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Abstract

The thresholds for mathematical epidemiology models specify the critical conditions for an epidemic to
grow or die out. The reproductive number can provide signi®cant insight into the transmission dynamics of
a disease and can guide strategies to control its spread. We de®ne the mean number of contacts, the mean
duration of infection, and the mean transmission probability appropriately for certain epidemiological
models, and construct a simpli®ed formulation of the reproductive number as the product of these
quantities. When the spread of the epidemic depends strongly upon the heterogeneity of the populations,
the epidemiological models must account for this heterogeneity, and the expressions for the reproductive
number become correspondingly more complex. We formulate several models with di�erent heterogeneous
structures and demonstrate how to de®ne the mean quantities for an explicit expression for the reproductive
number. In complex heterogeneous models, it seems necessary to de®ne the reproductive number for each
structured subgroup or cohort and then use the average of these reproductive numbers weighted by their
heterogeneity to estimate the reproductive number for the total population. Ó 2000 Elsevier Science Inc.
All rights reserved.
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1. Introduction

One of the fundamental questions of mathematical epidemiology is to ®nd threshold conditions
that determine whether an infectious disease will spread in a susceptible population when the
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disease is introduced into the population. The threshold conditions are characterized by the so-
called reproductive number, the reproduction number, the reproductive ratio, basic reproductive
value, basic reproductive rate, or contact number, commonly denoted by R0 in mathematical
epidemiology [5,10,17,19±21,23,29,35,39,43]. The concept of R0, introduced by Ross in 1909 [39],
is de®ned in epidemiological modeling such that if R0 < 1, the modeled disease dies out, and if
R0 > 1, the disease spreads in the population.

There have been intensive studies in the literature to calculate R0 for a wide class of epidemi-
ological models of infectious diseases [6,8,9,12,17,18,25,26,28,30,32±34,41]. In mathematical
models, the reproductive number is determined by the spectral radius of the next-generation
operator in continuous models and, in particular, is determined by the dominant eigenvalue of the
Jacobian matrix at the infection-free equilibrium for models in a ®nite-dimensional space
[8,9,24,27]. It can also be obtained, in certain models, by suitable Lyapunov functions [28,41].

The biological meaning of the reproductive number is the average number of secondary cases
produced by one infected individual during the infected individual's entire infectious period when
the disease is ®rst introduced. Let r be the average number of contacts per unit of time per in-
dividual, b be the probability of transmitting the infection per contact, and s be the mean duration
of the infectious period. Then the reproductive number can be estimated by the following intuitive
formula:

R0 � rbs: �1:1�
This formula can give insight into the transmission dynamics of infectious diseases for various
relatively simple epidemiological models [3±5,7,40].

For simple homogeneous models, it is easy to de®ne r, b, and s. For example, consider a simple
homogeneous AIDS model governed by the following system of ordinary di�erential equations:

dS
dt
� l S0

ÿ ÿ S�t��ÿ k�t�S�t�;
dI
dt
� k�t�S�t� ÿ �l� m�I�t�;

dA
dt
� mI�t� ÿ dA�t�;

where S, I, and A denote the individuals susceptible to infection, the infected individuals, and the
AIDS cases, respectively; lS0 is the input ¯ow into the susceptible group; l the removal rate; m the
rate of contracting AIDS; d the removal rate due to the death from AIDS or other reasons; and k
is the rate of infection given by

k�t� � br
I�t�

S�t� � I�t� :

Here, b is the transmission probability per contact and r is the average number of contacts per
individual per unit of time. We assume here that transmission by the AIDS cases is neglected. To
focus our attention on the issues we will address, we assume, for simplicity, that the mixing is
proportional for this model and other models in this paper.

The system has the infection-free equilibrium �S0; 0�. The stability of �S0; 0� determines the
reproductive number as
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R0 � rb
l� m

:

Formula (1.1) then holds when we de®ne the duration of infection as s�def
1=�l� m�. (We will use

the symbol �def
to indicate that the equation is the de®nition of a quantity.)

However, as more heterogeneous structures or subgroups for the infected population are in-
cluded in an epidemiological model, the calculation of R0 becomes more complicated, and it is
di�cult to ®nd an explicit formula for R0. Even when an explicit formula can be obtained, it is not
always clear whether it is appropriate to de®ne a mean contact rate, a mean duration of infection,
and a mean transmission probability so that the reproductive number can still be estimated by
formula (1.1). Furthermore, even if it can be claimed that such an estimate is adequate, a deep
understanding of the model is absolutely necessary so that those means can be well de®ned.

Moreover, for models of the diseases for which di�erentiation of the contact rates or the
partner acquisition rates must be addressed, such as sexually transmitted disease (STD) models,
not only the mean but also the second moment or the variance about the mean must be taken into
account. Then, formula (1.1) can no longer be applied. For certain simple models, a more accurate
formula for the reproductive number is

R0 � r
�
� r2

r

�
bs; �1:2�

where r is the mean number of contacts per individual and r is the variance or standard deviation
of the mean number of contacts [1±3,5,8,28,36].

Formula (1.2) is an e�ective formulation for providing insight into the transmission dynamics
of diseases. Unfortunately, as more heterogeneities are considered, it becomes impracticable to
de®ne the variance or the standard deviation, and expression (1.2) becomes inadequate.

