
Source Code Analysis Tools - Example Programs 1
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

Source Code Analysis Tools - Example Programs
Cigital, Inc.

Copyright © 2006 Cigital, Inc.

2006-07-06 L2 / L1

These example programs demonstrate flaws that may (or may not) be detected by security scanners for C/
C++ software. The examples are small, simple C/C++ programs, each of which is meant to evaluate some
specific aspect of a security scanner's performance. Overall, the evaluation programs can be categorized
as programs used to evaluate the detection of potential vulnerabilities and those used to evaluate resilience
against false alarms.

Example 1

/**

This file is meant to test whether a scanner can perform pointer
alias analysis. Since that capability is generally only useful if the
scanner provides some dataflow analysis capabilities, dataflow
analysis is needed too.

The variable that determines the size of a string copy is untainted,
but alias analysis is needed to determine this.

*/

int main(int argc, char **argv)
{
 int len = atoi(argv[1]);
 int *lenptr_1 = &len;
 int *lenptr_2 = lenptr_1;
 char buffer[24];

 *lenptr_2 = 23;
 strncpy(buffer, argv[2], *lenptr_1);
}

Example 2

/* unexploitable strcpy #1 */

/* This program contains a buffer overflow, but the overflowing data
 isn't controlled by the attacker. Ideally, a scanner should either not
 report a buffer overflow associated with this strcpy, or at most report
 a problem with lower severity than a strcpy whose argument is attacker-
 controlled.
*/

main()
{
 char *buffer = (char *)malloc(10 * sizeof(char));

 strcpy(buffer, "fooo");
}

Example 3

/* unexploitable strcpy #2 */
/* This program contains a buffer overflow, but the overflowing data
 isn't controlled by the attacker. Ideally, a scanner should either not

daisy:1084-BSI

Source Code Analysis Tools - Example Programs 2
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 report a buffer overflow associated with this strcpy, or at most report
 a problem with lower severity than a strcpy whose argument is attacker-
 controlled.

 The program is similar to const_str1.c, but it presents a slightly
 harder problem for the scanner. In const_str1.c, and scanner could
 notice that the argument to strcpy is a constant string by looking for the
 quote symbol that follows the open parenthesis after the name of the
 function. In this program, some sort of dataflow analysis is needed
 (taint checking should be enough).
*/

void func(char *foo)
{
 char *buffer = (char *)malloc(10 * sizeof(char));

 strcpy(buffer, foo);
}

main()
{
 func ("fooo");
}

Example 4

/* unexploitable strcpy #3 */

/*
 This is another buffer overflow using a non-user-defined. Here, the
 constant string is placed into a variable rather than being passed as
 a function argument like in const_str2.c. However, taint analysis should
 still be enough to let the scanner recognize that the overflowing string
 is not user-controlled.

 A scanner should either not report a buffer overflow associated with
 this strcpy, or report a problem with lower severity than a strcpy whose
 argument is attacker-controlled.
*/

main()
{
 char *foo = "fooo";
 char *buffer = (char *)malloc(10 * sizeof(char));
 strcpy(buffer, foo);
}

Example 5

/* believed unexploitable open/write */

/* This program ensures that stdin, stdout and stderr are accounted for,
 and then opens a file, ensuring that access checks are performed on
 the actual object being opened. The program doesn't set the umask, but that
 isn't necessary because the umask only affects the permissions of newly
 created files, and in this program open is called without the O_CREAT
 flag and therefore will only open a pre-existing file.

 A scanner should not report TOCTOU vulnerabilities, file descriptor
 vulnerabilities or umask-related vulnerabilities.
*/

/* ex_02.c */
#include
#include

Source Code Analysis Tools - Example Programs 3
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

#include
#include
#include
#include

int
main (int argc, char * argv [])
{
 struct stat st;
 int fd;
 FILE * fp;

 while((fd = open("/dev/null", O_RDWR)) == 0 || fd == 1 || fd == 2) ;
 if (fd > 2)
 close(fd);

 if (argc != 3) {
 fprintf (stderr, "usage : %s file message\n", argv [0]);
 exit(EXIT_FAILURE);
 }
 if ((fd = open (argv [1], O_WRONLY, 0)) < 0) {
 fprintf (stderr, "Can't open %s\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 fstat (fd, & st);
 if (st . st_uid != getuid ()) {
 fprintf (stderr, "%s not owner !\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 if (! S_ISREG (st . st_mode)) {
 fprintf (stderr, "%s not a normal file\n", argv[1]);
 exit(EXIT_FAILURE);
 }
 if ((fp = fdopen (fd, "w")) == NULL) {
 fprintf (stderr, "Can't open\n");
 exit(EXIT_FAILURE);
 }
 fprintf (fp, "%s", argv [2]);
 fclose (fp);
 fprintf (stderr, "Write Ok\n");
 exit(EXIT_SUCCESS);
}

