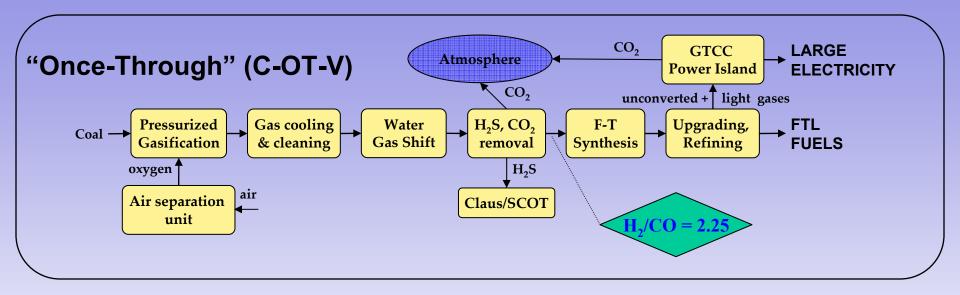
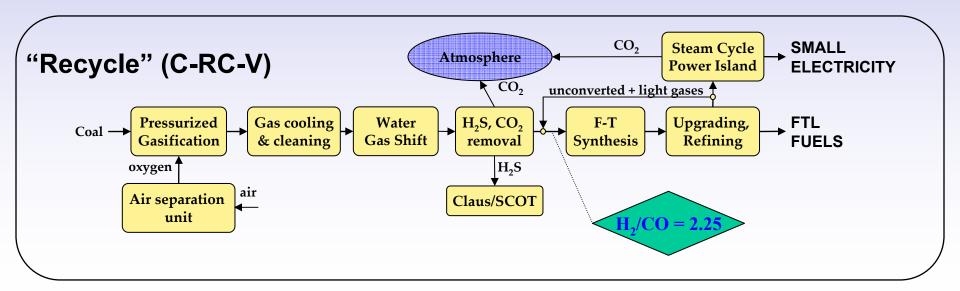
Sixth Annual Conference on Carbon Capture & Sequestration

Session Title: Coal to Liquids and Sequestration

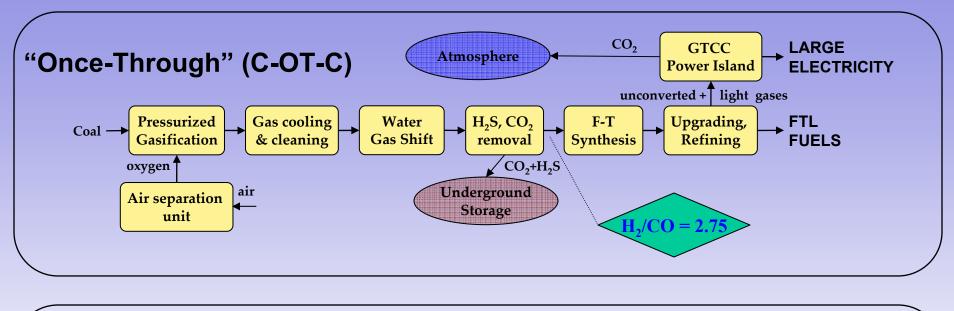
ZERO-CARBON FT LIQUIDS VIA GASIFICATION OF COAL AND BIOMASS WITH CCS

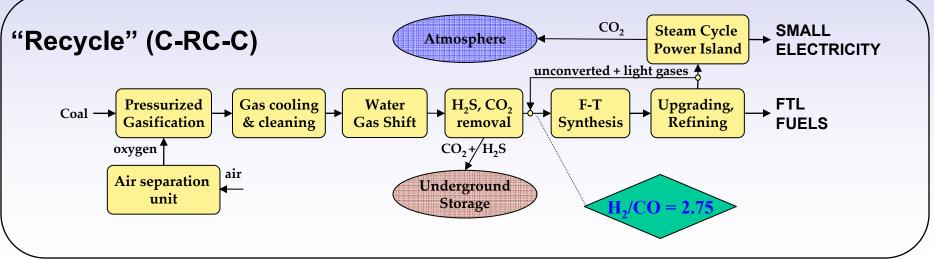
Eric D. Larson^a, Haiming Jin^b, Guangjian Liu^c, and Robert H. Williams^a


