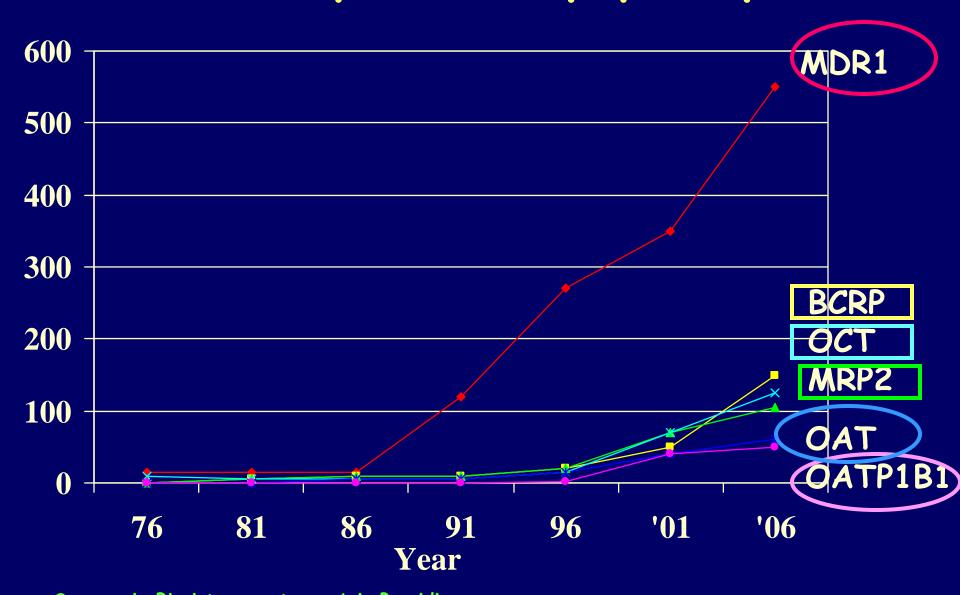
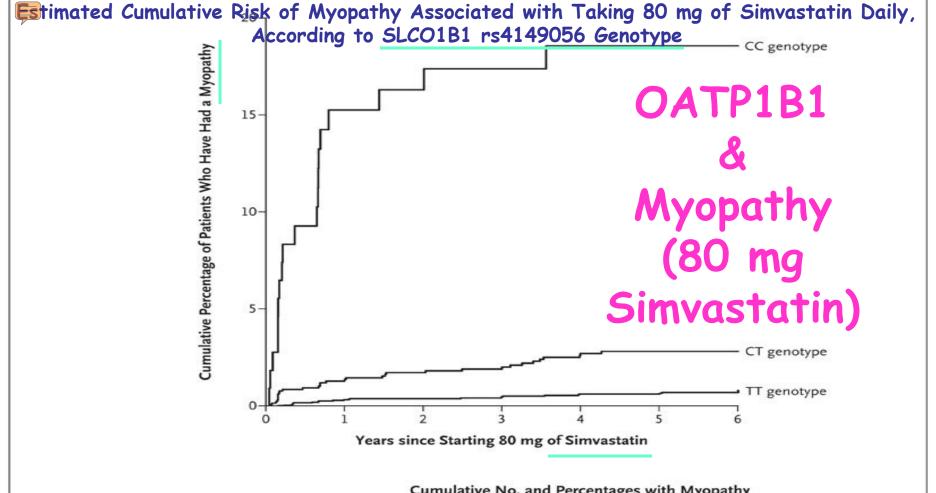
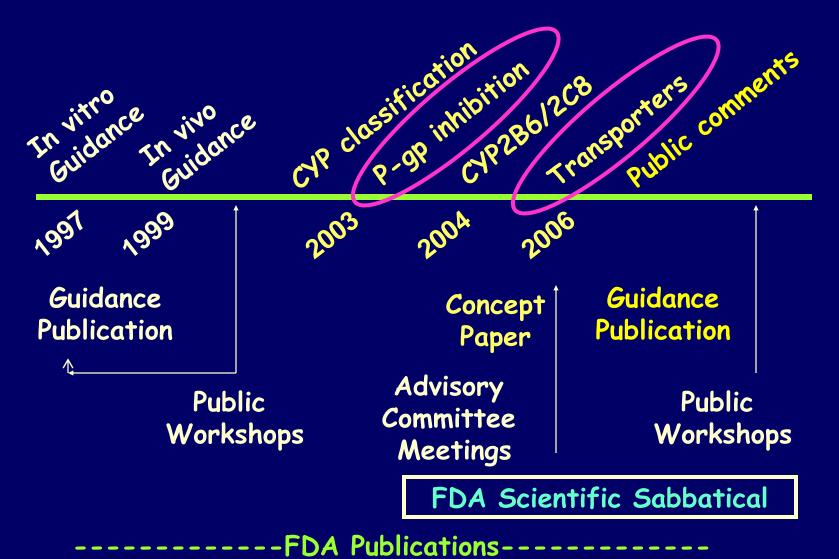