For risk-group models, Hethcote and Yorke [23] ®rst introduced and Jacquez et al. [28,29]
speci®ed the idea of de®ning a mean reproductive number as the average number of infected
individuals generated per infected individual over the duration of the infected state. They de®ned
a reproductive number for each subgroup and then express the mean reproductive number as a
weighted mean of those group reproductive numbers.

In this paper, we use the models in [26] as a basis and formulate new heterogeneous models to
demonstrate how di�erent cases can be treated so that an appropriate reproductive number can be
estimated. We show that for models with no risk structure, that is, the models with a homoge-
neous susceptible population in the contact rates, it is still possible to de®ne the mean quantities
and to apply formula (1.1). We show, however, for susceptible populations with heterogeneous
structure such as risk structure and age structure, it is more appropriate to de®ne a reproductive
number for each subgroup or each cohort and then express the reproductive number for the whole
population as the weighted average of those reproductive numbers for the subgroups or cohorts.

2. Models without risk structure

We ®rst consider the models in which the risk level is assumed to be uniform for all the sus-
ceptible individuals. The susceptible population may still be divided into subgroups, but they are
not based on the risk level, that is, the number of partners, or the number of contacts.
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2.1. Di�erential infectivity models

There is evidence that HIV serum and plasma levels or individual variations a�ect trans-
mission, that infected individuals have di�erent levels of virus after the acute phase, and that
those with high levels progress to AIDS more rapidly than those with low levels in clinical
studies. As a result, a hypothesis that some individuals are highly infectious over long periods
of time and a new model that accounts only for di�erences between infected individuals, re-
ferred to as a di�erential infectivity (DI) HIV model, were proposed in [26]. In that DI model,
it is assumed that individuals enter a speci®c group when they become infected and stay in that
group until they are no longer involved in transmitting the disease. Their infectivity and
progression rates to AIDS are assumed to depend upon which group they are in; the sus-
ceptible population is assumed to be homogeneous; and variations in susceptibility, risk be-
havior, and many other factors associated with the dynamics of the spread of HIV are
neglected. In this section, we use the simple DI model formulated in [26] and generalize it to a
model in which the risk level of infected individuals depends on the group to which they be-
long. We demonstrate how a mean number of contacts, a mean transmission probability, and a
mean duration of infection can be de®ned so that formula (1.1) can be used to obtain the
reproductive number.

The following DI model with homogeneous contact rate was formulated for HIV transmission
in [26]

dS
dt
� l�S0 ÿ S� ÿ kS;

dIi

dt
� pikS ÿ �l� mi�Ii; i � 1; . . . ; n; �2:1�

dA
dt
�
Xn

j�1

mjIj ÿ dA;

where the infected population is subdivided into n subgroups, I1; I2; . . . ; In. Upon infection, an
individual enters subgroup i with probability pi and stays in this group until becoming inactive in
transmission, where

Pn
i�1 pi � 1. The variable A denotes the group of individuals removed from

the population due to end stage disease or behavioral changes. Individuals in A are assumed to die
at a rate d Pl. The rate mi of leaving the infected population because of behavioral changes in-
duced by either HIV-related illnesses or testing positive for HIV (presumably changing behavior
so as not to transmit infection) depends on the subgroups.

The rate of infection k depends on the transmission probability per contact of individuals in
subgroup i, bi, the proportion of individuals in the subgroup, Ii=N , and the number of contacts of
an individual per unit of time r, so that

k�t� � r
Xn

i�1

bi
Ii�t�
N�t� ;

where N�t� � S�t� �Pn
j�1 Ij�t�.
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The reproductive number for this model is

R0 � r
Xn

i�1

pibi

l� mi
:

By de®ning the mean duration of infectiousness for infected individuals and the mean proba-
bility of transmission as

�s�def
Xn

i�1

pi

l� mi
; �b�def 1

�s

Xn

i�1

pibi

l� mi
;

respectively, the reproductive number can be expressed as the product of the number of contacts
and these two means

R0 � r �b�s:

Now we generalize the DI model (2.1) by assuming that the number of contacts per individual
per unit of time depends on the subgroups, because people may change their behavior according
to how ill they are. Let ri be the average number of contacts per individual per unit of time in
subgroup i. Then the rate of infection is generalized to

k�t� � r
Xn

i�1

bi
riIi�t�

rS�t� �Pn
j�1 rjIj�t� ;

where r is the contact rate of the susceptible individuals and ri is the contact rate of infected
individuals in subgroup. We refer to model (2.1) with the generalized infection rate as a general DI
model.

Similarly as in [26], a simple stability analysis for the infection-free equilibrium gives the re-
productive number for the general DI model as

R0 �
Xn

i�1

piribi

l� mi
:

The mean duration of infectiousness for infected individuals in this general DI model is the same
as for model (2.1).