- a) Princeton Environmental Institute, Princeton University, New Jersey, USA
- b) SNC-Lavalin GDS, Inc., Houston, Texas, USA
- c) BP-Tsinghua Clean Energy Center, Tsinghua University, Beijing, China

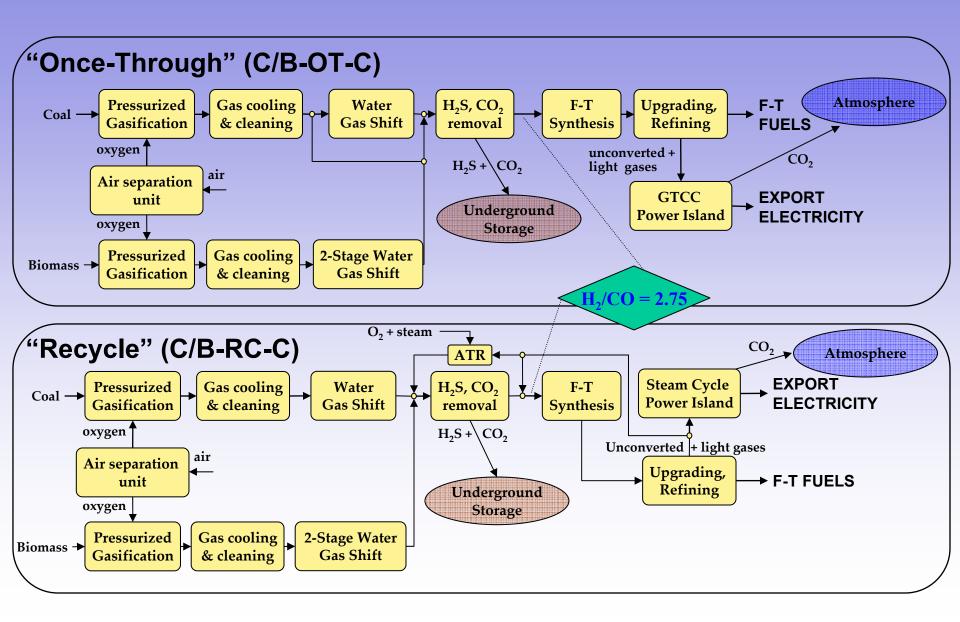

May 7-10, 2007 • Sheraton Station Square • Pittsburgh, Pennsylvania

OVERVIEW OF THIS WORK-IN-PROGRESS


- Detailed design/simulation of energy/mass balances for F-T fuels+electricity from coal or coal+switchgrass biomass, w/ and w/o CO₂ captured and stored (*CCS*).
- Capital cost and financial analysis.
- Focuses on "once-through" (*OT*) vs. "recycle" (*RC*) synthesis island designs.
- Builds on extensive prior design/simulation work:
 - Aspen Plus (and pinch analysis for heat integration).
 - "GS" (Politecnico di Milano software)
 - Detailed capital cost and financial models.