Example 6

/* variable-sized buffer that syntactically looks like fixed-sized buffer #1 */

/* Many security scanners generate a warning when they see a fixed-sized
 buffer. This test program declares a variable-sized buffer based on
 the length of the string that's going to be copied into it, but it
 uses a syntax more commonly associated with fixed-sized buffers. It's
 meant to determine whether a scanner detects fixed-sized buffers by looking
 for square brackets after the variable name or whether it actually parses
 the declaration.

 A scanner should not complain about a fixed-sized buffer being used
 in this program.
*/

#include

void func(char *src)
{
 char dst[(strlen(src) + 1) * sizeof(char)];
 strncpy(dst, src, strlen(src) + sizeof(char));
 dst[strlen(dst)] = 0;

Source Code Analysis Tools - Example Programs 4
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

}

Example 7

/* variable-sized buffer that syntactically looks like fixed-sized buffer #2 */

/* This is another variant of a variable-sized buffer being made to
 syntactically resemble a fixed-sized buffer. It has the added twist
 the buffer might be to small if useString is called incorrectly, in spite
 of which there is no buffer overflow here because useString -is- called
 correctly (and is inaccesible from other source files).

 A scanner should not complain about a fixed-sized buffer or a potential
 buffer overflow.
*/

#include

static void useString(size_t len, char *src)
{
 char dst[(len+1) * sizeof(char)];
 strncpy(dst, src, strlen(src));
 dst[strlen(src)] = 0;
}

void func(char *src)
{
 size_t len = strlen(src);

 useString(len, src);
}

Example 8

/* This program opens a file with a fixed name in a directory that
 shouldn't normally be accessible to an attacker. If, for some reason,
 the attacker has gained write access to /etc, this program could be used
 to overwrite files in other places, but the vulnerability is less
 serious than it would be if it opened a file in a directory that's normally
 writable.
*/

#include
#include
#include
#include

main()
{
 int fd;
 FILE *fp;

 /* no file descriptor confusion */

 while((fd = open("/dev/null", O_RDWR)) == 0 || fd == 1 || fd == 2) ;
 if (fd > 2)
 close(fd);

 /* set umask */

 umask(022);

 /* file is in user-unwritable directory */

 fp = fopen("/etc/importantFile", "w");

Source Code Analysis Tools - Example Programs 5
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 fclose(fp);
}

Example 9

typedef char gchar;

void func()
{
 gchar buf[10];
}

Example 10

#include

/** This program doesn't contain an integer overflow on line 15
 because the length of the variable len is checked. It's meant
 to complement overflow.c, to check if buffer overflow warnings
 for that program are just vacuously triggered by the read()
 call or if the scanner is actually spotting the overflow.

 A scanner shouldn't complain about an integer overflow on line
 15 or a buffer overflow on line 16.
*/

void func(int fd)
{

 char *buf;
 size_t len;

 read(fd, &len, sizeof(len));

 /* check the maximum length. No need to check for negative numbers since
 size_t is unsigned already. */

 if (len > 1024)
 return;

 buf = malloc(len+1); // line 15
 read(fd, buf, len); // line 16
 buf[len] = '\0';
}

Example 11

/* This program complements truncated.c, which is taken from the linux
 secure programming HOWTO. It avoids the integer truncation problem of
 truncated.c, and it's meant to test whether a scanner that reports a
 buffer overflow for truncated.c is doing so vacuously or whether it
 actually noticed the possible integer truncation.

 In this file, we read a tainted integer and use it to determine the size
 of a subsequent read of a tainted string. But the buffer recieving the
 data during the second read is allocated according to user provided length,
 and read will only put that many bytes in the buffer, so there should
 be no overflow.

 In this particular variant of the program, the user has defined his
 own version of the malloc function which takes an int argument and
 thereby creates the possibility of an integer truncation vulnerability.
 However, the program casts "len" to an integer and thereby ensures that the
 second argument to read (line 18) is the same number as the argument of

Source Code Analysis Tools - Example Programs 6
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 mymalloc on line 17.

