

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

ERL Parameter Review and Overview of Physics Issues

Michael Borland Operations and Analysis Group Accelerator Systems Division November 15, 2006

Outline

- Why consider an ERL?
- ERL overview
- Operating modes for ERL upgrade
- Assumptions and ERL physics issues
 - Emittance production and preservation
 - Energy spread and recovery
 - Linac optics principles
 - Arc optics principles
 - Beam breakup
- Short pulse issues and options
- Beam loss concerns
- Magnet designs
- Stability and diagnostics issues
- Conclusion.

Why Consider an Energy Recovery Linac¹?

- Unlikely to get revolutionary improvements in accelerator performance for APS storage ring upgrade
 - Constrained by the present circumference
 - Dramatic emittance reductions are very difficult
 - Desire for long straight sections further increases difficulty
 - Nonlinear dynamics issues increasingly difficult
 - Need new booster, long dark time
- ERL promises revolutionary performance
 - Emittance in both planes comparable to present APS minimum vertical emittance
 - Very high degree of spatial coherence
 - Electron bunches of few ps duration or less
 - No long dark time
- We find that adapting the ERL concept to APS maintains these advantages.

¹M. Tigner, *Nuovo Cimento* **37**, 1965.

3

ERL vs Ring in a Nutshell

- Facts about storage rings vs linacs:
 - Emittance scaling favors high-energy linac: $\sim E^2$ for ring, $\sim 1/E$ for linac
 - Energy-spread scaling favors high-energy linac: ~E for ring, ~1/E for linac
 - Linac can much more easily produce short (ps or less) pulses
 - Single-pass systems (e.g., linac) can more easily support optics flexibility
 - Ring can much more easily produce high current
- A 7 GeV, 100mA linac nominally consumes GW of wall plug power
 - Energy recovery allows high current from a high-energy linac.

Basic ERL Concept

ERL Parameter Review and Physics Issues

Cornell ERL Parameters¹ Scaled to 7 GeV

	APS	ERL		
	now	High flux	High coherence	Ultrashort pulse
Average current (mA)	100	100	25	1
Repetition rate (MHz)	$0.3 \sim 352$	1300	1300	1
Bunch charge (nC)	0.3~60	0.077	0.019	1
Emittance (nm)	3.1 x 0.025	0.022 x 0.022	0.006 x 0.006	$0.37 \ge 0.37$
Rms bunch length (ps)	$20 \sim 70$	2	2	0.1
Rms momentum spread $(\%)$	0.1	0.02	0.02	0.3

Promise of very high brightness

- Extremely low emittance, equal in both planes
- Very low energy spread
- Current from 25 to 100 mA with ultra-low emittance, ps pulses
- Option for less current with high charge, fs pulses.

¹G. Hoffstaetter, FLS 2006 Workshop, DESY.

Outline

- Why consider an ERL?
- ERL overview
- Operating modes for ERL upgrade
- Assumptions and ERL physics issues
 - Emittance production and preservation
 - Energy spread and recovery
 - Linac optics principles
 - Arc optics principles
 - Beam breakup
- Short pulse issues and options
- Beam loss concerns
- Magnet designs
- Stability and diagnostics issues
- Conclusion.

Guns for ERLs

- Challenges:
 - Very low emittance desired ($\sim 0.1 \ \mu m$ normalized)
 - Even 1 μm would be good: 80 pm emittance at 7 GeV
 - Can start with a lesser gun and gradually improve
 - CW operation with high average current (100 mA)
 - Vacuum must be extremely good to preserve cathode lifetime
- Many gun types
 - DC photocathode gun is most common (JLAB, JAERI, Cornell, Daresbury)
 - Several normal and superconducting rf gun projects underway

Ranges of design and achieved values (A. Todd, NIM A 557 (2006) 36-44).