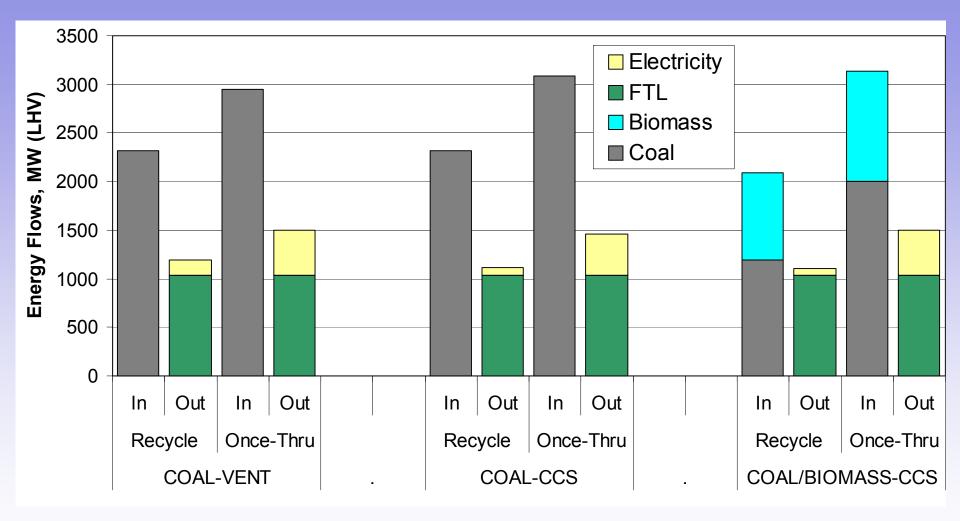

FTL FROM COAL w/o CCS (CO₂ VENTED)

FTL FROM COAL w/CCS

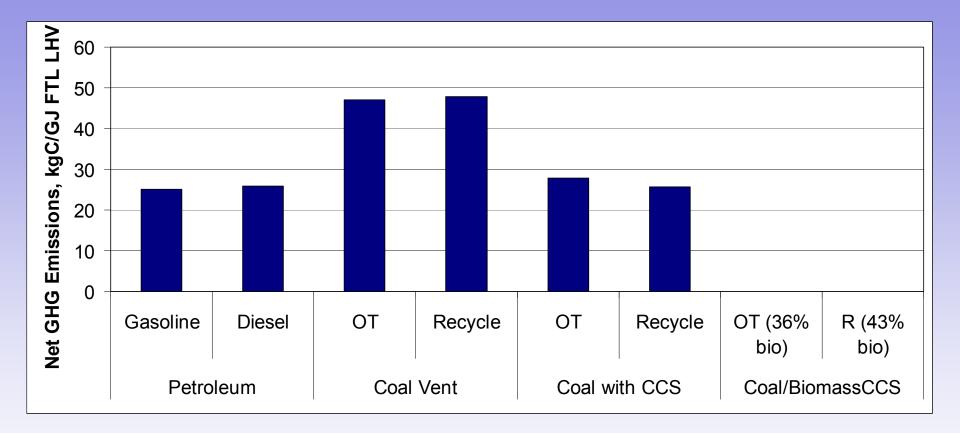


DESIGN FEATURES OF ALL SYSTEMS

- $H_2/CO = 2.25$ with CO_2 vented to maximize conversion to FTL.
- $H_2/CO = 2.75$ w/CCS, enabling all CO₂ capture upstream of synthesis, with ~10% loss of FTL production.
- Raw FTL upgraded onsite to finished diesel and gasoline.
- For OT, syngas unconverted in one synthesis-reactor pass is burned (*along with light ends from FTL refining*) in GTCC, generating substantial electricity.
- For RC, >90% of unconverted gas is recycled to synthesis. Purge gas burned in boiler for steam Rankine cycle power generation.