 Ideally, a security scanner should not report a possible bounds
 violation on line 17 or a buffer overflow on line 18.
*/

#include
#include

void *mymalloc(unsigned int size) { return malloc(size); }

void func(int fd)
{

 char *buf;
 size_t len;
 int actual_len;

 read(fd, &len, sizeof(len));

 actual_len = len;

 buf = mymalloc(actual_len); // line 17
 read(fd, buf, actual_len); // line 18
}

Example 12

/* This program complements truncated.c, which is taken from the linux
 secure programming HOWTO. It avoids the integer truncation problem of
 truncated.c, and it's meant to test whether a scanner that reports a
 buffer overflow for truncated.c is doing so vacuously or whether it
 actually noticed the possible integer truncation.

 In this program, the developer has defined a custom
 version of the malloc function which takes an int argument, and
 thereby creates the possibility of an integer truncation vulnerability,
 but bounds-checking prevents the malloc on line 1 from seeing
 a different length value than the read on line 16.

 This program differs from nottruncated2.c because both
 mymalloc and read take the original user-controlled size_t len as an
 argument, but those calls are unreachable for values of len that would
 cause truncation problems.

 Ideally, a security scanner should not report a possible bounds
 violation on line 15 or a buffer overflow on line 16.
*/

#include
#include

void *mymalloc(unsigned int size) { return malloc(size); } // line 1

void func(int fd)
{

 char *buf;
 size_t len;

 read(fd, &len, sizeof(len));

 if (len > MAXINT)
 return;

Source Code Analysis Tools - Example Programs 7
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 buf = mymalloc(len); // line 15
 read(fd, buf, len); // line 16
}

Example 13

/*
 This program avoids a sign error by checking of the variable len is
 negative. It complementes signedness_1.c, where an attacker can create
 a buffer overflow by specifying a negative number for len.

 A scanner should not report a buffer overflow on line 11.
*/

void func(int fd)
{
 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 if (len < 0 || len > 7999) { error("too large length"); return; }

 buf = malloc(8000);
 read(fd, buf, len); // line 11
}

Example 14

/*
 This program uses strncpy and strncat safely, without introducing a
 buffer overflow. It's meant to check whether a scanner warns vacuously
 about strncpy and strncat, or if it actually checks whether the sizes are
 OK and whether the buffer is terminated after the strncpy.

 A scanner should not report a buffer overflow on line 5 or line 7.
*/

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(25);

 strncpy(buffer, argv[1], 10); // line 5
 buffer[10] = 0;
 strncat(buffer, argv[2], 10); // line 7
}

Example 15

/*
 This use of strcpy ensures that the buffer is large enough to
 accomodate the string being copied. The dataflow analysis needed to
 determine whether the strcpy is safe is somewhat more complex that
 in strsave.c

 A scanner should not warn of a buffer overflow error on line 5.
*/

#include

static void copyString(char *dst, char *src)
{

Source Code Analysis Tools - Example Programs 8
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 strcpy(dst, src); // line 5
}

char *strsave(char *src)
{
 size_t len = strlen(src);
 char *result = (char *)malloc((len + 1) * sizeof(char));

 if (result)
 copyString(result, src);

 return result;
}

Example 16

/* believed safe invocation of strcpy */

/* This use of strcpy ensures that the buffer is large enough to
 accomodate the string being copied. The dataflow analysis needed
 to verify this mey be too complex to be accomplished with simple
 taint checking.

 A scanner should not warn of a buffer overflow error on line 9
*/

#include

char *strsave(char *src)
{
 size_t len = strlen(src);
 char *result = (char *)malloc((len+1) * sizeof(char));

 if (result)
 strcpy(result, src); // line 9

 return result;
}

Example 17

/**
 In this program, the target string is properly terminated but
 the terminating null is added before the strncpy(), which might
 fool a scanner into thinking that the buffer is unterminated.