Output energy	2~15 MeV	CW average current	100-500 mA (5~32)
Bunch charge	0.075~3 nC (0.13~4.75)	Normalized emittance	0.1~6 um (7~30)
Bunch length	2~7 ps (3~50)	Energy spread	0.1 ~ 0.5 % (0.1~3)
Rf frequency	500~1300 MHz	Rf power	50~500 kW

8

Emittance Preservation in Injector

- Two notable simulation efforts
 - Cornell¹ gets 0.1 μ m emittances for ~100 pC without merger
 - JAERI² gets 0.1 μ m emittances for ~10 pC with merger
- High-coherence mode (0.1 μ m, 19 pC) seems plausible
- The injector must be carefully optimized to preserve the gun emittance against
 - Space charge
 - Merger bends

Not APS-specific, so for now assume these designs work

- Cornell has built a prototype gun and is testing now
 - Most important issue probably high voltage (750 kV)
- Improved merger concepts under development.

"Zigzag" merger (V. Litvinenko et al., NIM A 557 (2006) 165-175.)

¹I.Bazarov and C. Sinclair, Phys. Rev. ST Accel. Beams 8 (2005) 034202. ²R.Hajima and R. Nagai, NIM A 557 (2006) 103-105.

ERL Parameter Review and Physics Issues

Emittance Preservation at High Energy

- Issues at high energy all related to bending
 - Mismatch due to average energy loss in arcs
 - Coherent synchrotron radiation (CSR) in arcs
 - Quantum excitation (ISR) in arcs
- These also affect the energy spread
 - Impacts brightness
 - Impacts beam loss and energy recovery
- The methods of dealing with these are well known
 - Similar to high-brightness ring design in many respects
- Site-specific issue, related to accelerator geometry
 - Considerable APS-specific detail shown later.

Average Energy Loss

- In large, high-energy ERL, the beam loses considerable energy traversing arcs
 - E.g., ERL@APS might have 10~15 MeV loss
 - Reduces energy recovery efficiency (see below)
- Optics mismatch unless magnet strengths are tapered
 - If no tapering, emittance growth and beam loss will be worse
 - Solving this requires more power supplies
 - APS already has individual PS for all quads and sextupoles
 - APS also has trim supplies for all dipoles
 - Hence, so far we taper only in the APS portion
- Loss also varies as users change undulator gaps
 - This is a fraction (\sim 20%) of the fixed losses
 - We have not explored the impact of this.

Quantum Excitation (Incoherent Synchrotron Radiation)

ISR concerns

- Emittance growth reduces brightness
- Energy spread growth reduces brightness, affects losses/ER
- Scaling is different than for storage ring equilibrium properties
- For isomagnetic separated function lattice^{1,2}

$$\Delta \epsilon_x \propto I_5 \gamma^5 \propto \Delta \theta \frac{\gamma^5}{v_x^3 \rho} \qquad \Delta \sigma_\delta^2 \propto \Delta \theta \frac{\gamma^5}{\rho^2}$$

- Lessons
 - Don't bend the beam more than necessary at high energy
 - Bending at low energy is much, much better
 - Keep bend radius large
 - Use strong-focusing lattice.

¹M. Sands, The Physics of Electron Storage Rings, SLAC-121, November 1970. ²M. Borland, OAG-TN-2006-045, 10/5/2006.

Coherent Synchrotron Radiation^{1,2}

Gets better linearly with increasing energy

- For fixed angle, weak dependence on radius
- Like ISR: strong focusing, many weak dipoles helps emittance.

¹B. Carlsten et al., Phys. Rev. E 51,1995. ²M. Borland, Phys.Rev.ST Accel. Beams **4**, 070701 (2001).

CSR Microbunching Instability¹

- CSR wake strongly driven by local derivative of current
 - Accelerates the head
 - Decelerates the tail
- If R₅₆<0
 - Head falls back, tail moves forward
 - Density clump gets enhanced if CSR wake larger than local energy spread
- R₅₆<0 for low-emittance double-bend cell (e.g,. APS arcs)</p>
- At high intensity, this can significantly corrupt longitudinal phase space
- Simulations with smooth Gaussian beams can be highly misleading.