FDA Critical Path Transporter Workshop Bethesda, MD, October 3, 2008

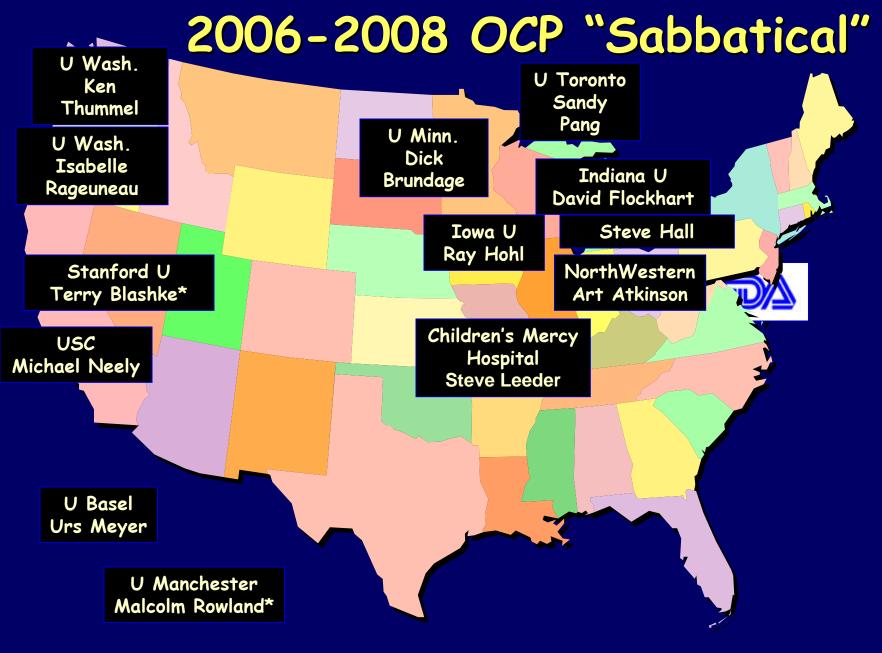

Evaluation and Labeling of Drug-Drug Interactions - Focusing on Transporters -

Shiew-Mei Huang, Ph.D.
Deputy Director
Office of Clinical Pharmacology
CDER, FDA
shiewmei.huang@fda.hhs.gov



Number of published papers/patents


<Survey via Biovista; courtesy: Aris Persidis>


3 Shiew-Mei Huang
http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4248s1-6-FDAHuang_files/frame.htm

			cumulative No. and referriages with Myopathy						
			Year 1				Year 5		
	Population			Attributa	ble to gentoype			Attributa	ble to gentoype
Genotype	Frequency	no.	%	no.	% of total	no.	%	no.	% of total
TT	0.730	12	0.34	0	0	21	0.63	0	0
CT	0.249	17	1.38	12.8	75	32	2.83	24.9	78
CC	0.021	16	15.25	15.6	98	19	18.55	18.4	97
All genotypes	1.000	45	0.91	28.4	63	72	1.56	43.3	60

Discussions on Drug Interactions

^{*} Prior to 2006

Guidance for Industry

Drug Interaction Studies — Study Design, Data Analysis, and Implications for Dosing and Labeling

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice amounting the availability of the draft guidance. Submit comments to the Division of Dockets Management (FIFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document contact (CDER) Shiew-Mei Huang, 301-796-1541, or (CBER) Toni Stifano, 301-827-6190.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)

September 2006 Clinical Pharmacology Draft published for public comment
September 11, 2006
http://www.fda.gov/cder/guidance/6695dft.pdf

What's New

Metabolism, <u>transport</u>, drug-interaction info key to benefit/risk assessment

```
October 2006, advisory committee meeting:
http://www.fda.gov/ohrms/dockets/ac/cder06.html#PharmScience
http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4248s1-index.htm
<Huang, Temple, Throckmorton, Lesko, Clin.Pharmacol.Ther. Feb 2007>
<Huang, Strong, Zhang, Reynolds, Nallani, Temple, et al, J Clin Pharmacol, June, 2008>
<Zhang, Zhang, Strong, Reynolds, Huang, Xenobiotica, July 2008>
8 Shiew-Mei Huang
```

CYP Enzymes

what's Transporters (P-gp

Decision trees—New?
When in vivo studies
are recommended
per in vitro data

- -Substrate (25% metab)
- Inhibitor (I/Ki > 0.1)
- Inducer (40% control)