Since ri=�l� mi� is the average number of contacts per individual in group i made during the
whole infection period, the total average number of contacts per infected individual during the
whole infection period is

rtotal �def
Xn

i�1

piri

l� mi
;

and hence the mean number of contacts per infected individual per unit time for the general DI
model, denoted by �r, is

�r�def rtotal

�s
� 1

�s

Xn

i�1

piri

l� mi
:

The total transmission probability through all contacts with infected individuals in subgroup i
during the entire time period when they are infected is
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btotal
i �def biri

l� mi
:

Hence, the mean probability per contact per unit of time for the general DI model, denoted by �b,
is

�b�def
Xn

i�1

pib
total
i

�r�s
� 1

�r�s

Xn

i�1

piribi

l� mi
:

Therefore,

R0 � �r �b�s:

2.2. The staged progression models

A common mathematical model for the spread of AIDS assumes that infected individuals pass
through several stages, being highly infectious in the ®rst few weeks after becoming infected, then
having low infectivity for many years, and ®nally becoming gradually more infectious as their
immune systems break down, and they progress to AIDS, with the rates of progression to AIDS
being also very low in the ®rst few years after infection. Based on this hypothesis, epidemiological
models that we refer to as staged progression (SP) models have been studied by many researchers
(see the references in [26]).

2.2.1. The general discrete SP model
The following SP model with a homogeneous contact rate is studied in [26]. It assumes that the

susceptible population is homogeneous and is maintained by the same type of in¯ow. It assumes
that the population of infected individuals is subdivided into subgroups I1; I2; . . . ; In with di�erent
infection stages such that infected susceptible individuals enter the ®rst subgroup I1 and then
gradually progress from this subgroup to subgroup In. Let ci be the average rate of progression
from subgroup i to subgroup i� 1, for i � 1; . . . ; nÿ 1, and let cn be the rate at which infected
individuals in subgroup In become sexually inactive or no longer infectious due to end-stage
disease or behavioral changes. The dynamics of the transmission are governed by the following
system:

dS
dt
� l�S0 ÿ S� ÿ kS;

dI1

dt
� kS ÿ �c1 � l�I1;

dIi

dt
� ciÿ1Iiÿ1 ÿ �ci � l�Ii; 26 i6 n; �2:2�

dA
dt
� cnIn ÿ dA;

where the infection rate k is given by
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k � r
Xn

i�1

bi
Ii

N
: �2:3�

Here, r is the average number of contacts per individual per unit time, bi the transmission
probability per contact with an individual in subgroup i, d Pl the removal rate of individuals in
group A, and N � S �Pn

i�1 I . Notice again that the transmission by the A group is neglected just
as it was in model (2.1).

The reproductive number for model (2.2) with (2.3) is de®ned by

R0 � r
Xn

i�1

biqi

l� ci
;

where

qi �def
Yiÿ1

j�1

cj

l� cj
:

The mean duration of infection is de®ned by

�s�def
Xn

i�1

qi

l� ci
;

and the mean probability of transmission per partner from an infected individual during the
course of infection is de®ned by

�b�def 1

�s

Xn

i�1

biqi

ci � l
:

Then, the reproductive number is again expressed as

R0 � �r �b�s:

(See [26] for details.)
Instead of assuming that the all infected individuals have the same contact rate, we now assume

that infected individuals with di�erent stages may have di�erent rates of contacts because of
possible changes in behavior. Then the infection rate is given by

k � r
Xn

i�1

bi
riIi

rS �Pn
j�1 rjIj

: �2:4�

Here, r is the average number of contacts per susceptible individual per unit of time, ri the average
number of contacts per infected individual with stage i per unit of time, bi the transmission
probability per contact with an infected individual in subgroup i, and d is the removal rate of
individuals in group A.

The reproductive number for the general SP model given by (2.2) and (2.4) can be de®ned as

R0 �
Xn

i�1

ribiqi

l� ci
:

The mean duration of infection for this model is the same as that for the SP model (2.2) with (2.3).
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The term riqi=�l� ci� is the number of contacts per infected individual during the individual's
infection period in subgroup i. Then the total number of contacts that an infected individual
makes during all of the individual's infection period isXn

i�1

riqi

l� ci
�def rtotal:

Hence, the average number of contacts per infected individual per unit of time is

�r�def rtotal

�s
;

so that rtotal �def
�r�s.

The transmission probability through all contacts with an infected individual in subgroup i is
biriqi=�l� ci�. Then the total transmission probability from all contacts with an infected indi-
vidual during the individual's entire infection period, denoted by btotal, can be de®ned as

btotal �def
Xn

i�1

biriqi

l� ci
:

Hence, the average transmission probability per contact is

�b�def btotal

rtotal
� 1

�r�s

Xn

i�1

biriqi

l� ci
;

and the reproductive number can be expressed as

R0 � �r �b�s:

2.2.2. The continuous SP model
In this section, we consider a simple SIR (susceptible±infected±removed) STD model with

continuous infection stages (see [25,42] for further references). Let u be the infection age, and
denote the distribution functions of susceptible, infected, and removed individuals by S�t�, I�t; u�,
and R�t�, respectively. We again neglect the transmission by the group of removed individuals,
assuming that they are a small portion of the infected population and that they are less active in
transmitting the disease. We also neglect migration between populations and assume that the only
recruitment into the population is a constant in¯ow of susceptible individuals and that all infected
individuals are infectious and will eventually be removed.