¹M. Borland et al., NIM A 483, 268 (2002).

CSR Microbunching Instability in Early LCLS Design¹

¹M. Borland et al., NIM A 483, 268 (2002).

ERL Parameter Review and Physics Issues

Arc Design for ERLs

- Need bending arcs for various purposes
 - Recirculation arcs
 - New user arcs
 - Arcs into and out of the APS
- Based designs on triple-bend cells¹
 - Emittance-preserving (strong focusing)
 - Achromatic
 - Necessary for user beamline arcs to avoid effective emittance (growth) due to energy spread (growth)
 - Not generally optimal for beam-transport arcs
 - Isochronous
 - Rigid longitudinal distribution mitigates CSR instability
 - Horizontal phase advance of $2\pi N/m$ per cell with M*m cells gives emittance growth cancellation¹.
- In APS, we use zero-dispersion tuning of the existing double-bend cells (see below).

¹J. Wu et al, Proc 2001 PAC; G. Bassi et al, NIM A 557 (2005).

7 GeV Transport Arc Designs for ERLs

- Typical ischronous achromatic transport cell
- Three non-gradient dipoles
- Five quadrupole families

Results for 10-cell 90-deg arcs

100 120 140 160 180

Radius (m)

- For 80~110m average radius, get similar results
- We've used achromatic arcs in this range
 - Easier to match to user arcs

0.11

80

60

0.15

corrected ϵ_{mx} (mm) corrected ϵ_{nx} (mm) corrected ϵ_{nx} (mm)

Final

ERL Parameter Review and Physics Issues M. Borland, 11/15/06

APS Lattice for ERL¹

APS uses distributed dispersion low-emittance ("LE") lattice

- Minimizes the effective beam emittance
- In spite of tiny energy spread, need achromatic cells ("ZD" lattice) for ERL even ignoring ISR/CSR

Emittance growth in APS w/o CSR, Cornell high-coherence parameters. Example with Q=50 pC, 0.17 ps rms bunch length: ZD much better.

¹M. Borland, NIM A 557 (2005) 224.

ERL Parameter Review and Physics Issues

Optics Correction

- Optics correction is a serious issue for emittance preservation in ILC¹
- Effective emittance can be enlarged by
 - Mismatched horizontal dispersion
 - Spurious vertical dispersion
- Typical beta functions at IDs are ~10 m with ~7 pm geometric emittance at 7 GeV
 - $\sim 8 \ \mu m$ mono-energetic beam size
- Less than 10% emittance increase means beam size of increase of under 5%

$$\eta \sigma_{\delta} < \sqrt{\epsilon \beta} (1.05^2 - 1)^{1/2}$$

- With 0.02% rms energy spread, need η < 0.01 m.
 - In APS we correct¹ dispersion at IDs to \sim 0.003 m
- Appears not to be a major issue.

¹L. Emery, private communication.

ERL Linac Optics Design

- ERL linac must support beams of multiple energies in the same location
 - Single-pass ERL linac must support 10 MeV and 7 GeV beams together
 - The "graded gradient"¹ principle was applied and works well
 - Quadrupoles have constant focal length for lowest energy beam at any location

¹D. Douglas, JLAB-TN-00-027, 11/13/00.

Example of Doublet-Based ERL Linac Optics Design

M. Borland, OAG-TN-2006-041, 9/17/06.

Multipass Beam Breakup

N. Sereno, Univ. of Illinois Urbana Ph. D. Thesis, 1994.

Initially on-axis beam gets a small kick from HOM.

Beam returns with large offset that dumps more energy into the HOM.

