Integrated Short Contact Time Hydrogen Generator (SCPO)

Bio-Derived Liquids to Hydrogen Working Group Kick-Off Meeting October 24, 2006 Baltimore, Maryland

Ke Liu & Gregg Deluga GE Global Research Center

Lanny Schmidt Univ. of Minnesota Ted Krause Argonne National Lab

SCPO Project Objectives & Highlights

Project Team

GE Global Research

•System & Economic Analysis

- •Catalyst Dev. & High P Valid.
- Prototype Reactor Design
- •Overall Project Management

University of Minnesota

 CPO Catalyst Discovery Parametric Testing & Modeling

Catalyst Characterization

Argonne National Laboratory

- •SMR Catalyst Discovery
- •Catalyst Durability
- Catalyst Characterization

Project Objective: To Develop a Compact Hydrogen Generator that can Deliver H_2 at a Cost of <\$3.00/kg

Technical Approach

•Demonstrate Critical Components

Lab Screen

• Develop S-tolerate Short Contact Time Catalysts

• Develop & Design Comp. CPO, SMR, WGS & HEX

Pilot

Anticipated Benefits

•Compact, Low Cost, H2 Generation Technology Applications in Refueling Stations, NGCC NOx Reduction & CO2 Capture

Deliverables

 Short Contact Time Catalysts •Demonstration of Critical Technology & Components

- •Reactor & Process Model for Scale-up
- DOE award announced in November 2004
- Initiated in January 2005

naaination at work

Staged Catalytic Partial Oxidation

Approaches & Features of SCPO

+ Syngas Clean-up + Compact HEX & Active Cooling WGS

+ Novel System Design & integration

Potential Application

Develop Technologies for Following Potential Applications: H2 Fueling Stations

- □ Sulfur tolerate CPO technology for GT turn-down & NOx reduction & SOFC.
- □ Active Cooling WGS for NGCC & IGCC with CO2 Capture
- □ Sulfur tolerate SMR technology for NGCC with partial CO2 capture

<u>Risks</u>

Tasks & Plan to Retire Them

Sulfur poisons CPO &
SMR catalysts
SMR reactor bulky &
expansive
Sulfur/Cl poisons WGS
catalyst & PSA sorbents

>Low CO conversion due

to equilibrium limit in a

single stage WGS

reactor

Sulfur tolerate CPO & SMR catalyst
development.
Integrate compact HEX with SMR

>Integrate compact HEX with SMR catalyst

>Multi-function sorbents to removal COS, H2S & HCI... before WGS.

Sorption kinetics study with TGA

>Active cooling WGS technology development

Why Staged Catalytic Partial Oxidation (SCPO)?

. GE Global Research

Quantify Performance/Cost Trade-offs

Approach: Leverage Partners' Facilities & Knowledge Base

Integrated Activities

- GE design the overall system & define system conditions
- ANL & U of Mn have created catalysts and tested them at conditions GE identified
- U of Mn: New CPO catalyst & kinetics model
- ANL: New SMR catalyst & long term stability of catalysts
- •Goal: Increase GHSV & S tolerance to lower capital cost.

Example Data

U of Mn Invented the CPO

ANL Has the State-of-Art Cat Testing Facilities

Evaluating the S-Tolerate & Durability of CPO Catalysts

♦ Sulfur-free

700

650

♦ 20 ppm Sulfur

750

800

Preheat Temperature, °C

magination at work

It's More Challenge to Develop S- Tolerance SMR Catalyst Than CPO Catalyst

Sulfur poisoning of SMR catalysts:

- Rapid decrease in activity when exposed to a few ppm of H₂S
- Activity stabilizes after initial decrease with only a very slight decrease in activity observed over next 8-24 h
- Essentially complete recovery of activity when H₂S is removed

Long-term effect of sulfur on catalyst performance and stability is unknown and being investigated

imagination at work

The Metal Loading of CPO Can Be Reduced

Reaction zone is pushed to the back with increasing flow. Experiments with 3mm monoliths show that at 1×10⁶hr⁻¹ the reaction is not complete

Support determines the mass & heat transfer which are the limiting factors

Renewable Hydrogen from CPO of Soybean Oil

J. R. Salge, B. J. Dreyer, P. J. Dauenhauer & L. D. Schmidt, 2006

Renewable Hydrogen from CPO of Heavy Bio-diesel

imagination at work J. R. Salge, B. J. Dreyer, P. J. Dauenhauer & L. D. Schmidt, 2006 bal Research