Under these assumptions, the dynamics of the population are governed by the following system
of equations and associated boundary conditions:

dS
dt
� l�S0 ÿ S� ÿ k�t�S;

oI
ot
� oI

ou
� ÿ�l� c�u��I;

I�t; 0� � k�t�S;
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I�0; u� � W�u�; �2:5�
dR
dt
� ÿdR�

Z 1

0

c�s�I�t; u�du;

where l is the attrition rate caused by natural death or movement out of the sexually active
population, k the infection rate, lS0 the rate at which individuals migrate into the population, c
the removal rate of infected individuals, d the death rate of individuals in the removed group, and
W is the initial distribution of the infected population.

We consider the infection rate that can be represented as

k�t� � r�0�
Z 1

0

b�u�r�u� I�t; u�
r�0�S�t� � R1

0
r�v�I�t; v�dv

du: �2:6�

Here we assume that the individuals at di�erent infection ages have di�erent activity levels such
that r�u� is the number of contacts that an infected individual with infection age u has, r�0� the
number of contacts that a susceptible individual has, and b�u� is the probability that an infected
partner with infection age u will infect a susceptible partner.

By linearizing S�t� and I�t; u� about �S0; 0� and assuming the solutions initially change expo-
nentially, a characteristic equation can be obtained. Analyzing the characteristic equation to
locate the eigenvalues of the equation in the left-half complex plane yields the following formula
for the reproductive number for the model governed by (2.5) and (2.6):

R0 �
Z 1

0

r�u�b�u� exp

�
ÿ lu
�
�
Z u

0

c�w�dw
��

du: �2:7�

(Details of the derivation of formula (2.7) can be found in Appendix A.)
It is similar to the discrete SP models that the mean duration of infection is

�s�def

Z 1

0

exp

�
ÿ lu
�

�
Z u

0

c�w�dw
��

du;

the total contact rate is

rtotal �def

Z 1

0

r�u� exp

�
ÿ lu
�

�
Z u

0

c�w�dw
��

du;

the mean number of contacts is

�r�def rtotal

�s
� 1

�s

Z 1

0

r�u� exp

�
ÿ lu
�
�
Z u

0

c�w�dw
��

du;

the total transmission probability is

btotal �def

Z 1

0

r�u�b�u� exp

�
ÿ lu
�

�
Z u

0

c�w�dw
��

du;

and then the mean probability of transmission is

�b�def btotal

rtotal
� 1

�r�s

Z 1

0

r�u�b�u� exp

�
ÿ lu
�

�
Z u

0

c�w�dw
��

du:
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Therefore, the reproductive number can be again expressed as

R0 � �r �b�s:

2.3. The di�erential susceptibility model

We have shown in Section 2.1 that for the DI model and the SP models, in so far as we assume
a homogeneous susceptible population such that there is one group of susceptible individuals, the
mean number of contacts, the mean transmission probability, and the mean duration of infection
can be de®ned so that the reproductive number can be always given as the product of these three
means. In this section, we consider a simple di�erential susceptibility (DS) model in which the
infected population is homogeneous, but the susceptible population is divided into n groups
according to their susceptibilities. The model equations are given by

dSi

dt
� l�S0

i ÿ Si� ÿ kiSi;

dI
dt
�
Xn

k�1

kkSk ÿ �l� c�I; �2:8�

dA
dt
� cI ÿ dA:

The rate of infection is

ki � rbI
N

ai; i � 1; . . . ; n; �2:9�
where ai is the susceptibility of susceptible individuals in subgroup i, b the infectious rate of in-
fected individuals, r the average number of contacts per sexually active individual, and
N �Pn

i�1 Si � I.
By the local stability analysis of the infection-free equilibrium, the reproductive number for

model (2.8) with (2.9) can be de®ned as

R0 � rb
Pn

i�1 aiS0
i

�l� c�Pn
i�1 S0

i
:

Since there is only one group of infected individuals, the mean duration is s�def
1=�l� c�. The

biological de®nition of the reproductive number is the number of secondary cases produced when
a primary case is introduced into a totally susceptible population. Hence, the mean susceptibility
of susceptible individuals in all the groups, denoted by �a, should be weighted by all susceptible
groups at the infection-free equilibrium. That is,

�a�def

Pn
i�1 aiS0

iPn
i�1 S0

i
;

and hence the total mean infectivity is �b�def
b�a. With these notations, the reproductive number can

be rewritten as

R0 � r �bs:
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2.4. The combined DS and DI models

We showed in Section 2.3 that even if the susceptible population is divided into subgroups,
whereas there is a homogeneous infected population, we can still de®ne the mean infectivity, and
the reproductive number can be given by the compact and intuitive formula. Now if the infected
population is divided into subgroups based on their di�erent infectivities and the average numbers
of contacts of infected individuals in the infected subgroups are distinct, can those means be well
de®ned and the reproductive number still be the product of those means? We combine the DS and
DI models and derive the formula of the reproductive number as follows.

Divide the susceptible population into n groups according to their susceptibilities and the in-
fected population into m groups based on their infectivities and how ill they are. Then we have the
following system of equations:

dSi

dt
� l�S0

i ÿ Si� ÿ kiSi; i � 1; . . . ; n;

dIj

dt
�
Xn

k�1

pkjkkSk ÿ �l� mj�Ij; j � 1; . . . ;m; �2:10�

dA
dt
�
Xm

k�1

mkIk ÿ dA;

where the fractions satisfy
Pm

j�1 pkj � 1, k � 1; . . . ; n.
The rate of infection is

ki � rai

Xm

j�1

bj
rjIj

r
Pn

l�1 Sl �
Pm

k�1 rkIk
; �2:11�

where r is the mean number of contacts per susceptible individual, rj the average number of
contacts per infected individual in subgroup j, ai the susceptibility of the susceptible individuals in
subgroup i, and bj is the infectiousness of the infected individuals in subgroup j.