Solutions to BBU^{1,2}

- Linac optics
 - Small beta functions using graded gradient design
 - R₁₂ and R₃₄ matrix elements for one pass should be small
 - Trajectory from cavity's kick crosses near zero when beam returns to same cavity
 - Can be done by adjustment of external phase advance
- HOM control
 - Damping
 - Requires space between cavities for HOM dampers
 - Decreases the cavity fill factor
 - Stagger tuning
 - This was done for the APS storage ring, but with far fewer cavities³
- Cornell/JLAB effort¹ shows a >200 mA threshold is possible using these techniques for a single-pass ERL.
- ¹S. Gruner and M. Tigner eds., CHESS Tech. Memo 01-003.
- ²N. Sereno, "Beam Breakup in ERLs," 11/2/06.
- ³L. Emery, PAC 1993, 3360-3362.

Outline

- Why consider an ERL?
- ERL overview
- Operating modes for ERL upgrade
- Assumptions and ERL physics issues
 - Emittance production and preservation
 - Energy spread and recovery
 - Linac optics principles
 - Arc optics principles
 - Beam breakup
- Short pulse issues and options
- Beam loss concerns
- Magnet designs
- Stability and diagnostics issues
- Conclusion.

24

ERL Ultrafast Mode

- Cornell ERL group¹ lists the following parameters for "ultra-fast" operating mode:
 - 0.35 nm emittance in both planes (at 7 GeV)
 - 1 mA average current
 - 1 nC per bunch at 1 MHz
 - Very short bunch length: 50 fs rms
 - Energy spread of 0.3% rms
- Can these values be delivered to APS users?
 - Assume that we'll use the APS itself as the bunch compressor
 - Assume we can arbitrarily transform the initial longitudinal phase space with emittance 50fs*0.3%
 - Varying the initial chirp varies the target bunch length.

¹G. Hoffstaetter, FLS-2006.

Ideal Result without CSR or ISR

ERL Parameter Review and Physics Issues

Impact of Coherent Synchrotron Radiation: 800fs Target

ERL Parameter Review and Physics Issues

Evolution of Rms Bunch Duration

ERL Parameter Review and Physics Issues

Horizontal Emittance Evolution

Target

ERL Parameter Review and Physics Issues

Discussion of ERL Ultrafast Mode

- For ~1ps, seems ok, but
 - Assumed smooth, gaussian input bunches
- Average current is 1 mA, so flux down 100-fold
- Brightness is down even more
 - Vertical emittance ~14-fold bigger (0.025 nm now)
 - Horizontal emittance ~6-fold smaller
 - Average brightness down ~200-fold
- Charge per bunch down 60-fold, so peak brightness basically unchanged
- This mode would put almost all APS users off the air.

Short Pulses from a Storage Ring: Zholents' Concept¹

¹A. Zholents, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 425, 385 (1999) See also, A. Zholents' talk at 2004 APS Strategic Planning meeting.

Argonr

ERL Parameter Review and Physics Issues

Crab Cavities with ERL?

X-ray pulse duration for Zholents' crab cavity scheme¹

For V=6 MV and 3 GHz cavity

- $_{-}$ ~100 fs rms for 1A and L =35m or 0.3A and L =10m
- Intensity through slits is $\sim 100 \text{fs}/2\text{ps} = 5\%$
- Shouldn't harm beam: rms deflection only 32 μ rad
- Deflection is very linear, ideal for x-ray compression
- Applicability somewhat limited but intriguing.

¹M. Borland, Phys. Rev ST Accel. Beams, **8**, 074001 (2005)

Ultrashort Mode with Second Gun

Bazarov¹ suggests that ultrashort pulses should be delivered with a separate gun to a separate user hall

- Due to low repetition rate of high charge gun, don't need energy recovery
- Limitation on average current is from beamloading
- Advantage: ERL runs normally for rest of user community
- Disadvantage: must build new beamlines for timing users
- Some of our options (see Decker's talk) accommodate this mode.
- ¹I. Bazarov, private communication.

