National Mathematics Panel Overview for Interim Report

> Learning Processes Group January 11, 2007 New Orleans, LA

Contributing Members

- Dave Geary, Task Group Chair
- Dan Berch
- Wade Boykin
- Valerie Reyna
- Bob Siegler
- Jennifer Graban, staff

Overview

- Goals
- How do we know?
- Learning and cognition
- What children bring to school
- Whole number arithmetic
- Learning disabled and gifted children

Goals

- Principles of learning and cognition
- Mathematical knowledge children bring to school
- Math learning in key content areas:
 - Whole Number Arithmetic
 - Fractions
 - o Estimation
 - o Geometry
 - o Algebra
- Individual and group difference
- Brain science and math learning

How Do We Know?

- Theory testing with multiple approaches
- Procedures
 - Observation
 - Verbal report
 - Reaction time and error patterns
 - Priming and implicit measures
 - Experimental studies (dual task, practice, ...)
 - Computer simulations of learning and cognition
 - Brain imaging and related technologies
- Conclusions based on convergent results across procedures

Principles of Learning and Cognition

- Cognition = functional capabilities of the brain
- Learning = improvements in these capabilities as a result of maturation and experience
- Much is known:
 - Working Memory attention driven ability to mentally represent and transform information
 - Language, Visuospatial, Episodic
 - Long-term memory storage of information for later use
 - Declarative (verbatim recall of facts), Procedural (e.g., algorithms), Conceptual

Principles of Learning and Cognition

- Learning requires working memory/attentional focus
- Different experiences for different forms of knowledge
 - Verbatim/fact learning extensive practice distributed over time
 - Gist/Concept learning may occur with insight, demonstration, exploration, instruction
- Practice leads to automatic retrieval of declarative information or execution of procedures
- Conceptual knowledge promotes transfer to new situations

Choking Under Pressure

- Situations that focus on one's competency, such as high stakes testing
- Choking occurs because competency-related thoughts intrude into working memory
 - Results in functional reduction of working memory; attention shifts back and forth from competency thoughts to test items
- Remedy = automaticity of test-related content

What Children Bring to School

- Children have an inborn sense of quantity
 - Infants discriminate sets of small quantities and are sensitive to small additions/subtractions to these sets
 - Toddlers have a basic sense of ordinal relations
 - Preschool children can count, add, subtract, and make simple measurements
- Early sense of quantity is necessary but not sufficient for school-based learning
 - Large differences in the more formal knowledge children bring to kindergarten (e.g., knowing Arabic numerals); children who start behind, stay behind
- There are promising interventions to reduce differences

Whole Number Arithmetic

- Fast and efficient retrieval of facts: Declarative Memory
 - Cognitive and learning mechanisms are understood
 - Most children in the U.S. do not achieve this
 - Interfere with problem solving in which facts are embedded
- Learning algorithms: Procedural Memory
 - Mechanisms are understood for add, subtract, multiply
 - Poor understanding of related concepts (e.g., base-10, trading)
 - Errors of inference (e.g., commutativity and subtraction)
 - Little research on long division

Whole Number Arithmetic

- Core concepts: Commutativity, Associativity, Distributive, Identity, Inverse Relations, Base-10
 - Most research is on commutativity and addition; some on Base-10
 - o Less research on distributive, identity
 - U.S. children and many adults do not understand many of these concepts

Individuals and Group Differences

- Race and ethnicity
- Gender
- Learning Disabilities
 - 5% to 10% before graduating high school
 - o Arithmetic
 - Delayed acquisition of procedures
 - Poor memory for facts
 - o Mechanisms
 - Aspects of working memory & long-term memory
 - Poor conceptual knowledge procedural delay

Individuals and Group Differences

- Gifted children
 - Faster learning less practice and exposure
 - Mechanisms
 - Enhanced executive functions/attentional control
 - Mathematically gifted: Enhanced visuospatial memory, memory for numbers

Brain Science and Math Learning

- Initial Learning
 - Prefrontal/Working Memory - effort
 - Intraparietal sulcus number sense
- Skill Development
 - Reduction prefrontal
 - Sometimes reduction in intraparietal
 - Increased engagement of angular gyrus

Copyright 1999 by Steven Pinker. Use with permission.

Next Steps

- Reviews of Fractions, Estimation, and core areas of Geometry and Algebra
- Review of Differences and Similarities across Race, Ethnicity, and Gender for key areas
- Draw Explicit Links with Other Task Groups