By investigating the stability of the infection-free equilibrium, the reproductive number for the
model given by (2.10) and (2.11) can be de®ned by

R0 �
Xm

j�1

Xn

k�1

pkjakS0
k rjbj

�l� mj�
Pn

l�1 S0
l

: �2:12�

(The detailed proof of formula (2.12) is given in Appendix B.)
The infected individuals in each subgroup are infected from all susceptible subgroups. Their

mean duration of infection needs to be weighed by the fractions and the sizes of susceptibles at the
infection-free equilibrium. Denote the mean duration of infection by �s. Then

�s�def
Xn

j�1

1

�l� mj�
Pm

k�1 pkjS0
kPn

l�1 S0
l

:

The term rj=�l� mj� is the number of contacts per infected individual in group j during the
whole duration of infection. Then,
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Xn

k�1

rj

�l� mj�
pkjS0

kPn
l�1 S0

l

is the average number of contacts per infected individual in subgroup j during the whole infection
period with susceptible individuals that induce the transmission of infection. Summing them over
and dividing by the mean duration of infection gives the mean number of contacts per infected
individual over all infected subgroups per unit of time �r. That is,

�r�def 1

�s

Xm

j�1

Xn

k�1

rj

�l� mj�
pkjS0

kPn
l�1 S0

l

:

The term rjbj=�l� mj� is the total infectivity per infected individual in subgroup j through all
contacts during the whole infection period. Since transmission of a disease results from the in-
fectivity of infected individuals and the susceptibility of susceptible individuals, the probability of
transmission per contact from an infected individual in subgroup j with all susceptible individuals
during the whole infection period is

rjbj

l� mj

Xn

k�1

pkjakS0
kPn

l�1 S0
l

:

Again, summing over all subgroups of infected individuals and dividing by the mean number of
contacts and the mean duration of infection yields the mean probability of transmission

�b�def 1

�s�r

Xm

j�1

rjbj

l� mj

Xn

k�1

pkjakS0
kPn

l�1 S0
l

� 1

�s�r
R0:

Therefore, the reproductive number can be rewritten as

R0 � �r �b�s:

3. The segregated risk DI model

In this section, we consider a segregated risk DI model. We divide the susceptible population
into n groups based on their risk behavior. Then, each risk-based infected population group is
further subdivided into m subgroups. Upon infection, a susceptible individual in the risk-group Si

enters infected subgroup I i
j with probability pj and stay in this subgroup until becoming inactive in

transmission, where
Pm

j�1 pj � 1. The rate at which infected individuals are removed from sub-
group I i

j to the group of removed individuals, R, is mi
j. Again, we assume that individuals in group

R are no longer actively transmitting disease. The model is then de®ned by the following system:

dSi

dt
� l�S0

i ÿ Si� ÿ kiSi; i � 1; . . . ; n;

dI i
j

dt
� pjkiSi ÿ �l� mi

j�I i
j; j � 1; . . . ;m; �3:1�

dR
dt
�
Xn

i�1

Xm

j�1

mi
jI

i
j ÿ dR;
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where l is the removal rate, including the natural death rate and other rates at which people leave
the investigated population, lS0

i the recruitment of new susceptible individuals into the population
with risk i, and d is the death rate of individuals in group R.

The rate of infection for the individuals with risk i, ki, for proportional mixing, is de®ned by

ki � ri

Pm
j�1 bj

Pn
i�1 riI i

jPn
k�1 rk Sk �

Pm
l�1 Ik

l

ÿ � ; �3:2�

where bj is the infectivity of the individuals in the infected subgroup I i
j and is assumed to be

independent of their risk level.
The reproductive number for model (3.1) with (3.2) can be de®ned by

R0 �
Xn

i�1

r2
i S0

iPn
l�1 rlS0

l

Xm

j�1

pjbj

l� mi
j
: �3:3�

(We give a complete derivation of formula (3.3) in Appendix C.)
Note that if the removal rates mi

j � mj are independent of risk level, then the reproductive
number becomes

R0 �
Xm

j�1

pjbj

l� mj

Xn

i�1

r2
i S0

iPn
l�1 rlS0

l

: �3:4�

The term
Pm

j�1 pjbj=�l� mj� is the product of the mean duration of infection and the mean
transmission probability. This R0 in (3.4) involves the second mean of the risk level

Pn
i�1 r2

i S0
i . As

Diekmann et al. pointed out in [8],Pn
i�1 r2

i S0
iPn

l�1 rlS0
l

� mean� variance

mean
:

Hence, (3.4) is consistent with the results in [8,11,37].
However, if the removal rates are not risk-level independent, it is unclear how to de®ne the

mean duration of infection and the mean transmission probability. Here we provide an alternative
way to make the formula of the reproductive number more intuitive.