Short Pulse Option: Hybrid ERL/SR Mode

- Can we mix Ultrafast ERL and stored beam?
- Partial solution to ERL operating mode issues
- Run ring with stored beam crowded on one side as in present hybrid mode
- Pulse ERL gun at 271/N kHz to match ring revolution frequency
 - Need fast kickers (<3 us)
 - Need high rate kickers (kick in and out)
 - Need highly stable kickers due to small emittance
 - Kickers must have DC mode for normal ERL operation
- Average current would be up to 0.27 mA
 - Up to 2 MW beam power, maybe don't need ER
- No physics reasons this won't work.

Outline

- Why consider an ERL?
- ERL overview
- Operating modes for ERL upgrade
- Assumptions and ERL physics issues
 - Emittance production and preservation
 - Energy spread and recovery
 - Linac optics principles
 - Arc optics principles
 - Beam breakup
- Short pulse issues and options
- Beam loss concerns
- Magnet designs
- Stability and diagnostics issues
- Conclusion.

Beam Loss Issues^{1,2}

- Possible problems include
 - Inefficient energy recovery
 - Cryogenic load in linac
 - Radiation hazard to users
 - Radiation damage to equipment
 - Catastrophic damage to equipment from beam strike
- APS injector delivers a mere 10 nA
 - Efficiency of charge transfer is 80 to 90%
 - "Maximum Credible Incident" is a 44 nA loss at one spot in ring
 - 11 rem/hour radiation outside shield wall
 - Even 1 PPM loss from 100 mA ERL corresponds to 100 nA
- Should we just run and hide from the ERL?

¹CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06. ²M. Borland and A. Xiao, OAG-TN-2006-052, 10/16/06.

Continuous Beam Loss Mechanisms¹

- Optical mismatch in beam transport systems
- Beam halo, from many sources
 - Space charge
 - Scattered drive-laser light
 - Field emission
 - Gas scattering
 - Touschek scattering
 - Non-linear optical elements
- These are either
 - Present (mostly) at low energy (space charge, laser scatter, field emission)
 - Controllable through proper design (Touschek, nonlinear optics)
- If we can collimate effectively at low energy, we may find losses are controllable.

¹CY Yao, "Beam Loss Issues of ERL Accelerators," 10/12/06, and references therein.

Implications of MCI for ERL

- MCI gives us a dose/power or dose/current relationship for the existing SR shielding
- To reduce radiation to 1 mrem/hour, limit loss to 4.4 pA
 - That's 0.044 parts-per-billion compared to 100 mA!
- Another way to think about issue is in terms of limiting power/meter¹
- Put another way, we may have losses at each of 36 to 40 sectors
 - Total loss allowance of up to 170 pA or 1.7 PPB
- Presently for stored beam in 24 bunch mode
 - 100 mA has lifetime of $\tau \approx 6$ hours
 - Losses in a single turn are $T_{rev}/\tau = 0.17$ PPB or 17 pA.

¹R. Gerig, private communication.

Gas Scattering

- A possible source of beam halo is gas scattering
- We can estimate gas scattering rate from known gas scattering lifetime of the APS
 - ~120 hours for ~1 nT pressure

$$\frac{dI}{dt} = \frac{I}{\tau} \to \Delta I = \frac{I}{\tau} T_0$$

For APS, $T_0 = 3.68 \ \mu s$ so for 100 mA, loss current is 0.9 pA

- Expect a somewhat larger value for entire ERL
 - Probably much longer than APS
 - Not all at 7 GeV
- Overall doesn't appear to be serious.

Touschek Scattering¹

Touschek scattering is a worry for low-emittance bunches
We can use Piwinski's lifetime formula to get the loss rate for ERL

$$\frac{1}{T} = \left| \frac{r_p^2 c N_p}{8 \pi \gamma^2 \sigma_s \sqrt{\sigma_x^2 \sigma_y^2 - \sigma_p^4 D_x^2 D_y^2} \tau_m} F(\tau_m, B_1, B_2) \right|$$

where $\tau_{\rm m} = (\beta \Delta p/p)^2$

- Piwinski's formula gives the rate of scattering outside of a particular momentum aperture Δp
- We can estimate the loss rate by assuming a constant energy acceptance
 - Later, we optimize the acceptance and estimate loss distribution.