 A scanner should not complain about an unterminated strcpy().
*/

void func(char *str)
{
 char target[(strlen(str) + 1) * sizeof(char)];
 target[strlen(str)] = 0;
 strncpy(target, str, strlen(str));
}

Example 18

/**
 The catch block in this program contains an unexploitable format-string
 vulnerability. The idea of this test to see whether the scanner can track
 taint through the exception-handling mechanism. Ideally, the warning given
 by the scanner for line 31 should have lower severity than the
 corresponding (exploitable) format-string vulnerability in except.c
*/

Source Code Analysis Tools - Example Programs 9
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

#include
#include
#include

void func()
{
 char buffer[1024];
 printf("Please enter your user id :");
 fgets(buffer, 1024, stdin);

 if (!isalpha(buffer[0]))
 {
 char errormsg[1044];

 strcpy(errormsg, "that isn't a valid ID");
 throw errormsg;
 }

}

main()
{
 try
 {
 func();
 }
 catch(char * message)
 {
 fprintf(stderr, message); // line 31
 }
}

Example 19

char *stringcopy(char *str1, char *str2)
{
 while (*str2)
 *str1++ = *str2++;

 return str2;
}

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(16 * sizeof(char));
 stringcopy(buffer, argv[1]);
 printf("%s\n", buffer);
}

Example 20

/* didn't check for file descriptor tricks */
/* If this is a setuid program, the attacker can exec() it after closing
 file descriptor 2. The next time the program opens a file, the file
 is associated with file descriptor 2, which is stderr. All output
 directed to stderr will go to the newly opened file. In this example, the
 attacker creates a symbolic link to the file that is to be overwritten.
 The name of the link contains the data to be written. When the
 program detects the symbolic link, it prints an error message and exits
 (line 32), but the error message, which contains the symbolic-link name
 supplied by the attacker, is written into the targeted file.
*/

Source Code Analysis Tools - Example Programs 10
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

/* ex_02.c */

#include
#include
#include
#include
#include
#include

int
main (int argc, char * argv [])
{
 struct stat st;
 int fd;
 FILE * fp;

 if (argc != 3) {
 fprintf (stderr, "usage : %s file message\n", argv [0]);
 exit(EXIT_FAILURE);
 }
 if ((fd = open (argv [1], O_WRONLY, 0)) < 0) {
 fprintf (stderr, "Can't open %s\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 fstat (fd, & st);
 if (st . st_uid != getuid ()) {
 fprintf (stderr, "%s not owner !\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 if (! S_ISREG (st . st_mode)) {
 fprintf (stderr, "%s not a normal file\n", argv[1]); // line 32
 exit(EXIT_FAILURE);
 }
 if ((fp = fdopen (fd, "w")) == NULL) {
 fprintf (stderr, "Can't open\n");
 exit(EXIT_FAILURE);
 }
 fprintf (fp, "%s", argv [2]);
 fclose (fp);
 fprintf (stderr, "Write Ok\n");
 exit(EXIT_SUCCESS);
}

Example 21

/* stat called on filename */
/* This is a simple race condition, allowing the attacker to change the file
 named in argv[1] to a symbolic link after it's tested but before the file
 is opened.

 Many scanners detect the call to stat() on line 23, and while stat() is
 almost certainly a sign of trouble in this particular context, it
 needn't always be. A better scanner would actually detect the race
 condition between the open on line line 14 and the stat on line 23.
*/

#include
#include
#include
#include
#include
#include

int
main (int argc, char * argv [])
{
 struct stat st;

Source Code Analysis Tools - Example Programs 11
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 int fd;
 FILE * fp;

 while((fd = open("/dev/null", O_RDWR)) == 0 || fd == 1 || fd == 2); //ln 14
 if (fd > 2)
 close(fd);

 if (argc != 3) {
 fprintf (stderr, "usage : %s file message\n", argv [0]);
 exit(EXIT_FAILURE);
 }
 stat (argv[1], & st); // line 23
 if (st . st_uid != getuid ()) {
 fprintf (stderr, "%s not owner !\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 if (! S_ISREG (st . st_mode)) {
 fprintf (stderr, "%s not a normal file\n", argv[1]);
 exit(EXIT_FAILURE);
 }
 if ((fd = open (argv [1], O_WRONLY, 0)) < 0) {
 fprintf (stderr, "Can't open %s\n", argv [1]);
 exit(EXIT_FAILURE);
 }
 if ((fp = fdopen (fd, "w")) == NULL) {
 fprintf (stderr, "Can't open\n");
 exit(EXIT_FAILURE);
 }
 fprintf (fp, "%s", argv [2]);
 fclose (fp);
 fprintf (stderr, "Write Ok\n");
 exit(EXIT_SUCCESS);
}