When in vivo studies are recommended per in vitro data

Decision tree—

- Substrate (flux ratio)
- Inhibitor (I/Ki)
- (Inducer)

Classification of

- Inhibitors
- Inducers
- Substrates

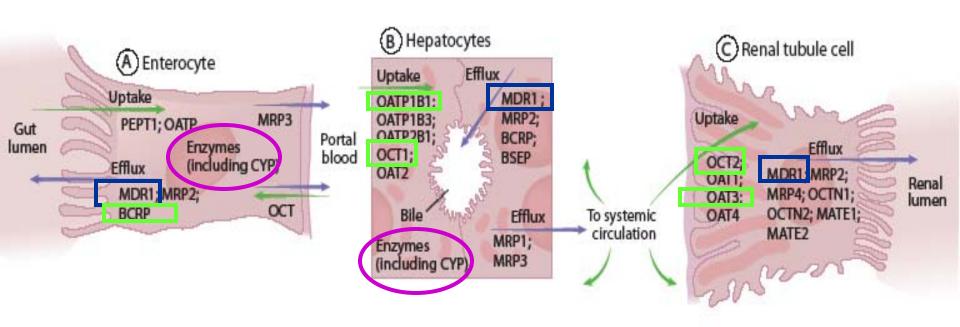
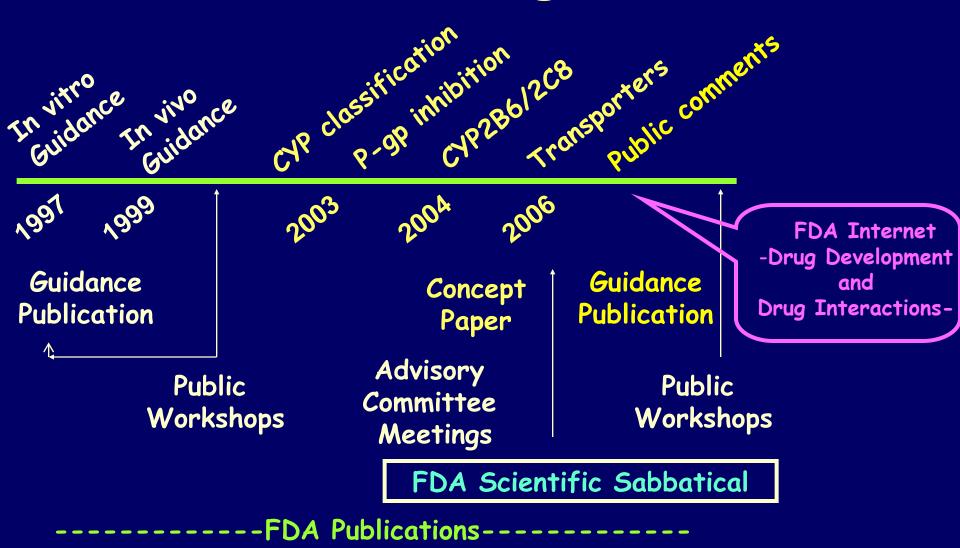

No classification system recommended

Figure 1. Decision tree to determine whether an investigational drug is an <u>inhibitor</u> for P-gp and whether an in vivo drug interaction study with a P-gp substrate is needed

*Alternate approach: [I]2/Ki > 10 <L Zhang, Y Zhang, JM Strong, K Reynolds, S-M Huang, Xenobiotica, July 2008>


Selected efflux & uptake transporters in the gut wall (a), liver (b), and kidneys (c)

Huang S-M, Lesko LJ, and Temple R, "Adverse Drug Reactions and Pharmacokinetic Drug Interactions", Chapter 21, Adverse Drug Reactions and Drug Interactions in Part 4, FUNDAMENTAL PRINCIPLES: Clinical Pharmacology, "Pharmacology and Therapeutics: Principles to Practice," Ed. Waldman & Terzic, Elsevier (in press)

11 Shiew-Mei Huang

Discussions on Drug Interactions

http://www.fda.gov/cder/drug/drugInteractions/default.htm

Drug Development and Drug Interactions

- Overview
- •Background Information
- Tables of Substrates, Inhibitors and Inducers
 - CYP Enzymes
 - •In vitro
 - •In vivo
 - •Examples of in Vivo Substrate, Inhibitor, and Inducer for Specific CYP Enzymes
 - •Classification of Inhibitors
 - •Classification of Substrates
 - •P-gp Transporters
 - •Major Human Transporters
- •Possible Models for Decision-Making
 - CYP-Based Drug-Drug Interaction Studies
 - •P-gp-Based Drug-Drug Interaction Studies
- •FDA Drug Interaction Working Group Members
- Regulatory Guidance and Manual for Policies and Procedures
- Publications
- Presentations
- Advisory Committee Meetings
- Related Links
- •Contact Information

