fig. 3. Graph partitioned using vertex separator. Corresponding corner partitioned
matrix.

6 Nonsymmetric Case

In this paper we focus on the symmetric case, which is common in many appli-
cations. However, one can generalize the corner method in several ways. Here
we describe an extension to the square but nonsymmetric case. The right model
is again a hypergraph model. Let H = (V,E) be a hypergraph with one vertex
for each “corner.” We should think of vertex i as representing the partial row
to the right of and including Aii and the partial column below Aii (a “corner”).
For simplicity, assume all diagonal entries are nonzero. Consider the potential
communication requirements along row i and column i. Above the diagonal, this
is determined by the row-wise decomposition in the upper triangular part, while
below the diagonal, it is determined by the column-wise decomposition of the
lower triangular part. In the symmetric case, the lower and upper triangular part
were the same (reflected around the diagonal) but in the nonsymmetric case we
need treat these separately. The solution is simple. We build a hypergraph with

10 Optimizing Parallel Sparse Matrix-Vector Multiplication

one hyperedge for each row of the lower triangular part of the matrix and one
for each column in the upper triangular part of the matrix. This hypergraph
has twice as many hyperedges as in the symmetric case, so is more expensive to
partition, but it is an accurate model of communication volume.

There is little reason to believe a symmetric partition method like the corner
method would work well for highly nonsymmetric matrices, though we conjecture
it will do reasonably well for near-symmetric matrices. We have not studied this
empirically. An alternate approach to the nonsymmetric case is to use a bipartite
graph. Then reordering can be used, as in the previous section.

7 Conclusions

We have presented a new sparse matrix data distribution, the corner distri-
bution, suitable for symmetric matrices. The basic version can be computed
efficiently using existing hypergraph partitioning software (even in parallel, us-
ing the Zoltan toolkit). The resulting communication volume is generally lower
than for the standard 1-D partitioning, and in several cases also lower than for
the 2-D fine-grain method. We also presented a graph model for optimal corner
partitioning. This requires vertex cover or vertex separator, both of which can
be computed efficiently. An empirical study of this modified approach is left as
future work.

Acknowledgments

This work was funded by the U.S. Dept. of Energy’s Office of Science through
the CSCAPES SciDAC institute.

References

1. R. H. Bisseling. Parallel Scientific Computing: A structured approach using BSP
and MPI. Oxford University Press, 2004.

2. Erik G. Boman. A nested dissection approach to sparse matrix partitioning. In
Proc. Appl. Math. and Mech., 2008, to appear. Presented at ICIAM’07, July 2007.

3. Erik G. Boman and Michael M. Wolf. A nested dissection approach to sparse matrix
partitioning. In preparation, 2008.

4. Ü. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Dist. Systems,
10(7):673–693, 1999.

5. Ü. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d decomposi-
tion of sparse matrices. In Proc. IPDPS 8th Int’l Workshop on Solving Irregularly
Structured Problems in Parallel (Irregular 2001), April 2001.

6. Timothy A. Davis. The University of Florida Sparse Matrix Collection, 1994.
http://www.cise.ufl.edu/research/sparse/matrices/.

7. Iain S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Mathematical Software, 15:1–14, 1989.

8. Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM Review, 47(1):67–95,
2005.