Example 22

/**
 The catch block in this program contains an exploitable format-string
 vulnerability. The idea of this test to see whether the scanner can track
 taint through the exception-handler. Ideally, the scanner should report
 a format string vulnerability on line 32, but not report the unexploitable
 format string vulnerability in the complementary program unexcept.c.
*/

#include
#include
#include

void func()
{
 char buffer[1024];
 printf("Please enter your user id :");
 fgets(buffer, 1024, stdin);

 if (!isalpha(buffer[0]))
 {
 char errormsg[1044];

 strncpy(errormsg, buffer, 1024); // guaranteed to be terminated
 strcat(errormsg, " is not a valid ID"); // we have room for this
 throw errormsg;
 }

}

Source Code Analysis Tools - Example Programs 12
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

main()
{
 try
 {
 func();
 }
 catch(char * message)
 {
 fprintf(stderr, message); // line 32
 }
}

Example 23

/* If this is a setuid program, the attacker can exec() it after closing
 file descriptor 2. The next time the program opens a file, the file
 is associated with file descriptor 2, which is stderr. All output
 directed to stderr will go to the newly opened file. In this example, the
 attacker creates a symbolic link to the file that is to be overwritten.
 The name of the link contains the data to be written. When the
 program detects the symbolic link, it prints an error message and exits,
 but the error message, which contains the symbolic link name supplied by
 the attacker, is written into the targeted file. This isn't much different
 from ex_02.c, but the latter program was found on the web claiming to
 be a secure way of opening files. This program is somewhat simpler
 and, for some scanners, might make it easier to tell what the scanner
 is printing warnings about.
*/

#include
#define DATAFILE "/etc/aDataFile.data"

main(int argc, char **argv)
{
 FILE *sensitiveData = NULL;
 FILE *logFile = NULL;

 /* Forgot to account for files 0-2, could be opening stderr. */

 sensitiveData = fopen(DATAFILE, "w");

 if (!sensitiveData)
 {
 fprintf(stderr, "%s: failed to open %s\n",
 argv[0], DATAFILE);
 exit(1);
 }

 logFile = fopen(argv[1], "w");

 if (!logFile)
 {
 fprintf(stderr, "%s: failed to open %s\n",
 argv[0], argv[1]);
 exit(1);
 }
}

Example 24

/*

buffer overflow using a custom version of the strcpy() function.

Source Code Analysis Tools - Example Programs 13
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

*/

char *stringcopy(char *str1, char *str2)
{
 while (*str2)
 *str1++ = *str2++;

 return str2;
}

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(16 * sizeof(char));
 stringcopy(buffer, argv[1]);
 printf("%s\n", buffer);
}

Example 25

/* This program tests the scanner's ability to handle preprocessor
 directives.
*/

#include

#define SAFESTRCPY(a,b,c) strncpy(a, b, c)
#define FASTSTRCPY(a,b,c) strcpy(a, b)

main(int argc, char **argv)
{
 size_t size = strlen(argv[3]);
 char *buffer = (char *)malloc(1024);

#ifdef PARANOID
 SAFESTRCPY(buffer, argv[3], size+sizeof(char));
#else
 FASTSTRCPY(buffer, argv[3], size+sizeof(char));
#endif
}

Example 26

/* Secure-Programs-HOWTO/dangers-c.html */

/* In this program, an attacker can supply a large value of len which
 overflows to zero on line 14. Since the subsequent read on line 15
 uses the original value of len, the read can overflow the buffer.

 Many scanners will flag the read no matter what, which is useful but
 doesn't reflect what this program is trying to test. The complementary
 program notoverflow.c is meant to check whether a scanner is actually
 detecting the possible overflow.
*/

#include

void func(int fd)
{

/* 3) integer overflow */
 char *buf;
 size_t len;

 read(fd, &len, sizeof(len));

 /* we forgot to check the maximum length */

Source Code Analysis Tools - Example Programs 14
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 buf = malloc(len+1); // line 14
 read(fd, buf, len); // line 15
 buf[len] = '\0';
}

Example 27

/* from Secure-Programs-HOWTO/dangers-c.html */
/* In this example, the attacker-controlled number "len" is read as an integer,
 and even though there is a test to check if it's greater than
 the length of the buffer, a negative value for len will be converted to
 a large positive value when it gets cast to an unsigned integer in the
 second call to read.
*/

void func(int fd)
{
/* 1) signedness - DO NOT DO THIS. */
 char *buf;
 int i, len;

 read(fd, &len, sizeof(len));