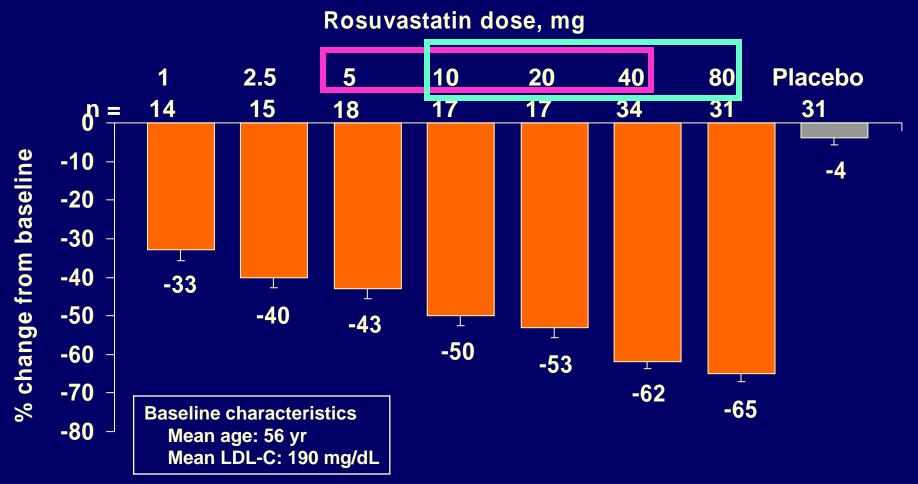
Questions Asked during Review

Drug interactions evaluated?

Clinical significance of the finding (exposure-response)?

Labeling language?

Case 1


Rosuvastatin (Crestor®)

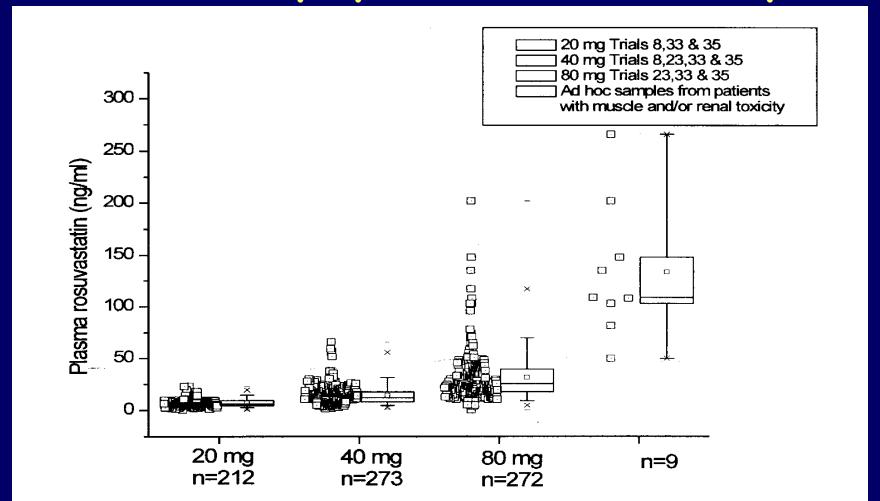
- Not extensively metabolized (10%) CYP2C9
- F=20%, fe= 6%
- Substrate for P-gp and OATP1B1*
- Interaction studies conducted-

Effect <u>of</u> other drugs Cyclosporine; Gemfibrozil Lopinavir/ritonavir Fenofibrate; Antacid Erythromycin, Ketoconazole, Itraconazole, Fluconazole

Effect <u>on</u> other drugs
Warfarin
Digoxin
Oral contraceptives

LDL-C: % Change From Baseline Rosuvastatin (Crestor®) vs Placebo

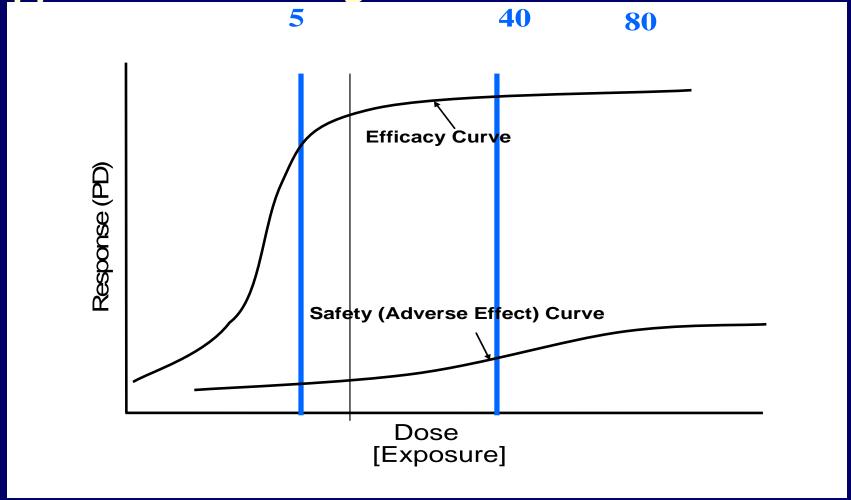
< .001 vs placebo; data presented as LS mean \pm SE; Trials 8 and 23 Pooled (Wk 6)