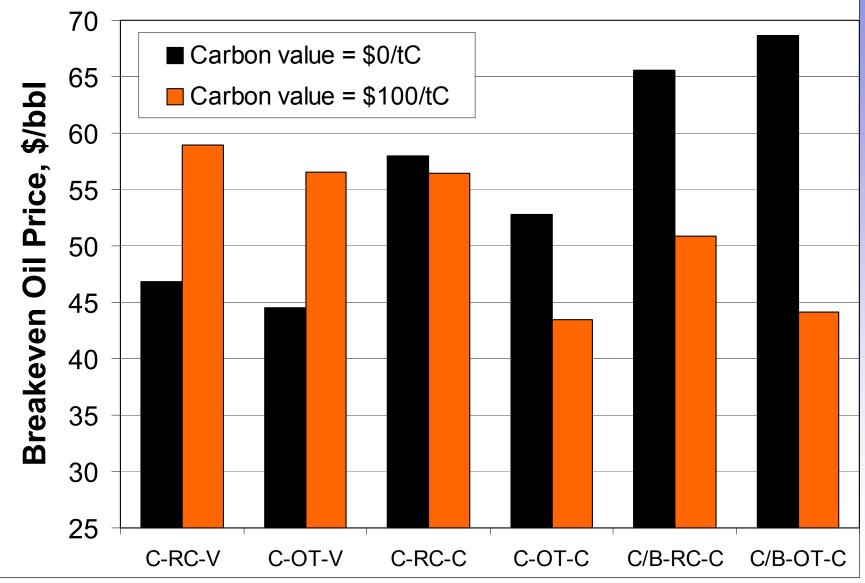

FTL + ELECTRICITY FROM COAL+BIOMASS w/CCS

KEY FEATURES OF FTL + ELECTRICITY FROM COAL+BIOMASS w/CCS

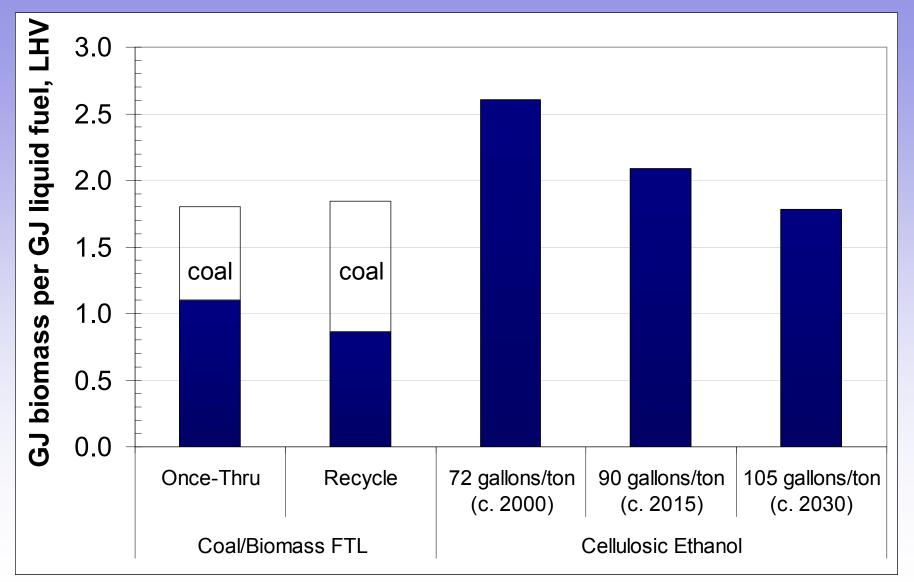

- H_2 -rich gas from biomass gasification compensates for H_2 deficit in coal syngas to achieve H_2 /CO ratio needed for FTL synthesis.
- High CH_4 content of biomass syngas \rightarrow recycle syngas is autothermally reformed (*ATR*) to boost FTL output.
- Coal-related scale economies captured for biomass.
- Substantial fraction of feedstock input is still low-cost coal.
- CCS of photosynthetic CO₂ → negative GHG emissions off-set coal-derived GHG emissions.
 - → Net zero GHG emissions possible for FTL product.

ENERGY INPUTS AND OUTPUTS

SAME FTL OUTPUT IN ALL CASES


NET GHG EMISSIONS FROM FTL

Net GHG emissions charged to FTL include:


- · all upstream emissions associated with coal and biomass production +
- · emissions at the FTL production facility +
- emissions from combustion of the FTL when used as fuel +
- credit for emissions associated with electricity. (Assumed credit per kWh equal to emissions from standalone coal-IGCC w/o CCS (for Coal-Vent cases) and stand-alone coal-IGCC w/CCS (for other cases).

