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I. INTRODUCTION

Pulsed ultrasonic techniques are standard methods for

detecting and characterizing defects in materials and

devices. 1-4 To accurately determine the defect parameters

and structural integrity of a multilayered structure using

ultrasonic techniques, the evaluator must understand the

wave propagation in the structure and identify the

appropriate signal of interest. Interpreting the signal

response is relatively easy with a single-layered specimen,

but becomes complicated as number of layers increases,

because of multiple pulse reverberations.

We have derived generalized transit time and pulse

amplitude formulas for modelling the pulse reverberations in

multilayered structures. The equations can be programmed

into computer routines and using the appropriate parameters,

will calculate the time and echographic amplitude response,

which can then be used to identify the critical structural

interfaces.

The equations are applicable for both the reflected 5

and the through-transmitted modes. The reflected mode is

not applicable in materials and structures that are highly

attenuating because the reflected signals are either buried

in the noise or too weak to be detected. As long as the
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material is accessible from the side opposite the

transmitter, through-transmission is a viable alternative

for evaluating lossy materials.

In this paper, we show how the generalized formulas for

through-transmission time and pulse amplitude response were

derived, and present the results of laboratory experiments

to verify them. Finally, we discuss the validity of the

equations and their applicability to ultrasonic

nondestructive evaluation.
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supported by the Martin Marietta Laboratories'(MML)

Directors Discretionary Fund Program and partially supported

by the MML Independent Research and Development Program.

II. THEORETICAL DERIVATION AND ANALYSIS

Stress-wave propagation in multilayered structures is a

very complex phenomenon. In addition to complications

caused by the normal modes of propagation, other factors

such as surface finish, interface quality, diffraction,

scattering, attenuation, focusing, and mode conversion also

strongly influence the transmitted and reflected signals.
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Because these factors are mostly material and process

dependent, they are very difficult to model mathematically.

In the derivation below, we consider only the pure mode

through-transmission of a pulse that is normally incident to

a n-layered structure, which is bounded by two semi-infinite

media on each end. Figure 1 illustrates wave propagation in

a typical n-layered structure (d is the thickness of the

layer and _ is the attenuation factor, with the subscript i

for the ith layer). The acoustic impedance is given by Z =

pV, where p is the density of the medium and V is the sound

velocity. We assume that all adjacent layers have mismatched

acoustic impedances, i.e., Zi _ Z i + 1"

The reflection and transmission coefficients for an

ultrasonic pulse propagated from medium i to medium j are

given by Rij - (Zj-Z i)/(Zj+Z i) and Tij - (2Zj)/(Zj+Z i),

respectively. For a single-layered structure, the analysis

is straightforward. The time of arrival for the nth pulse

reverberation can be expressed as --

(i)
t(n) (2n-l) t I = (2n-l) d I / vl
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where t I = dl/V 1 is the time it takes the pulse to travel

through thickness, dl, with the wave velocity of v 1. The

pulse amplitude associated with the specific pulse that

arrives at t(n ) can be written as

n-I n-I - (2n-l) dla 1
A(n)= AoTI2RIoRI2 c (2)

where A 0 is the initial pulse amplitude. As the number of

layers in a structure increases, the echo response becomes

more complex because the number of reverberations increases

and the echo become superimposed. Each transmitted echo

E(kl,...,ki,...,k n) is indexed by the number of times it

reverberates in each layer, and a specific echo is

represented by a specific set of indices, k i. The indices

are used to determine the number of echo elements that form

the echo. Thus, a pulse response at a given moment may be

composed of many echoes that have the same time of arrlval.

This phenomenon is demonstrated in Figure 2.

Depending on the phase differences of these echoes,

there is either constructive or destructive interference,
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which causes an irregular increase or decrease in amplitude,

and which produces local minima and maxima. The formula to

compute the number of echo elements is based on the binomial

coefficient that determines the number of outcomes that can

occur within a given set. A multiplication factor based on

Pascal's triangle (which can also be derived based on

binomial coefficients) specifies the size of a subset of

echo elements that follow similar reflection and

transmission patterns through the material. The formula is

given by --

where
n! (m-n)!

Based on the above analysis, we can derive generalized time

and amplitude equations for the through-transmission mode.

The time response is derived via a linear summation of the

time required to travel through each layer. The
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mathematical expression for the transit time response of a

pulse can be written as --

n

t (kl,k2 ..... kn ) = _ (lki'l) t i (4)
i=l

where k I = 1, 2, ... n, and t i - di/v i is the time required

for the pulse to travel through the ith layer.

The corresponding amplitude at each calculated time is

computed by observing the possible paths the pulse might

travel in the given amount of time and is expressed using

the k i indices from which the echo elements are determined.

Each echo element follows a definite pattern of reflections

and transmissions at the material interfaces before it exits

to the receiver. By integrating these reflect£on and

transmission coefficients with the results of Equation (3),

the echo response at a given time is defined for a given set

of indices. The equation for the pulse response amplitude

can be expressed as --
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A m

(k1 , k2 ..... kn )

(5)

kl" k''l" In lTn,n+ 1 - T_ (2ki-l) dia n-I ki+ki+ I

A 0 n RI0 R n,n+l • l=l i RU+I

I'[ T i,i-I i=1
|-2

2 j

..1i=I "= j-I j-I I i,i-,-t/

A 0 is very difficult to measure experimentally because

it depends on several factors, including the transducer

characteristics, pulse driver, and coupling efficiency.