De®ne the mean duration of infectivity for infected individuals with risk level i by

�si �def
Xm

j�1

pj

l� mi
j
;

the mean probability of transmission per partner from those infected individuals by

�bi �def 1

�si

Xm

j�1

pjbj

l� mi
j
;

and the reproductive number for the subgroup with risk level i by

Ri
0 �def ri

�bi�si:

Then the reproductive number can be rewritten as
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R0 �
Xm

i�1

riS0
iPm

l�1 rlS0
l

Ri
0:

Here, riS0
i is the total number of contacts of an individual in the group with risk level i. Then the

reproductive number for the whole population is equal to the mean reproductive numbers of the
risk groups weighted by their risks.

4. A simple age-structured model

We consider a simple SIR model with age structure in this section (see [33]). Denote the dis-
tribution functions of susceptible, infected, and removed individuals by S�t; a�, I�t; a�, and R�t; a�,
respectively, where t is the time and a is the age. We neglect transmission of the virus by group R.
We also neglect migration between populations and assume that the only recruitment into the
population is a constant in¯ow of susceptible individuals.

Under these assumptions, the dynamics of the population are governed by the following system
of equations and associated boundary conditions:

oS
ot
� oS

oa
� K�a� ÿ �l�a� � k�t; a��S;

S�t; a0� � B;

S�0; a� � U�a�;
oI
ot
� oI

oa
� ÿ�l�a� � c�a��I � k�t; a�S;

I�t; a0� � 0; �4:1�
I�0; a� � W�a�;
oR
ot
� oR

oa
� ÿd�a�R� c�a�I;

R�t; a0� � 0;

R�0; a� � 0;

where l is the attrition rate due to natural death or movement out of the sexually active popu-
lation, k the infection rate, B the number of individuals in the susceptible class at age a0, K the rate
at which individuals ¯ow into the population at ages greater than a0, c the removal rate, d is the
death rate in group R, and U and W are the initial distributions of the susceptible and infected
populations.

We consider the infection rate that can be represented as

k�t; a� �
Z 1

a0

b�a; a0�p�t; a; a0� I�t; a0�
N�t; a0� da0;
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with the total sexually active population given by

N�t; a� � S�t; a� � I�t; a�:
Here b�a; a0� is the probability that an infected partner of age a0 will infect a susceptible partner of
age a during their partnership, p�t; a; a0� the rate of pair formation between individuals of age a
and individuals of age a0, and I=N is the probability that a randomly selected partner is infected.

We assume that the transmission probability is the product of the susceptibility of the sus-
ceptible individual and the infectiousness of the infected individual. They can also both depend on
age. However, in order to keep the analysis of the model tractable, we allow susceptibility to be
age-dependent, but make the somewhat restricting assumption that infectiousness is age-inde-
pendent. Hence, b�a; a0� � b�a�.

In order to simplify the analysis, we assume that there are no strong biases at work and partners
are chosen at random, according to their availability. The random partner selection process leads
to a proportionate mixing rate p with the form

p�t; a; a0� � r�a�r�a0�N�t; a0�R1
a0

r�a�N�t; a�da
;

where r�a� is the partner acquisition rate of individuals of age a, or the number of contacts per
individual of age a per unit of time.

Under these assumptions, the infection rate is

k�t; a� � b�a�r�a�
Z 1

a0

r�a0�I�t; a0�R1
a0

r�a�N�t; a�da
da0: �4:2�

Using the same technique for showing (2.7), we can de®ne the reproductive number for model
(4.1) with (4.2) as

R0 �
R1

a0
r�a� R a

a0
b�g�r�g� expfÿ R a

g �l�a� � c�a��dagS0�g�dgdaR1
a0

r�a�S0�a�da
;

where

S0�a� � BeÿM�a� � eÿM�a�
Z a

a0

eM�x�K�x�dx;

and

M�a� �
Z a

a0

l�s�ds:

By interchanging the order of the integration, R0 can also be expressed as

R0 �
R1

a0
r�g�S0�g�b�g� R1g r�a� expfÿ R a

g �l�a� � c�a��dagdadgR1
a0

r�a�S0�a�da
:

Note that expfÿ R a
g �l�s� � c�s��dsg is the probability that an individual who is infected at age g is

still in the infected population at age a. Then, r�a� expfÿ R a
g �l�s� � c�s��dsg is the number of
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contacts from partners who are infected at age g and survive to age a, and the total contacts
inducing transmission from all surviving infected individuals of all ages a P g isZ 1

g
r�u� exp

�
ÿ
Z u

g
�l�s� � c�s��ds

�
du:

Again, since expfÿ R u
g �l�s� � c�s��dsg is the probability of infected individuals who are infected at

age g and survive to age u, the mean duration of infections of the cohort of age g can be expressed as

�s�g� �def

Z 1

g
exp

�
ÿ
Z u

g
�l�s� � c�s��ds

�
du:

Then the mean contact rate of the cohort of age g can be de®ned by

�r�g� �def 1

�s�g�
Z 1

g
r�u� exp

�
ÿ
Z u

g
�l�s� � c�s��ds

�
du:

De®ne the reproductive number of the cohort of age g by

R0�g� �def
�r�g�b�g��s�g�:

Then the reproductive number for the total population is the in®nite sum of the reproductive
numbers of all cohorts weighted by the fractions of the total contacts of the cohorts at the infection-
free equilibrium, where the reproductive number or the initial transmission is determined; that is,

R0 �
Z 1

a0

r�g�S0�g�R1
a0

r�a�S0�a�da
R0�g�dg:

5. Discussion

The reproductive number R0 is one of the most important concepts in epidemiological theory. It
characterizes the threshold behavior such that if R0 < 1, the modeled disease will die out if a small
number of infected individuals are introduced into a susceptible population, and if R0 > 1, the
disease will spread in the population. A good estimate of the reproductive number can provide
signi®cant insight into the transmission dynamics of the disease and can lead to e�ective strategies
to control and eventually eradicate the disease.

