
Physics H7C Fall 1999 Solutions to Problem Set 9 Derek Kimball

“When the rules of quantum mechanics were formulated in the 1920’s they rep-
resented a revolutionary break with the past, and an enormous extrapolation from
experience. Since they were something very new, they could not be derived from
something old and incorrect, that is, classical physics. Instead they had to be for-
mulated by guessing, intuition, and inspiration. Their ultimate justification was,
and is, logical consistency and agreement with experiment.”

- Prof. Eugene D. Commins, U.C. Berkeley.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

(a)

The uncertainty principle yields an estimate for the minimum momentum of a
proton trapped in the nucleus:

∆p ≈ �

2∆r
. (1)

For the kinetic energy of the proton, we obtain:

Ek =
(∆p)2

2m
=

�
2

8m(∆r)2
=

�
2c2

8mc2(∆r)2
=

197.3 MeV · fm
8(938 MeV)(2 fm)2

, (2)

from which we find
Ek = 1.4 MeV

(b)

We’ll suppose, for the sake of this “back of the envelope” calculation, that the ki-
netic energy found in part (a) can be set equal to the potential energy at maximum
displacement in a classical harmonic oscillator:

Ek =
1
2
kx2

0 (3)

The magnitude of the restoring force at maximum displacement is given by kx0.
So we find:

F =
2Ek

x0
= 1.4 MeV/fm.

The strength of the electric force is given by

Fe =
ke2

x2
0

=
1.44 MeV · fm
(2 fm)2

= 0.36 MeV/fm.

(c)

The maximum acceleration of the proton is given by:

amax =
F

m
=
kx0c

2

mc2
= 1.3× 1029 m/s2 ∼ 1028g. (4)

Problem 2

It is convenient to write the differential cross section as dσ
d cos θ instead of

dσ
dθ be-

cause it makes integration over solid angles a little easier, since the integral always
involves cos θ and the differential solid angle contains the term sin θdθ = −d(cos θ).
It is relatively straightforward to show that either method of solving for the total
cross section gives the same result, since

dσ

dθ
=

dσ

d cos θ
· d cos θ

dθ
= − sin θ dσ

d cos θ
.

If we integrate over all angles, we obtain for the total cross section:

σ =
∫ +1

−1

d(cos θ)
dσ

d cos θ
=

∫ π

0

dθ sin θ
1
sin θ

dσ

dθ
.

Problem 3

(a)

The maximum kinetic energy that can be transferred to a gold nucleus in a collision
with a 6 MeV α-particle would be when the collision is head-on and the α-particle
bounces straight back. Because the gold nucleus is very massive compared to the
α-particle, the amount of kinetic energy transferred to the gold nucleus should be
small, so roughly vi = −vf where vi and vf are the initial and final velocities of the
α-particle. Thus, MgoldV = 2mαvi. Using this result in the equation for kinetic
energy, we find:

1
2
MgoldV

2 =
1
2
Mgold

(
2mαvi

Mgold

)2

=
(
4mα

Mgold

)
(
1
2
mαv

2
i ) =

4 · 4
197

·6 MeV ≈ 0.49 MeV
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(b)

If we go into the rest frame of the α-particle (S ′), we find that because the α-
particle is very massive compared to the electron, the energy transferred to the α-
particle (to the electron in the lab frame) is small. Therefore we can approximate
that in S ′, for a head-on collision mαV

′ = 2mevi, where vi is the speed of the
α-particle in the lab frame and V ′ is the recoil speed of the α-particle in S ′.
Transforming into the lab frame, we find that the recoil speed of the electron
ve = 2vi. So the kinetic energy transferred to the electron is

Ek =
1
2
me(2vi)2 =

4me

mα

(
mαv

2
i

2

)
=
4 · (0.511 MeV)
3730 MeV

6 MeV ≈ 3.3 keV.

Problem 4

(a)

The relationship between differential scattering cross section dσ and the impact
parameter b is given by Rohlf (6.18):

dσ = 2πbdb (5)

The total scattering cross section is derived from this expression:

σ = 2π
∫ b1

b2

bdb = π(b21 − b22). (6)

Using Rohlf (6.40) (
kq1q2
mv2

)2(1 + cos θ
1− cos θ

)
= b2

we find that the total scattering cross section is given by:

σ = 2π
(
kq1q2
mv2

)2( cos θ1 − cos θ2
(1− cos θ1)(1− cos θ2)

)
. (7)

(b)

Integrating explicitly gives us the same result:

σ =
∫ cos θ1

cos θ2

d(cos θ)
dσ

d cos θ

σ = 2π
(
kq1q2
mv2

)2 ∫ cos θ1

cos θ2

d(cos θ)
1

(1− cos θ)2

σ = 2π
(
kq1q2
mv2

)2( cos θ1 − cos θ2
(1− cos θ1)(1− cos θ2)

)

Problem 5

A particle is confined to the region −L/2 < x < L/2. As discussed in section,
this means that any state (wavefunction) of the particle can be described as a
superposition of eigenfunctions of the energy operator (the Hamiltonian). These
eigenfunctions “span” the Hilbert space corresponding to our system (a Hilbert
space is an infinite dimensional vector space which is a subspace of the vector
space of all continuous complex functions). Since inside the infinite potential well
the particle is free, our Hamiltonian H is given by:

H = − �
2

2m
∂2

∂x2
.