Incidence of CK elevations and myopathy in phase II/III

	(mg)	CK>10xULN	MYOPATHY
Payed		4 404	(all cases)
Baycol	0.4	1.6%	1.0-1.6%
	0.8	2.1%	0.9-1.0%
	Pbo	0%	0%
Rosuva	5	0.4%	0.2%
	10	0.2%	0.1%
	20	0.2%	0.1%
	40	0.4%	0.2%
	80	1.9%	1.0%
All marketed			
STATINS ^a	5-80	0.03-0.9%	0-0.5%

Data from Tables 10, 11 FDA briefing packet

<Crestor® William Lubas, MD, PhD, CDER, FDA, Advisory Committee meeting, July 9, 2003> http://cdernet.cder.fda.gov/ACS/index.html
18 Shiew-Mei Huang


Plasma rosuvastatin concentrations by dose and in patients with rhabdomyolysis or renal toxicity

Crestor® William Lubas, MD, PhD, CDER, FDA, Advisory Committee meeting, July 9, 2003 > http://cdernet.cder.fda.gov/ACS/index.html
19 Shiew-Mei Huang

Dosage and Administration

- Approved 5-40 mg

Comparative exposure and dose recommendation in subgroups with various patient factors

Group	Ethnic factor	Fold change in e	Initial dose (mg)	Daily dose (mg)	
1	Control	1-fold		10–20	5–40
2	Hepatic impairment	1.1-fold (mild) 1.2-fold (moderate)		10–20 10–20	5–40 5–40
3	Renal impairment	1-fold (mild) 1-fold (moderate) 3-fold (severe)		10–20 10–20 5	5–40 5–40 ≤10
4	Race	2-fold (Asians)		5	5–20
5	Cyclosporine	7-fold			5
6	Gemfibrozil	1.9-fold			10
7	Lopinavir/ ritonavir	5-fold	1 2 3 4 5 6 7 8		10

(Data compiled from labeling for Crestor (rosuvastatin; AstraZeneca); Labeling from http://www.accessdata.fda.gov/scripts/cder/drugsatfda.); November 2007 labeling

21 Shiew-Mei Huang

<Huang S-M, Temple R, Clin Pharmacol Ther. 84(3): 287-294, 2008>

Case 2

- · Indicated: in combination with other antiretroviral agents, for treatment experienced adult patients infected with only CCR5 tropic- HIV1- detectable....
- Substrate of CYP3A and P-gp
- %fe: 8%; %F 23-33 %; renal pathway 25%

Interactions with CYP3A and/or Pgp inhibitors

Co-administered drug and dose	N	Maraviroc Dose	Ratio (90% CI) of n with/without co-adr (no effect = 1.00)	naraviroc pharmacol ministered drug	cinetic parameters
			Cmin	AUCtau	Cmax
CYP3A and/or P-gp Inhibitors Ketoconazole 400 mg QD	12	100 mg BID	3.75 (3.01-4.69)	5.00 (3.98, 6.29)	3.38 (2.38, 4.78)
Ritonavir 100 mg BID	8	100 mg BID	4.55 (3.37-6.13)	2.61 (1.92, 3.56)	1.28 (0.79, 2.09)
Saquinavir (soft gel Spsules) /ritonavir 1000 mg/100 mg BID	/Ri	100 mg BID	11.3 (8.96-14.1)	9.77 (7.87, 12.14)	4.78 (3.41, 6.71)
Lopinavir/ritonavir 400 mg/100 mg BID	Rito	300 mg BID	9.24 (7.98-10.7)	3.95 (3.43, 4.56)	1.97 (1.66, 2.34)
Atazanavir 400 mg QD	12	$300~\mathrm{mg}~\mathrm{BID}$	4.19 (3.65-4.80)	3.57 (3.30, 3.87)	2.09 (1.72, 2.55)
Atazanavir/ritonavir 300 mg/100 mg QDATQZ	12 R i	300 mg BID	6.67 (5.78-7.70)	4.88 (4.40, 5.41)	2.67 (2.32, 3.08)