Formulas (1.1) and (1.2) are useful estimates. They have been applied to various models for
di�erent purposes and, in particular, have been widely used in biology and the medical com-
munity. Their contributions are signi®cant. For example, sensitive studies of those estimates on
di�erent parameters have been used to investigate the e�ects of changes in sexual behavior on the
transmission dynamics of STDs such as HIV [7,31,38]. It was shown in [31] that, in a preferred
mixing, single-sex model, reductions in the frequency of partner change by low-activity people can
increase the long-term prevalence of HIV/AIDS in populations that would have low steady-state
prevalence given current activity levels. Such ®ndings can be used to plan educational campaigns.
Formulas for R0 can also be used to establish e�ective vaccination programs [2,13±16,22]. E�ects
of di�erent vaccination programs on R0 are useful in setting the programs.
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For simple homogeneous models, it is easy to estimate the mean duration, mean number of
contacts, and transmission probability so that formulas (1.1) and (1.2) can be applied. As shown
in Section 2, it seems that if there is no risk structure involved in the model, no moments higher
than the ®rst will be needed in the formula for the reproductive number. More speci®cally, if the
susceptible population is not divided into risk groups, the reproductive number is always based on
the ®rst moments. Hence, it should be possible to de®ne the mean number of contacts, the mean
duration of infection, and the mean transmission probability in appropriate ways and then R0 can
be estimated with an intuitive formula. Even if there are subgroups in the infected population with
di�erent contact rates, this still seems true. That is, the heterogeneity of the infected population
may not be as crucial as that of the susceptible population. This observation can be explained as
follows. From the biological point of view, the reproductive number characterizes the situation
where a small number of infected individuals are ®rst introduced into an entirely susceptible
population. Hence, the heterogeneous structure of the infected population will not play a critical
role in the transmission dynamics, at least at the early stage of the transmission. From the
mathematical modeling perspective, R0 is determined by the stability of the infection-free equi-
librium for which the components of infected individuals are 0. Therefore, the heterogeneity of the
infected individuals is negligible.

On the other hand, if there is heterogeneous structure in the susceptible population concerned,
this heterogeneity cannot be neglected. If an explicit formula of R0 can be obtained, higher mo-
ments will be naturally involved, and it may be necessary to include the variance or deviation.
That is, for di�erent models, although those means may be de®ned in the same way, their het-
erogeneous di�erence may cause signi®cant deviation about the means and then may lead to very
di�erent transmission dynamics.

Ideally, appropriate de®nitions of the means and their variances for the total population can be
de®ned. However, as shown in Sections 3 and 4, if more heterogeneous structures are included in
the model, it may not be possible to de®ne those means in practice. More importantly, the devi-
ations from the means have to be taken into consideration. Then it will be more reasonable and
practical to de®ne the reproductive number for each structured subgroup or cohort and then use the
average of these reproductive numbers weighted by their heterogeneity to estimate the reproductive
number for the total population. Heathcote and Yorke [23] and Jacquez et al. [28,29] introduced
this idea for risk-group models. Our studies in Sections 3 and 4 support and generalize this idea.

Finally, it is worthwhile to point out from the study of the DS model in Section 2.3 that, al-
though there seems to be heterogeneous structure in the susceptible population for the DS model,
since the infection transmission has to be through contacts with infected individuals, and there is
only one infected group, higher moments do not appear in this particular situation.
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Appendix A. Derivation of formula (2.7)

Let x � S ÿ S0 and y � I. Then

k � r�0�
Z 1

0

b�u�r�u�y�t; u�
r�0��x� S0� � R1

0
r�v�y�t; v�dv

du � 1

S0

Z 1

0

b�u�r�u�y�t; u�du;

and the linearization of (2.5) about the infection-free equilibrium is given by

dx
dt
� ÿlxÿ

Z 1

0

b�u�r�u�y�t; u�du;

oy
ot
� oy

ou
� ÿ�l� c�u��y; �A:1�

y�t; 0� �
Z 1

0

b�u�r�u�y�t; u�du:

Substituting x � x�0�eqt and y � k�u�eqt into (A.1) yields the following system of equations:

�q� l�x�0� � ÿ
Z 1

0

b�u�r�u�k�u�du; �A:2�

dk
du
� ÿ�q� l� c�u��k�u�; �A:3�

k�0� �
Z 1

0

b�u�r�u�k�u�du: �A:4�

Solving Eq. (A.3) for k�u� and employing the initial condition (A.4) leads to the following
characteristic equation:Z 1

0

b�u�r�u� exp

�
ÿ
Z u

0

�q� l� c�v��dv
�

du � 1: �A:5�

Then, it is easy to see if R0 < 1, all roots q of (A.5) have negative real part, and if R0 > 1, there
exists at least one positive root q of (A.5).