 /* OOPS! We forgot to check for < 0 */
 if (len > 8000) { error("too large length"); return; }

 buf = malloc(len);
 read(fd, buf, len); /* len casted to unsigned and overflows */
}

Example 28

/* This is a simple resource-spoofing vulnerability where the characteristics
 of a fopened file are completely unchecked. (Often this would be called a
 race condition as well, but technically it isn't since the necessary checks
 are missing entirely.) First-generation scanners would be expected to
 generate warnings on this file because of the fopen(). This test is meant
 for scanners that don't warn about anything un ex2_unex.c; it checks whether
 they just ignore open() calls altogether (ignoring open() isn't what
 ex2_unex is testing for, needless to say).
*/

#include

void func()
{
 FILE *aFile = fopen("/tmp/tmpfile", "w");
 fprintf(aFile, "%s", "hello world");
 fclose(aFile);
}

Example 29

/* does the scanner understand preprocessor directives? */

/* This file tries to fool the scanner by making "strcpy" look like a variable
 instead of a function.
*/

#define STRINGCOPY strcpy

int main(int argc, char **argv)
{

Source Code Analysis Tools - Example Programs 15
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 char *buffer = (char *)malloc(1024);
 STRINGCOPY(buffer, argv[3]);
}

void func()
{
 /* ideally this should not generate a warning because "strcpy" is
 just being used as the name of a variable (and in fact it's dead
 code).
 */

 int strcpy = 0;
 strcpy = strcpy + 1;
}

Example 30

/*
 In this program srncat is called ten times in a loop, but the buffer
 recieving that data isn't big enough, so there's a potential buffer
 overflow on line 9.
*/

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(11);
 int i;

 buffer[0] = 0;

 for (i = 0; i < 10; i++)
 strncat(buffer, argv[i], 10); // line 9
}

Example 31

/* Technically the buffer in this program has enough room for all the
 strncats, but the programmer forgot to terminate the buffer before
 the strncats start. Therefore line 7 contains a potential buffer
 overflow.
*/

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(101);
 int i;

 for (i = 0; i < 10; i++)
 strncat(buffer, argv[i], 10); // line 7
}

Example 32

/* aonther strncat to into an unterminated buffer. */

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(101);

 strncat(buffer, argv[2], 90);
}

Example 33

Source Code Analysis Tools - Example Programs 16
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

/* forgot to null-terminate the strncpy */
/* strncpy doesn't automatically null-terminate the string being copied
 into. In this example, the attacker supplies an argv[1] of length ten
 or more. In the subsequent strncat, data is copied not to buffer[10]
 as the code suggests, but to the first location to the left of buffer[0]
 that happens to contain a zero byte.
*/

main(int argc, char **argv)
{
 char *buffer = (char *)malloc(101);

 strncpy(buffer, argv[1], 10);
 strncat(buffer, argv[2], 90);
}

Example 34

/*
 In this example, the attacker controls the third argument of strncpy,
 making it unsafe.
*/

#include

main(int argc, char **argv)
{
 int incorrectSize = atoi(argv[1]);
 int correctSize = atoi(argv[2]);
 char *buffer = (char *)malloc(correctSize+1);

 /* number of characters copied is based on user-supplied value */

 strncpy(buffer, argv[3], incorrectSize);
}

Example 35

/* Secure-Programs-HOWTO/dangers-c.html */

/* This program contains an integer truncation error. Superficially it looks
 like a safe program even though the variable len is tainted and
 len is used to determine the number of bytes read on line 18. It seems
 as though the buffer is large enough to accomodate whatever data ends
 up being placed there by the read statment. However, the program has
 a customized malloc function that takes an int argument, so in reality
 the malloc on line 3 doesn't always see the same argument as the read on
 line 18. A value of len larger than 2*MAXINT allows a buffer overflow on
 line 18.

