
Towards peta-scale shock/turbulence computations

Motivation
In a wide range of fluid flows, interactions between the 
following items lead to complex phenomena whose 
basic physics are not well understood:
• High Reynolds-number turbulence,
• Strong shocks, 
• Interfaces and density variations.
Examples include supernovae explosions, scramjet 
combustion, ICF, detonations, shock wave lithotripsy.
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Shock-turbulence interaction
Isotropic turbulence passing through a 
normal shock wave:
• Hybrid method:

– Shock-capturing near the shock,
– Low dissipation elsewhere,

• Transverse vorticity amplified by 
shock compression,
• Inviscid adjustment towards equili-
brium behind the shock,
• Dependence of the instantaneous 
shock structure on the problem 
parameters,
• Low-Reynolds number effects and 
under-resolution in current results

– Need for higher-resolution simulations.

Multi-material flows
• Interfacial instabilities: Richtmyer-
Meshkov, compressible Rayleigh-
Taylor,
• Quasi-conservative scheme: 
stable and robust treatment of 
interfaces and shocks,
• Importance of vorticity generation:

– At large scales: leads to the 
deformation of certain flow 
structures,

– At small scales: drives the turbulent 
mixing.

3D Compressible Rayleigh-Taylor 
instability (256x256x1024) with Xe
(top) and Ne (bottom) using 
Miranda. Local  Mach number (left 
panel), density on a log scale 
(right panel), Xe mass fraction in 
mixing region (lower iso-volume), 
temperature of the resulting shock 
wave (upper iso-volume). 

3D shock/turbulence interaction (296x64x64) with M=2, Mt=0.15, Re!=60 
(shock: transparent isosurfaces of compression; vortex cores: isosurfaces
of the 2nd invariant of the velocity gradient tensor, colored by vorticity
magnitude).

Mach 1.22 shock in air impacting a He cylinder (400x160) using a quasi-conservative multifluid scheme (top: numerical Schlieren; bottom: 
pressure).

Left: time (seconds) for full time step (circle), all communication (squares), and 
deduced compute time (plus); right: weak scaling efficiency. 323 (red) and 643

(blue) points per processor are used.

Numerical methods
Several codes based on different algorithms have been 
developed and compared in the present study:
• Hybrid: 

– Shock-capturing (WENO) near discontinuities,
– High-order accurate central differences in smooth regions,
– Discontinuity sensor.

• Miranda: 
– High-order accurate compact schemes,
– Artificial diffusivities to regularize the solution.

• ADPDIS3D: 
– High-order non-dissipative base scheme,
– Adaptive multistep filter.

• Shock-fitting:
– Track shock and apply jump conditions across it, 
– High-order finite difference approximations in smooth 
regions.

Objectives
The goals of the present work are to:
1. Develop the best possible numerical algorithms 
capable of simulating turbulent flows with shocks,
2. Implement these algorithms on massively-parallel 
architectures, 
3. Provide a scientific understanding of shock-
turbulence interactions and multi-material mixing in 
complex flows.

Large scale computations
(Hybrid code)

• Programming language: C++,
• Parallelization: domain decom-
position

– Intra-node communication: MPI,
• Weak scaling efficiency above 
91% for realistic grids when going 
from 2 to 4096 processors

– NERSC Franklin machine,
• Collaborations with other 
SciDAC projects:

– PERI: code profiling to optimize 
the computational efficiency,

– VACET: visualizations with VisIt.
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