Leverage GE Reformer Design Experience

Diesel Conversion Unit Built at GE

maaination at work

<u>Capabilities</u> - Quantification of products o Gas o Liquid o Coke

- Mass balance
- Catalyst optimization

Progress & Results: Heat Exchanger Design Process

Manufacturability, Compact Heat Exchangers for SCPO

- Leverage experience
- Visited vendors
- 6-Sigma tradeoff analysis

Results: Identified HEX Technology Among >50 Vendors

- GRC created HEX specifications
- Built Hex vendor database (>100 vendors)
- Vendors dropped off:
 - Missing form factor
 - No high T designs
 - Slow responses
 - Expensive
- Identified 3 vendors
 - -Designs and quotes -Visited all of them

Modeling & Analysis Tools will be Used to Ensure Proper Design

Material/Criterias	Importance	SS304	Inconel 600	Inconel 601	Inconel 690	Inconel 693	Inconel 625	Inconel 617	Inconel 800H	Inconel 800HT	RA330	RA333	RA602CA
Maximum Temperature (F)			2000	2100	2000	2100	2000	2000	1900	1900	2200	2200	2200
Material Properties and Resistance													
Thermal Coefficient of Expansion	3		4	4	4	4	5	5	3	3	3	4	4
Oxidation Resistance	4	1	3	4	4	5	5	4	2	2	3	4	5
Carburization Resistance	4	1	4	4	4	5	4	5	3	3	3	4	4
Rupture Life test	4		4	4	2	4	5	5	4	4	3	4	5
Metal Dusting in a Reduced Enviroment	4		3	2	4	5	3	4	1	1	3	3	3
Costs and Availability													
Cost per ft	5		5	5	1	1	4	1	5	5	5	1	1
Lead time	5		5	5	2	1	5	2	4	4	4	2	1
	Total		118	118	83	98	128	102	94	94	102	87	90

Material of construction selected

Thermal & stress modeling performed to ensure expected vessel lifetime. The design satisfy ASME codes.

Leverage prior experience in ACR development

PSA System Evaluation

Separation Summary

•2 leading PSA technologies evaluated, none currently reach DOE goal of 90 % recovery

•Compressor systems for both storage and feed composition have been found and quotations received

•Alternative technologies for feed compositions (oxygen membranes) were evaluated.

•Pressure of SCPO system becomes important for purification

•Storage systems for hydrogen have been studied

Specifcations for Hydrogen Purity								
	DOE	CGA						
	Proposal	Industrial H2,	Vendor A	Vendor B				
Species	Specification	Grade B	(120 PSI)	(120 PSI)				
H2	98%	99.95%	99.996	99.95				
CO	<1 ppm	<10ppm	<1.0 ppm	ND				
CO2	<100 ppm	<10 ppm	<1.0 ppm	ND				
N2	balance	<400 ppm	44.4 ppm	500 ppm				
CH4	<100 ppm	<10 ppm	<1.0 ppm	<1 ppm				
Recovery			75%	79%				

SCPO Program Highlights & Accomplishments

Project Overview

Laboratory Large Scale

Demo

Technical Approach

- •Develop S-tolerate Short Contact Time CPO & SMR Catalysts
- Design Compact Reformer System (SCPO) Demonstrate Critical Components

>SMR catalyst discovery >Vendor CPO & SMR catalyst screening >CPO & SMR catalyst durability test w/wo sulfur dope >SMR & CPO catalyst characterization

- Economic analysis completed
- Reactor sizing / design completed
- > HEX technology selected, design completed
- Designed, built, shakedown high-P CPO unit
- > Tested CPO catalysts use both NG & Diesel
- > Design & build the integrated SMR reactor
- Control strategy, start-up & shut-down procedure developed
- > Completed cost analysis using GE's process model & DOE's H2A model
- Conducted preliminary FMEA analysis, major risks identified

S-tolerate CPO catalyst discovery S-tolerate CPO catalyst development >CPO catalyst characterization: XRD, XPS

GE Global Research

<u>Staged Catalytic Partial Oxidation (SCPO) Reformer for</u> <u>Hydrogen Production from HCs & Bio-Liquids</u>

CPO Can Reform/Gasify Heavy Bio-liquids !

- Most cost effective distributed hydrogen production unit
 - Compact (Reformer vessel 5 times smaller than ACR)
 - Modular design for mass production
- □ Ease of ownership
 - "Maintenance free" reformer vessel life > 10 years
 - Catalyst life > 5 years
 - Fuel flexibility can be operated with various grades of NG, ethanol & methanol...
 - Automatic, unmanned operation
- Environmentally sound
 - □ Higher efficiency than ATR/CPO
 - ❑ No emissions except: N₂, CO₂ & Water

Patented staging of
CPO & SMR catalysts.
Leverages proven
catalysis technologies

Estimated SCPO reformer vessel size: < 150 lit

MAXCUMMER

Compact heat exchanger design will further reduce the SCPO size

http://heat-exchangers.globalspec.com/