Eigenfunctions of H are

ψn =

√
2
L
cos

(nπx
L

)

ψm =

√
2
L
sin

(mπx
L

)

where n = 1, 3, 5... and m = 2, 4, 6.... They have the eigenvalues

En =
n2π2

�
2

2mL2

where n = 1, 2, 3.... These eigenfunctions are orthonormal, meaning that

∫ L/2

−L/2

ψ∗
i (x)ψj(x)dx = 0

if i �= j, and ∫ L/2

−L/2

ψ∗
i (x)ψi(x)dx = 1.

(a)

Assume the particle is in an eigenstate of energy. The probability that the par-
ticle is found in the region 0 < x < L/2 is 1/2 by symmetry. This is because
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the potential is symmetric about x = 0, so every eigenfunction is symmetric or
antisymmetic about x = 0. The square of any eigenfunction is symmetric about
x = 0.

It is clear that probability does not depend on n because all of the eigenfunctions
are symmetric or antisymmetric.

(b)

The probability Pc that a particle in the ground state is in the central half of the
box is given by the integral:

Pc

∫ L/4

−L/4

dx|ψ1|2 = 2
L

∫ L/4

−L/4

dx cos2 (πx/L). (8)

From which we find:

Pc =
2
L

[
x

2
+
sin (2πx/L)
(4π/L)

]x=L/4

x=−L/4

= 0.82.

The probability decreases with n, and at large n approaches the classical limit
Pc = 0.5.

Problem 6

(a)

The average value (expectation value) of x2 as a function of n is given by:

〈x2〉 =
∫ L/2

−L/2

dxψ∗
n · x2 · ψn. (9)

We use the eigenfunctions discussed in problem (5), solving first for even n. In
this case 〈x2〉 is given by:

〈x2〉 = 2
L

∫ L/2

−L/2

x2 sin2 (nπx/L)dx.

Making the u-substitution u = nπx/L, we obtain:

〈x2〉 = 2L2

m3π3

∫ mπ/2

−mπ/2

u2 sin2 udu

〈x2〉 = 2L2

m3π3

[
u3

6
− u2 sin (2u)

4
+
sin (2u)
8

− 4 cos (2u)
4

]mπ/2

−mπ/2

.

〈x2〉 = L2

12
− L2

2n2π2
.

For odd n, the procedure is pretty much the same... you even end up with the
same result.

〈x2〉 = 2
L

∫ L/2

−L/2

x2 cos2 (nπx/L)dx.

Making the u-substitution u = nπx/L, we obtain:

〈x2〉 = 2L2

m3π3

∫ mπ/2

−mπ/2

u2 cos2 udu

〈x2〉 = 2L2

m3π3

[
u3

6
+
u2 sin (2u)

4
− sin (2u)

8
− 4 cos (2u)

4

]mπ/2

−mπ/2

.

〈x2〉 = L2

12
− L2

2n2π2
.

Taking the limit as n→ ∞, we see that the rms value of x approaches L/√12.

Problem 7

We intend to prove the conservation of probability law:

∂

∂t

(
ψ∗ψ

)
+

∂

∂x
j = 0, where

�

2mi

(
ψ∗ ∂ψ

∂x
− ∂ψ∗

∂x
ψ

)
≡ j,

and j is the probability current in one dimension x, where ψ(x, t) is a solution of
the Schrödinger equation with a real potential V (x).

We can start with the time-dependent Schrödinger equation:
[
− �

2

2m
∂2

∂x2
+ V (x)

]
ψ(x, t) = i�

∂

∂t
ψ(x, t). (10)

Then take the complex conjugate of (10):
[
− �

2

2m
∂2

∂x2
+ V (x)

]
ψ∗(x, t) = −i� ∂

∂t
ψ∗(x, t). (11)
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Now multiply (10) by ψ∗(x, t) and (11) by ψ(x, t), then subtract the equations.
We obtain:

ψ∗
(
− �

2

2m
∂2

∂x2

)
ψ − ψ

(
− �

2

2m
∂2

∂x2

)
ψ∗ = i�

(
ψ∗ ∂
∂t
ψ + ψ

∂

∂t
ψ∗

)
. (12)

From which we can deduce:

− �

2mi

(
ψ∗ ∂

2

∂x2
ψ − ψ

∂2

∂x2
ψ∗

)
=
∂(ψψ∗)
∂t

. (13)