¹A. Xiao, OAG-TN-2006-048, 10/10/06.

Cumulative Loss Rate in APS for Different ERL Modes¹

¹M. Borland, A. Xiao, OAG-TN-2006-052, 10/16/06.

Argonn

ERL Parameter Review and Physics Issues

Energy Aperture Optimization

- Purpose of energy aperture optimization is to reduce losses in user arcs due to Touschek scattering
- Initially, we tried simply correcting chromaticity, but results were not very good
- Used method that more directly simulates the problem
 - Put energy scattering elements after each magnet to model Touschek scattering
 - Each particle gets scattered once only
 - Energy offset scattering distribution is uniform $\pm 2\%$
 - Put in realistic physical apertures
 - Track from the start of the turn-around arc to the exit of APS
 - Don't include exit transport line or linac
 - Using tracking, optimize for
 - Maximum transmission to the end of the arcs
 - Centroid of final momentum distribution equal to 0
- We used the parallel version¹ of elegant for this task.

¹Y. Wang and M. Borland, Proc. AAC06, to be published.

Discussion

- Outlook for beam loss issues:
 - Touschek scattering is main loss mechanism at high energy
 - Touschek-scattered particles are lost quasi-uniformly around the circumference
 - We can probably keep loss rates under 170 pA and doses under 1 mrem/hour with
 - *Sufficient energy aperture (±1%)*
 - See later talk for results.
 - Halo collimation (at low energy).
- Using the high-coherence mode gives a 10-fold reduction in Touschek rate
 - Also gives higher spectral brightness¹

¹R. Dejus, private commication.

Magnet Designs for ERL and SR Work

- APS magnets are quite conservative
 - 40 mm bore radius
 - _ Quadrupoles up to $K_1 = 0.9 \ 1/m^2$ or 21 T/m
 - Sextupoles up to $K_2 = 30 \ 1/m^3$ or 700 T/m²
- We find we need stronger magnets for ERL (and SR) upgrades
 - Need many short, strong-focusing cells
 - Forces magnets to be short, therefore stronger
 - Sextupoles must be strong because new ERL arcs have very low dispersion
- We've designed around a 20 mm bore radius. Feasible¹ designs found
 - _ Quadrupoles up to $K_1 = 2.35 \ 1/m^2$ or 55 T/m
 - Sextupoles up to $K_2 = 183 \text{ 1/m}^3 \text{ or } 4.3 \text{ kT/m}^2$

¹A.Xiao, M. Jaski.

2D Quadrupole Design¹

Quadrupole Magnet Problem - APS 1nm lattice

ERL Parameter Review and Physics Issues

2D Sextupole Design¹

ERL Parameter Review and Physics Issues M. Borland, 11/15/06

46

Stability and Diagnostics Issues

- Typical ID beta functions are ~10 m with ~7 pm geometric emittance
 - Typical beam size of 8 μ m
- APS beam sizes at ID now are 280 μ m and 8.7 μ m
 - Should be able to measure emittance of ERL beam using ID35 beamline¹
- APS stability now is 1.5 μ m horizontal and 0.9 μ m vertically in 0.016~30 Hz band
 - Scaling to ~10m beta function, this is equivalent to 1.1 μ m horizontally and 1.6 μ m vertically
 - These are ~20% of the ERL beamsize
 - We don't see to be far from required ~10% stability
 - 1.3 GHz repetition rate of ERL beam will help
 - 1.3 GHz is much faster than power supply ripple, rf variation, and ground vibration
 - Good signal for BPMs
 - Advancing technology should allow much faster data collection and feedback.
 ¹A. Lumpkin.

Feedback Scheme for ERL to Compensate Gun Jitter

¹R. Lill, private communication.