Appendix B. Derivation of formula (2.12)

The Jacobian at an equilibrium has the form

M �
0 D

� �
;

where M � diag�ÿl; . . . ;ÿl� and
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D �

ÿr1 �
Pn

k�1 pk1Sk
okk

oI1

Pn
k�1 pk1Sk

okk

oI2

� � � Pn
k�1 pk1Sk

okk

oImPn
k�1 pk2Sk

okk

oI1

ÿr2 �
Pn

k�1 pk2Sk
okk

oI2

� � � Pn
k�1 pk2Sk

okk

oIm

..

. ..
. . .

. ..
.Pn

k�1 pkmSk
okk

oI1

Pn
k�1 pkmSk

okk

oI2

� � � ÿrm �
Pn

k�1 pkmSk
okk

oIm

0BBBBBBBB@

1CCCCCCCCA
evaluated at the infection-free equilibrium with ri �def

l� mi.
Set Qi � 1=N 0

Pn
k�1 pkiS0

k ak, i � 1; . . . ;m, with N 0 �Pn
i�1 S0

i . Then D has the form of

D �
ÿr1 � r1Q1b1 r2Q1b2 � � � rmQ1bm

r1Q2b1 ÿr2 � r2Q2b2 � � � rmQ2bm

..

. ..
. . .

. ..
.

r1Qmb1 r2Qmb2 � � � ÿrm � rmQmbm

0BBB@
1CCCA:

Consider ÿD and let V �def �1=r1; . . . ; 1=rn�. Then

ÿDV � 1

 
ÿ
Xm

i�1

riQibi

ri

!
E;

where E is the vector each of whose elements is one. Let R0 �def Pm
i�1 riQibi=ri. Then, from

M-matrix theory, all eigenvalues of D have negative real part if R0 < 1 which leads to the local
stability of the infection-free equilibrium. On the other hand, by mathematical induction, it can be
shown that the determinant of D is given by

det D � �ÿ1�m�1
Ym

i�1

ri�R0 ÿ 1�:

Hence, if R0 > 1, D has at least one positive eigenvalue. Therefore, the reproductive number for
the model (2.10) can be de®ned as

R0 � 1

N 0

Xm

i�1

Xn

k�1

pkiakS0
k ribi

l� mi
:

Appendix C. Derivation of formula (3.3)

The Jacobian matrix at the infection-free equilibrium �S1 � S0
1 ; . . . ; Sn � S0

n ; I
1
1 � 0;

I1
2 � 0; . . . ; I1

m � 0; . . . ; In
1 � 0; . . . ; In

m � 0� has the following form:

M �
0 B

� �
;

where M � diag�ÿl; . . . ;ÿl� and
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B�def

B11 B12 � � � B1n

B21 B22 � � � B2n

..

. ..
. . .

. ..
.

Bn1 Bn2 � � � Bnn

0BBB@
1CCCA;

with

Bii �def

ai
1�rib1 ÿ ni

1� ai
1rib2 � � � ai

1ribm

ai
2rib1 ai

2�rib2 ÿ ni
2� � � � ai

2ribm

..

. ..
. . .

. ..
.

ai
mrib1 ai

mrib2 � � � ai
m�ribm ÿ ni

m�

0BBBB@
1CCCCA;

and

Bij �def

ai
1rjb1 � � � ai

1rjbm

..

. . .
. ..

.

ai
mrjb1 � � � ai

mrjbm

0B@
1CA; i 6� j:

Here, we write

ai
j �def pjriS0

iPn
k�1 rkS0

k

and ni
j �def l� mi

j

ai
j

:

The stability of the Jacobian matrix at the infection-free equilibrium is completely determined
by the stability of B. Note that all o�-diagonal elements of B are positive. We consider ÿB and
take

V �def 1

n1
1

; . . . ;
1

n1
m

; . . . ;
1

nn
1

; . . . ;
1

nn
m

 !T

:

Since

ÿBV � 1

 
ÿ
Xn

k�1

Xm

l�1

rkbl

nk
l

!
E;

where

E�def a1
1; . . . ; a1

m; . . . ; an
1; . . . ; an

m

ÿ �T
;

if we de®ne

R0 �def
Xn

k�1

Xm

l�1

rkbl

nk
l

�
Xn

i�1

r2
i S0

iPn
l�1 rlS0

l

Xn

j�1

pjbj

l� mi
j
;

then it follows from M-matrix theory that B is stable if R0 < 1.
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On the other hand, by mathematical induction, it can be shown that the determinant of B is

det B � �ÿ1�nm
Yn

i�1

Ym
j�1

ai
jribj

 ! Yn

k�1

Ym
l�1

nk
l

rkbl

 !
1

 
ÿ
Xn

k�1

Xm

l�1

rkbl

nk
l

!

� �ÿ1�nm
Yn

i�1

Ym

j�1

l
�
� mi

j

�
1� ÿ R0�:

Hence, if R0 > 1, matrix B has at least one positive eigenvalue. Therefore, the infection-free
equilibrium is unstable.
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