 This example is somewhat contrived because of the large amount of memory
 that would have to be allocated for an exploit to succeed. On many
 architectures, len cannot be greater than 2*MAXINT.
*/

#include

void *mymalloc(unsigned int size) { return malloc(size); } // line 3

void func(int fd)
{

/* An example of an ERROR for some 64-bit architectures,
 if "unsigned int" is 32 bits and "size_t" is 64 bits: */

Source Code Analysis Tools - Example Programs 17
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 char *buf;
 size_t len;

 read(fd, &len, sizeof(len));

 /* we forgot to check the maximum length */

 /* 64-bit size_t gets truncated to 32-bit unsigned int */
 buf = mymalloc(len);
 read(fd, buf, len); // line 18
}

Example 36

/* based on the incorrect statement: "umask sets the umask to mask & 0777."
 in the umask man page.
*/

/* In reality umask sets the mask to 0777 & ~mask, which is also
 contrary to the convention for chmod that most people are accustomed to.
 (However, the correct usage is given lower down on the umask man page).
 Below, the programmer uses umask to give the rest of the world full access
 to the newly created file while denying access to him or herself, which
 can safely be assumed to be a programming error.

 Difficulty level: 1
*/

#include
#include
#include
#include

main()
{

 int fd;
 FILE *fp;

 /* no file descriptor confusion */

 while((fd = open("/dev/null", O_RDWR)) == 0 || fd == 1 || fd == 2) ;
 if (fd > 2)
 close(fd);

 umask(700); /* set permissions to ----rwxrwx */

 /* file is in user-unwritable directory */

 fp = fopen("/etc/importantFile", "w");

 fclose(fp);
}

Example 37

/* forgot to set umask */
/* umask() controls the permissions of created by the open call, but the
 permission mask is passed to the child process in an exec(). If this
 is a setuid program, the attacker can set a permission mask that makes
 these files world-writable, but the new file may be a system-critical
 one. In this program, the programmer uses the umask that existed when

Source Code Analysis Tools - Example Programs 18
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 the program was exec()ed, but that umask might be controlled by an
 attacker.
*/

#include
#include
#include
#include

main()
{

 int fd;
 FILE *fp;

 /* no file descriptor confusion */

 while((fd = open("/dev/null", O_RDWR)) == 0 || fd == 1 || fd == 2) ;
 if (fd > 2)
 close(fd);

 /* file is in user-unwritable directory */

 fp = fopen("/etc/importantFile", "w");

 fclose(fp);
}

Example 38

/* Here, the developer is getting a pathname as an argument and wants
 to find the first path component. The error is that the path
 in str might start with a '/', in which case len is zero and
 len-1 is the largest value possible for a size_t. In that particular
 case the strncpy in the else clause is no safer than a strcpy.
*/

#include

void func(char *str)
{
 char buf[1024];

 size_t len;
 char *firstslash = strchr(str, '/');

 if (!firstslash)
 strncpy(buf, str, 1023); /* leave room for the zero */
 else
 {
 len = str - firstslash; /* length of the first path component */

 if (len > 1023)
 len = 1023;

 strncpy(buf, str, len-1); /* cut the slash off. Only copy len-1
 characters to avoid zero padding. */
 buf[len] = 0;
 }
}

Example 39

/* The principle here is that incorrectly casting a pointer to a C++

Source Code Analysis Tools - Example Programs 19
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

 object potentially breaks the abstraction represented by that object,
 since the (non-virtual) methods called on that object are determined
 at compile-time, while the actual type of the object might not be
 known until runtime. In this example, a seemingly safe strncpy causes
 a buffer overflow. (In gcc the buffer overflows into object itself
 and then onto the stack, for this particular program. With some compilers
 the overflow might modify the object's virtual table.)

 It's hard to say what a scanner should flag in this test file. In my
 opinion the only casts allowed should be virtual member functions that
 cast the this pointer to the class that owns them (e.g., As()
 functions) and I think that prevents this type of vulnerability.
*/

#include
#include

class Stringg
{

};

class LongString: public Stringg
{
private:

 static const int maxLength = 1023;
 char contents[1024];

public:

 void AddString(char *str)
 {
 strncpy(contents, str, maxLength);
 contents[strlen(contents)] = 0;
 }
};

class ShortString: public Stringg
{
private:

 static const int maxLength = 5;
 char contents[6];

public:

 void AddString(char *str)
 {
 strncpy(contents, str, maxLength);
 contents[strlen(contents)] = 0;
 }
};

void func(Stringg *str)
{
 LongString *lstr = (LongString *)str;
 lstr->AddString("hello world");
}

main(int argc, char **argv)
{
 ShortString str;

 func(&str);

Source Code Analysis Tools - Example Programs 20
ID: 498-BSI | Version: 11 | Date: 11/14/08 5:15:41 PM

}

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI.
DHS funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