BREAKEVEN OIL PRICES (BOP)

Assumptions: Capital charge rate = 15%. Capacity factor = 80%. Plant gate coal = $1.13/GJ_{LHV}$. Plant-gate switchgrass = 4/GJ. Electricity sales = 45/MWh w/o CCS and 65/MWh w/CCS.

BIOMASS REQUIRED PER GJ OF LIQUID BIOFUEL

Coal use (in FTL bars) = Total coal use for plant - Coal required to make same electricity in stand-alone IGCC w/CCS

OBSERVATIONS

- RC designs convert more of input feedstocks to FTL than OT.
 - 45-50% vs. 33-35%, but no significant impact of CCS on FTL output.
- For coal-only systems,
 - Small differences in total efficiency (*FTL*+*electricity*) between OT and RC.
 - Penalty in total-efficiency w/CCS vs. w/o CCS is ~4 points.
- C/B-RC-C total eff = 53% (*vs. 48% for C/B-OT-C*) due to ATR and inherently higher efficiency of syngas to FTL than to electricity.
- For coal-FTL, GHG em rate relative to crude oil-derived HC fuels: w/CO₂ vented ~ 1.8 X, w/CCS = ~1 X
- For zero-GHG FTL, C/B-RC-C needs 43% biomass input. C/B-OT-C needs less (*36%*) due to larger electricity GHG credit.
- At \$100/tC, BOPs are sensitive to OT vs. RC; least costly are C-OT-C and C/B-OT-C (~\$44/bbl).
- Zero-GHG FTL via C/B-OT-C or C/B-RC-C needs 40-65% less biomass per GJ liquid fuel than cellulosic ethanol → less land needed.

THANK YOU ! www.princeton.edu/~energy

ENERGY/CARBON BALANCES & CAPITAL COSTS

	C-RC-V	C-OT-V	C-RC-C	C-OT-C	C/B-RC-C	C/B-OT-C
<u>Energy Balances (LHV basis)</u>						
FTL output, MW	1033	1035	1033	1033	1033	1031
FTL bbl/day gasoline equivalent	16437	16469	16437	16437	16437	16411
FT Diesel output, MW LHV	643	640	652	640	633	640
FT Gasoline output, MW LHV	390	395	381	394	400	392
Electricity output, MW	157	461	78	428	68.5	468
Electricity out, kWh/GJ FTL	42.22	123.81	20.97	115.17	18.42	126.13
Coal input, MW	2321	2946	2321	3085	1194	2002
Coal input, GJ/GJ FTL	2.25	2.85	2.25	2.99	1.16	1.94
Biomass input, MW	0	0	0	0	895	1138
Biomass input, GJ/GJ FTL	0	0	0	0	0.867	1.103
Fraction of input MW as FTL	0.45	0.35	0.45	0.33	0.49	0.33
Fraction of input MW as Electricity	0.07	0.16	0.03	0.14	0.03	0.15
Biomass input fraction	0	0	0	0	42.8%	36.2%
Carbon Flows kgC/s						
<u>Carbon Flows, kgC/s</u> Upstream coal emissions	2.47	3.13	2.47	3.28	1.27	2.13
Upstream biomass emissions	0	0	0	0	1.27	1.67
Coal input	57.92	74.2	57.91	77.7	29.80	50.42
Biomass input	0	0	0	0	29.00	31.66
FTL output	19.82	21.1	19.82	21.0	19.82	20.93
Unconverted char	0.58	0.74	0.58	0.78	0.30	0.50
Captured/stored	0.50	0.74	32.03	49.0	30.91	51.06
Plant emissions	37.52	52.36	5.49	6.92	2.93	9.61
	07.02	02.00	0.40	0.02	2.00	0.01
<u>Capital Costs (million 2003\$)</u>						
Overnight installed	1325	1647	1233	1639	1257	1678
Interest during construction	163	203	152	202	155	206
Total installed cost	1488	1850	1385	1841	1412	1884