Your browser version may not work well with NCBI's Web applications. More information here...
1: Phytochemistry. 1999 Nov;52(5):843-54.Click here to read Links

Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.

Research Institute for Agrobiology and Soil Fertility (AB-DLO), Wageningen, Netherlands. h.j.bouwmeester@ab.dlo.nl

The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.

PMID: 10626375 [PubMed - indexed for MEDLINE]