Cmin: 4-11x inc

AUC: 3-10x inc

Cmax: 1.3-5x inc

Interactions with CYP3A and/or Pgp inducers

Co-administered drug and dose	N	Maraviroc Dose	Ratio (90% CI) of maraviroc pharmacokinetic parameter with/without co-administered drug (no effect = 1.00)		
			Cmin	AUCtau	Cmax
CYP3A and/or P-gp Inducers Efavirenz 600 mg QD	12	100 mg BID	0.55 (0.43-0.72)	0.552 (0.492, 0.620)	0.486 (0.377, 0.626)
Rifampicin 600 mg QD	12	100 mg BID	0.22 (0.17-0.28)	0.368 (0.328, 0.413)	0.335 (0.260, 0.431)
Nevirapine* 200 mg BID (+ lamivudine 150 mg BID tenofovir 300 mg QD)	8	300 mg SD	-	1.01 (0.65, 1.55)	1.54 (0.94, 2.51)

`No changes: nevirapine

Cmin: 0.22-0.55 AUC: 0.37-0.55 Cmax: 0.34-0.49

Interactions with CYP3A and/or Pgp inhibitors and inducers

Ratio (90% CI) of maraviroc, pharmacokinetic parameters

and dose	.,	Maraviroc Duse	with/without co-ac (no effect = 1.00)	lministered drug	kinetic parameters
			Cmin	ATIC.	Cmar
CYP3A and/or P-gp Inhibitors an	d Induce	rs			
Lopinavir/ritonavir + efavirenz	11	300 mg BID	6.29	2.53	1.25
400 mg/100 mg BID + 600 mg QD			(4.72-8.39)	(2.24, 2.87)	(1.01, 1.55)
Lopi/Rito + Saquinavir(soft gel capsules) /ritonavir + efavirenz 1000 mg/100 mg BID + 600 mg			8.42 (6.46-10.97)	5.00 (4.26, 5.87)	2.26 (1.64, 3.11)
Saqui/Rito Fipranavir/ritonavir 500 mg/200 mg BID Tipra/Rito	12	Ef ₁₅ Q _{ng BID}	1.80 (1.55-2.09)	1.02 (0.850, 1.23)	0.86 (0.61, 1.21)

Maraviroc Dose

Co-administered drug

Smaller changes: Tipranavir/ritonavir

Cmin:
6-8x inc
AUC:
3-5x inc
Cmax:
1.3-2.3x inc

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use SELZENTRY safely and effectively. See full prescribing information.

SELZENTRY (maraviroc) tablets

Initial U.S. Approval: 2007

WARNING: HEPATOTOXICITY

See full prescribing information for complete boxed warning

- Hepatotoxicity has been reported. (5.1)
- May be preceded by evidence of a systemic allergic reaction (e.g., pruritic rash, eosinophilia or elevated IgE). (5.1)
- Immediately evaluate patients with signs or symptoms of hepatitis or allergic reaction. (5.1)

-----INDICATIONS AND USAGE-----

SELZENTRY is a CCR5 co-receptor antagonist indicated for combination antiretroviral treatment of adults infected with only CCR5-tropic HIV-1 detectable, who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents (1).

Tropism and treatment history should guide the use of SELZENTRY (1).

DOSAGE AND ADMINISTRATION				
When given with strong CYP3A inhibitors (with	150 mg			
or without CYP3A inducers) including PIs	twice daily			
(except tipranavir/ritonavir), delavirdine (2, 7.1)				
With NRTIs, tipranavir/ritonavir, nevirapine, and	300 mg			
other drugs that are not strong CYP3A inhibitors	twice daily			
or CYP3A inducers (2, 7.1)				
With CYP3A inducers including efavirenz	600 mg			
(without a strong CYP3A inhibitor) (2, 7.1)	twice daily			

-----DOSAGE FORMS AND STRENGTHS-----

Tablets: 150 mg and 300 mg (3).

-----CONTRAINDICATIONS----

None (4)

-----WARNINGS AND PRECAUTION

- Use caution when administering SELZENTRY to existing liver dysfunction or who are co-infected C (5.1)
- More cardiovascular events including myocardia infarction were observed in patients who received with caution in patients at increased risk of cardio

-----ADVERSE REACTIONS---

The most common adverse reactions (>8% incidence higher frequency compared to placebo are cough, py tract infections, rash, musculoskeletal symptoms, abdizziness (6).