However, we can normalize the expression for the n-layered

structure to k I = 1 and k n = 1, i.e., (n-2) layers. Thus,

the expression for Equations (4) and (5) reduced to --

n-I n-I

= t + E (2k.." ti+ t n = (tl + tn)+E(2ki "1) t.t (6)
(1 ,k2,....,kn.I,I) 1 1)

t

i=2 i=2
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and

A "dlul"d an) ,= (A0 Tl2Tn,n+l • .

n-!

T klkl 2kilI nln 1n-l,n i_2 di ki+ ki÷l

R21 R e R ,n-| J.i+l

YI T i,i-1 i=2
t.3 ('7)

n-2 min(k i,k|+l) k " J k i -1 ki+ 1 -1 I- Ri.i+

i=2 jffil j - 1 j- 1 i.i+! /

Equations (6) and (7) are the same expressions as the

formulas specifically derived for the (n-2)-layered

structure. Therefore, the first through-transmitted pulse,

which can be measured experimentally can be used as the

normal£zation factor.

The time and amplitude data can be plotted to provide a

pictorial presentation of the effect of multiple

reverberations that can be used to predict the contribution

of significant echoes from the interfaces between layers.

Based on the plot, an analysis can be made to determine

8



which transmitted pulses are of interest for a specific

inspection, and signal processing algorithms can be

developed to eliminate unwanted reverberations. 6

III. LABORATORY EXPERIMENTS AND RESULTS

Ultrasonic immersion tests were performed to verify the

validity of Equations (4) and (5) for one- and three-layered

structures. A benefit of using immersion tests is that it

eliminates the error introduced by the thin coupling

required in the contact tests. As described in Equations

(6) and (7), we first normalized the measurements for a

three-layered structure to tlm I and Alm I and reduced it to

verify the equations for a one-layered structure.

Similarly, we normalized the measurements of a five-layered

structure to tljkl I and Aljkl, and reduced it to three

layers.

The equations for the three-layered structure are as

follows:

|(kl.k2.k 3)= (2k 1- 1) t1+ (2k 2- l) t2+ (2k 3- l) t3
(8)



and

A(k ffi A 0
_k2_k 3 )

+k
k I-I k3"lRkt+k2 k 2 3T34 R l0 R34 12 R23

T21 T32

- (2k I -l) d ! or. 1" (2k2"1) d 2 ct 2- (2k3 -1) d 3 a 3
¢

(.|) k2"i
i=l i-I

/( 2Sk 2 -1 1- RI2

2
i- 1 RI2

(_1)k3.j
j=l j-I

k 3 -1 l- R23

2
j- 1 R_

(9)

The reduced expressions for Equations. (8) and (9), i.e.,

for one layer, are

t(l,k2,1) = tl +(2k2-1) t2+ t3 = (tl + t3) +(2k2-1) t 2 (I0)

and
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A(l,k2,1) = (A 0 T34TI2e

" " k2"l kz'l "(2k2"l) d2a2 (11)
dlal d3a3) T23R21 R23 c

The time-domain offset (t I + t 3) and normalization amplitude

A(1,1, 1) can be measured experimentally.

Three experiments were performed to verify the time and

amplitude formulas: two experiments using a three-layered

structure (water/0.102-cmglass/water, water/0.131-cm

glass/water) and one using a five-layered structure

(water/0.318-cm aluminum/0.102-cm water/0.620-cm

aluminum/water). The experimental setup is shown in Figure

3. The measurements were taken with a Krautkramer-Branson

USIP 12 pulser/receiver and a Tektronix 7904 oscilloscope.

Two 10-MHz transducers were used to transmit and receive the

ultrasonic pulses. The specimens were immersed in a water

bath approximately 1.27 cm from the transducers.

The acoustic properties of the materials used in these

experiments are listed in Table I.
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Table 1 - Acoustic properties of the materials used in

experiments

Material Acoustic Impedance Sound Velocity

(kg/m2/s) (m/s)

Glass 14500 5710

Aluminum 17060 6320

Water 1483 1483

Figures 4 and 5 show the oscilloscope traces of the

pulse reverberations for a single-layered (0.102-cm glass

plate) sample and a three-layered (0.318-cm aluminum/0.102-

cm water/0.620-cm aluminum) composite sample, respectively.

The theoretical and laboratory data for these three cases

are compared in Figures 6-8. The theoretical calculations

of transit time responses predicted using Equation (4) agree

well with the experimental measurements. The theoretical

calculations of the echo amplitude response [Equation (5)]

also agree well with the experimental results for the

single-layered samples [Equations (10) and (11), and Figures

6 and 7], but there are discrepancies between the

theoretical and experimental results for the multilayered

samples. We attribute some of the error 1) to the limited

accuracy of the scope, 2) to imperfections in the surface

finishes, 3) to beam spread and dispersion, 4) to imperfect
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alignment of the sensor, and 5) to the superimposing of

multiple pulses. Although the experimental measurements are

far from ideal, they are adequate to verify the general

principles of pulse response as predicted by Equations (4)

and (5).

IV. CONCLUSION

It is evident from the results that the generalized

equations for through-transmission pulse response in

multilayered structures, which are derived here for the

first time, are indeed valid. We have verified them using

two approaches. First, we reduced the equations to specific

forms of single- and three-layered structures and found that

the resultant formulas are of the same form as those derived

for each cases individually. We also verified the equations

experimentally, with generally good agreement between the

predicted and experimental measurements of transit time and

amplitude response.

These equations are invaluable tools for modeling

ultrasonic pulse responses and for practical inspections.

They are applicable to both thick and thin specimens, which

satisfies the condition di>>wavelength, and can be applied

to small electronic components as well as to large
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structures. In addition, they can be easily incorporated

into an expert NDE system for evaluating the interfaces of

multilayered structures.
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