Now consider ∂
∂xj:

∂

∂x
j =

∂

∂x

(
�

2mi

)(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
(14)

∂

∂x
j =

�

2mi

(
ψ∗ ∂

2

∂x2
ψ − ψ

∂2

∂x2
ψ∗

)
(15)

If we use Eq. (15) in Eq. (13), we obtain the conservation of probability law:

∂

∂t

(
ψ∗ψ

)
+

∂

∂x
j = 0. (16)

Problem 8

There was a correction to this problem, specifically that the initial wavefunction
of the particle in the box is supposed to be

u(x) ∝ sin (πx/L) + sin (2πx/L)
instead of

u′(x) ∝ exp (iπx/L) + exp (i2πx/L).
It is useful to consider the problem with u′(x). If we solve for the energy eigen-
functions of the Hamiltonian for this problem

H = − �
2

2m
∂2

∂x2
,

we obtain:

ψn(x) =

√
2
L
sin

(nπx
L

)
, (17)

which correspond to the energy eigenvalues:

En =
n2π2

�
2

2mL2
. (18)

From the postulates of quantum mechanics (discussed in section), we know that
any state of an isolated system corresponds to a function in the corresponding
Hilbert space. This Hilbert space is spanned by the eigenfunctions of a Hermitian
operator (which corresponds to an observable, in this case energy). Therefore, if
u′(x) were a state in our system, it could be represented as a superposition of
different eigenfunctions of energy:

u′(x) =
∞∑

n=1

cnψn(x). (19)

From equation (17), it is clear that all of the ψn’s vanish at zero, whereas u′(x)
does not. Thus u′(x) is a wavefunction that extends beyond our Hilbert space, or
in other words is a particle not confined in the infinite square well, which creates
a dilemma... one which is easily solved by use of u(x) as the initial state of the
particle. u(x), by the way, is the wavefunction that would be obtained if the
potential suddenly (which can be quantitatively defined) sprung up from nowhere
and captured a particle formerly in u′(x).

(a)

The normalization condition is:
∫ L

0

dx|u(x)|2 = 1. (20)

Let
u(x) = C(sin (πx/L) + sin (2πx/L)),

then normalization implies:

C2

∫ L

0

dx
(
sin2 (πx/L) + 2 sin (πx/L) sin (2πx/L) + sin2 (2πx/L)

)
= 1

Note that u(x) is a superposition of the first two energy eigenfunctions (given by
Eq. (17)). Since eigenfunctions are orthonormal (discussed in problem (5)), the
normalization condition reduces to:

C2

∫ L

0

dx
L

2
(|ψ1|2 + |ψ2|2

)
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from which we conclude

C =

√
2
L
.

The same result can be obtained through explicit integration.

(b)

Since u(x) is a superposition of the first two energy eigenfunctions, a measurement
of the energy of the particle will yield either E1 or E2 (given in Eq. (18)), each
with a 50% probability. A measurement of an observable will always yield an
eigenvalue of the corresponding Hermitian operator. Prof. Strovink mentions that
this is the first measurement. This is important, since from another postulate of
quantum theory we know that after measuring the energy, the wavefunction of the
particle is subsequently described by the energy eigenfunction corresponding to
the eigenvalue of energy obtained in the measurement.

(c)

The expectation value of the energy is

〈E〉 = E1 + E2

2
.

This follows from the fact that u(x) is a superposition of the first two energy
eigenfunctions with equal probability to be found in either state. Thus repeated
measurements on identical systems will yield E1 half the time and E2 the other
half.

(d)

There are some subtle and important points in this part of the problem. As you
saw in problem (5), a particle in an energy eigenstate of a symmetric potential
always has an equal probability to be found on either the left- or right-hand side
of the potential. This is not true for a superposition of energy eigenstates. This is
readily seen by evaluating the expectation value of x for u(x):

〈x〉 =
∫ L

0

x|u(x)|2dx (21)

〈x〉 = 2
L

∫ L

0

[
x sin2

(πx
L

)
+ x sin2

(
2πx
L

)
+ 2x sin

(πx
L

)
sin

(
2πx
L

)]
dx (22)

〈x〉 = L

2
− 16L
9π2

.

If we include the time evolution of u(x) as described by the time-dependent
Schrödinger equation, the constants in front of ψ1 and ψ2 acquire a time-
dependence:

u(x, t) = c1(t)ψ1(x) + c2(t)ψ2(x). (23)

The phase between the two wavefunctions ψ1 and ψ2 oscillates at a frequency:

ω =
∆E
�
, (24)

where ∆E = E2 −E1. Since u(x, 0) has maximum probability to be found on the
left-hand side, when

∆E · t0
�

= nπ

(n = 1, 3, 5...) the probability to be found on the right-hand side is a maximum.
So

t0 =
nπ�

∆E
.
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