To report SUSPECTED ADVERSE REACTION 800-438-1985 or FDA at 1-800-FDA-1088 or www

-----DRUG INTERACTIONS

- Coadministration with CYP3A inhibitors, include (except tipranavir/ritonavir) and delavirdine, will concentration of SELZENTRY (7.1)
- Coadministration with CYP3A inducers, includir the concentration of SELZENTRY (7.1)

-----USE IN SPECIFIC POPULA

- SELZENTRY should only be used in pregnant w benefit justifies the potential risk to the fetus (8.1
- There are no data available in pediatric patients; the should not be used in patients <16 years of age (8)

See 17 for PATIENT COUNSELING INFORMA MEDICATION GUIDE

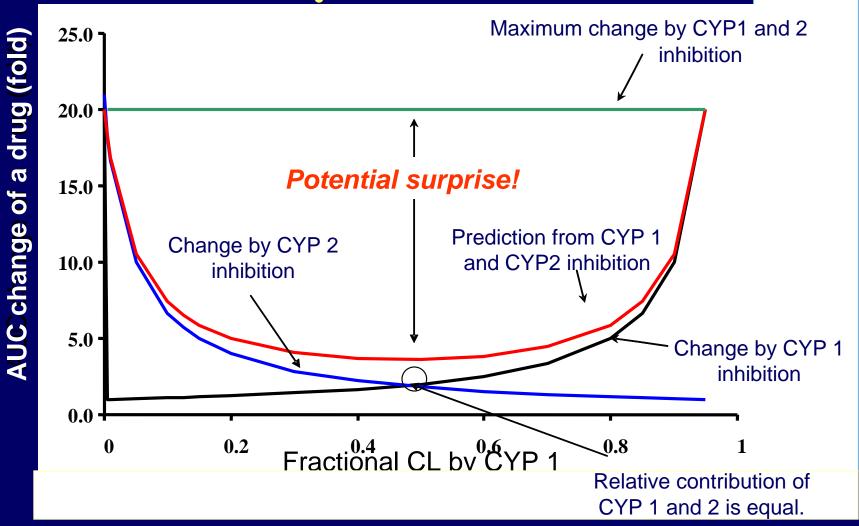
Use in Specific Populations

· 8.6 Renal Impairment

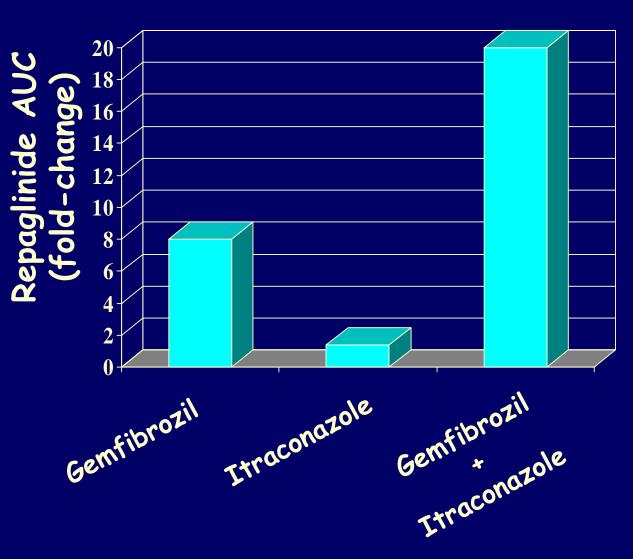
Patients with a creatinine clearance of less than 50mL/min who receive maraviroc and a <u>CYP3A</u> inhibitor may be at an increased risk of adverse event... dizziness and postural hypotension

Pateints ...receive mraviroc and a CYP3A inhibitor only if the potential benefit ... outweigh the risk, ...monitored for adverse effects

Postmarketing Study Commitment (PMC)


- · Renal impairment studies
 - 150 mg with boosted PI
 - 300 mg
- · Metabolite inhibition of CYP2D6 (600 mg)
- · Maraviroc inhibition of P-gp
- Maraviroc induction of CYP1A2

C Lee's presentation


· PD interactions with PDE5 inhibitors

There is a need to understand interactions among multiple (>2) drugs

Multiple inhibition

Combination of CYP and transporter interactions

Mechanism of Interactions:

Gemfibrozil and its glucuronide metabolite inhibit

- CYP2C8
- OAPT1B1

Case 3

Ranolazine (Ranexa®)

- · After oral dose, 75% in urine and 25% in feces; only 5% excreted unchanged in the urine
- Extensively metabolized by CYP3A and less by CYP2D6; a P-gp substrate
- · inhibits CYP3A, CYP2D6, P-gp

Effect of other drugs

Ketoconazole, Diltiazem, Verapamil, Cimetidine, Rifampin, Digoxin Paroxetine Effect on other drugs

Simvastatin

Diltiazem

Dextromethorphan (PM)