ERL Parameter Review and Physics Issues M. Borland, 11/15/06

48

Conclusion

- ERL promises very bright beams for x-ray production
- For some ERL issues that are not APS-specific, we've assumed that on-going research will provide solutions
 - Gun design for ultralow emittance
 - Emittance preservation at low energy
 - Cathode lifetime for 25~100 mA CW
 - Beam break-up
- Site-variable issues were reviewed
 - Linac length and optics
 - 10 MeV to 7 GeV and back in one pass linac is feasible
 - Emittance preservation in arcs
 - ISR and CSR are concerns (more in later talk)
 - IBS is not a problem (see supplemental slide)
 - Ultrafast ERL beam in APS has issues
 - Beam corruption, low average current
 - Several options available to address this and keep more users happy

Conclusion

- Site-variable issues (continued)
 - Beam loss is a serious concern
 - Gas scattering is negligible
 - Indicated how to compute Touschek losses (more later)
 - Touschek loss rates for APS stored beam already lower than required for ERL
 - Assume we can collimate at low energy to eliminate halo
- Magnets appear feasible, though quite strong
 - Assuming a 30 mm ID chamber
- Diagnostics and beam stability seem within reach
- APS-specific details in subsequent talks
 - Layout options
 - Designs and performance.

Supplemental Slides Follow

ERL Parameter Review and Physics Issues M. Borland, 11/15/06

Conclusions of A. Todd's Review¹

- Normal conducting rf guns are the least viable technology
 - Gradient limited by power load
 - Cathode technology (lifetime, reliability) not there
- Superconducting rf guns are least mature but promising
 - Unproven at high average current
 - In principle will deliver better performance than DC guns
 - No demonstrated cathode technology
- DC guns are in use now at 10 mA level
 - Extrapolation to the 100 mA level looks likely
 - GaAs cathodes are key, but they need periodic recessition
 - 100 mA with ~100 hour lifetime "within reach"²
- DC guns appear to be the best bet.

¹A. Todd, NIM A 557 (2006) 36-44. ²C. Sinclair, NIM A 557 (2005) 69-74.

Radiation Opening Angle Effect on Emittance

- ERL emittances are 7 GeV are extremely small compared to present storage rings
- Do radiation opening angle effects have an impact?
- Mean photon energy is u_a=0.32 u_c
 - _ For a 2T dipole and 7 GeV beam, $u_a = 22 \text{ keV}$
- Typical emission angle is $1/\gamma \sim 75 \mu$ rad
- Typical transverse momentum change is $u_{a}/\gamma \sim 1.5 \text{ eV}$
- Typical slope change is thus ~0.2 nrad
- Even if $\beta \sim 1000$ m, beam divergence is ~ 90 nrad, so effect is neglible
- Tracking with model of detailed photon distributions using elegant confirms this conclusion¹.

¹M. Borland, OAG-TN-2006-043, 10/4/06.

Emittance Preservation at High Energy: Wakes

- Short-range wakefields may impact ultra-small emittances
- Checked this by tracking with elegant¹
 - 7 GeV single-pass linac design (shown later)
 - TESLA cavity wakefields²
 - 1 mm rms cavity misalignments

Transverse wakes not an issue.

¹M. Borland, APS LS-287, September 2000.

²T.Weiland, I. Zagorodnov, TESLA 2003-19.

ERL Parameter Review and Physics Issues

Intrabeam Scattering

- Intrabeam scattering is a well-known barrier to low emittance in storage rings
 - What about even smaller ERL emittances?
- Tracking program elegant includes calculation of IBS growth rates using Bjorken-Mtingwa method
 - Designed for multiturn tracking but applicable here
 - Assumes periodic lattice functions
 - Computes growth rate using turn-by-turn emittances
- Apply to ERL case to estimate effect
 - Simulate the APS ZD lattice only
 - Insert IBSCATTER element at each straight section with 1/40 strength
- Results show IBS not an issue.

IBS Results for ERL Beam in APS ZD Lattice

Emittance increase from 0.1um dominated by ISR.

IBS gives <0.01 um additional at 0.2 nC

ERL Parameter Review and Physics Issues