Digoxin

Warfarin

December 2007 ranolazine (Ranexa) CV Therapeutics label

<http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseact
ion=Search.Label ApprovalHistory;</pre>

34 Shiew-Mei Huang

PRECAUTIONS

Effect of other drugs

- -Ranolazine is primarily metabolized by <u>CYP3A</u> and a <u>substrate of P-gp...</u>rifampin, refabutin, rphenobarbital, phenytoin, carbamazepine, St John's Wort <u>should be avoided</u>;
- <u>Caution should be exercised</u> when co-administering P-gp inhibitors, ritonavir or cyclosporine

Effect on other drugs

-Digoxin <u>dose may have</u>
<u>to be reduced</u>; other
P-gp substrates;
-<u>inhibits CYP2D6</u>; Dose
of TCA, some
antipsychotic <u>have to</u>
be reduced

-->Labeling includes some, but not all, actionable recommendations

December 2007 ranolazine (Ranexa) CV Therapeutics label http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=6563; >

Transporter Info in the Current Labeling

Current Labeling*

Transporter	Drug Names
P-gp	Ambrisentan, (aprepitant), clarithromycin, fexofenadine, (fosaprepitant), (ixabepilone), lapatinib, posaconazole, ((propafenone)), ranolazine, sirolimus, tipranavir,
OATP1B1	Atorvastatin, [cyclospoprine], lapatinib
OATP	Ambrisentan
Organic anion	Sitagliptin
Organic cation	Metformin, pramipexole, varenicline
BCRP	Lapatinib
MRP	(Ixabepilone)

^{*}This is <u>not an extensive list</u>. Data based on a preliminary survey of electronic PDR,

October 1, 2008. Those in "()" indicated mentioned in the labeling as not 37 Shiew-Mei Huang
a substrate or not an inhibitor (), or not studied (()) or as an inhibitor [] for other drugs

IND/NDA Discussions*

Transporter	Recommendations
No data on P-gp (oncology)	Post-marketing commitment as P-gp substrate or inhibitor
OATP1B1 substrate (HIV)	Recommended study with lopinavir/ritonavir
OATP1B1 inhibitor	Sponsor studied rosuvastatin
CYP3A/QATP1B1 inhibitor	Sponsor studied simvastatin

^{*} Not an extensive list; case examples from recent IND/NDA discussions-courtesy of Abraham 5, Booth B, Zhang L, Zhang YD

Summary

- CYP-based interactions well defined in general
- Labeling recommendations (language and section) based on clinical significance: exposureresponse relationship & benefit/risk ratio

Summary (2)

- Transporter-based interactions have been increasingly evaluated; P-gp-based interactions are among the most evaluated; others include OATP, OCT, OAT, BCRP; results have been included in the drug label
 - * Study design issues need to be addressed (e.g., probe substrates, inhibitors)

Summary (3)

- Efforts in development/evaluation of models predicting the extent of drug interactions ongoing at the FDA
 - * in vitro to in vivo
 - * single pair to multiple interactions
 - multiple CYP inhibitors
 - multiple modulators (CYP/transporter inhibition/induction)
 - effect of other metabolizing enzymes
 - effect of genetics

Drug Interactions working group

Sophia Abraham

Sang Chung

Shiew-Mei Huang

Patrick Marroum

Nam Atik Rahman

Sally Yasuda

Soloman Sobel

David M Green

Hon Sum Ko

Robert Temple

Kenneth Thummel*

Isabelle Ragueneau *

*(on sabbatical at FDA)

Sayed Al-Habet Philip Colangelo Ron Kavanagh

Srikanth Nallani

Kellie Revnolds

Lei K Zhana

Raman Baweja

Paul Hepp

Lawrence J Lesko

Wei Qiu

Xiaoxiong Wei

Jenny H Zheng

John Strong Derek Zhang Ping Zhao

David Frucht Toni Stifano Janet Norden

Gilbert Burckart

Many who have provided comments on the guidance

References

- Guidance for industry: Drug Interaction Studies: Study design, Data analysis and Implications for Dosing and Labeling (Issued for public comment, September 11, 2006, http://www.fda.gov/cder/quidance/6695dft.pdf).
- FDA Drug Development and Drug Interactions Website; <u>http://www.fda.gov/Cder/drug/drugInteractions/default.</u> <u>htm</u>, established May 2006
- Huang S-M, Temple R, Throckmorton D, Lesko L, Clin Pharmacol Ther 2007; Feb
- Huang S-M, Strong J, Zhang L, et al, J Clin Pharmacol 2008: June
- Zhang L, Zhang Y, Strong J, Reynolds K, Huang S-M,
 Xenobiotica 2008; July