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2. Synopsis

Supersymmetry, relating bosons and fermions, is a beautiful idea. It also pertains to

one of the most promising extensions
[1]

of the standard model that have been suggested

so far. The motivation behind this extension is to solve some of the theoretical problems

present (in particular the naturalness problem, more of which later) in the standard

model, within the context of point particle �eld theory itself. Since supersymmetry

is a spacetime symmetry, a consistent local formulation of it needs to include gravity.

Hence, local supersymmetry is called supergravity. In a sense,this is an advantage since

it provides a natural setting for gravity as an extension of ordinary gauge theories and is

a reasonably unique theory. At the same time, the problems that besiege any attempts

towards a quantum theory of gravity plague these supergravity models as well, though

they may be somewhat softened on account of supersymmetry. In particular, one �nds

that within the perturbative domain, this theory is de�nable only with a cuto� which

may reasonably be expected to be of the order of the Planck scale ��1 = MPl , the

natural scale of the theory.

Experimentally, of course, there is no evidence for supersymmetry so far. This may

simply mean that supersymmetry breaking mass di�erences between the known parti-

cles and their superpartners are beyond the reach of the present accelerators. There

are, nevertheless, theoretical limitations on how big such mass di�erences can be. On

inclusion of gravity, the standard model becomes unnatural, since the scale of the elec-

troweak symmetry breaking is much smaller (� 10�17) than the natural Planck scale

mentioned above. As a result, the coupling constants in the theory have to be readjusted

drastically at every level of the perturbative calculation. The weak scale survives the

onslaught of huge radiative corrections only on �ne tuning. Supersymmetry alleviates

the latter problem by arranging cancellations in the perturbative corrections to the weak
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scale between the bosons and their superpartner fermions. In order to retain this nice

feature of supersymmetry, we have to demand that the magnitudes of supersymmetry

breaking mass di�erences cannot be too di�erent (i.e. not more than a factor of ten)

from the weak scale of � 100 GeV. While the experimental lower limits on these are

in the tens of GeV range, the theoretical expectation, therefore, is that they should not

exceed 1 TeV.

However, such a value of the supersymmetry breaking expectation values will nat-

urally give rise to a large (� 10120 times the observed value) cosmological constant.

A class of supergravity models called no-scale models,
[2]

characterized by noncompact

symmetries in the K�ahler manifold and a 
at potential in the scalar sector, were used to

solve this problem. In this thesis, we shall study some features of supergravity theories

with special relevance to no-scale models.

In any gauge-symmetric theory, we can arrange for symmetry breaking mass terms

by realizing the theory in the Higgs phase. In such a case, the gauge particle also

acquires a mass. In similar fashion, when supergravity, which can be looked upon as

the gauge theory of supersymmetry, is `spontaneously broken' through the super-Higgs

mechanism, the corresponding gauge particle i.e. the gravitino ~G becomes massive.

However, in no-scale models, the mass of the gravitino is essentially an independent

parameter,
[2]

almost uncorrelated with the laboratory supersymmetry breaking mass-

di�erences. This leads to the interesting possibility that this gravitino can be superlight.

In fact, this has been claimed to be a virtue because of the expectation by some that

quantum corrections to the cosmological constant are predominantly controlled by the

gravitino mass. In addition there are cosmological advantages, vis-a-vis the in
ationary

universe, of a superlight gravitino.

It is, however, known that theories involving a particle of spin more than half coupled

iii



to a nonconserved current corresponding to a broken symmetry have singular massless

limits. In other words, these theories yield cross-sections for processes (involving the

longitudinal components of the particle's polarization) which increase and tend to in-

�nity as the mass of the particle is decreased. This can lead to a large cross-section for

small values of the particle mass. Fayet
[3]

had initially used the goldstino approximation

on a superlight gravitino �eld enabling him to give a lower bound on the gravitino mass

from available experimental data on e+e� ! 
~
 ~G, ~
 being the photino. We have stud-

ied
[4]

a di�erent reaction, namely the two-photon process 

 ! ~G ~G and have seen that

this process becomes measurably large when the superlight gravitinos are longitudinally

polarized. This is because the polarization tensor of a longitudinal gravitino brings a

factor of the gravitino mass m3=2 in the denominator whereas the numerator contains a

four vector which agrees with the energy-momentum four-vector of the gravitino except

for additive terms of order m2
3=2. Neglecting the latter when m3=2 is small, an applica-

tion of the reduction formula yields the matrix element of the divergence of the source of

the gravitinos, i.e. the divergence of the spinorial supercurrent. The latter picks up the

predominant supersymmetry-breaking mass di�erence in the `matter or gauge' sector.

In this particular problem, that turns out to be the mass of the photino. Hence, this

amplitude will be proportional to �2!2M2
~
m

�2
3=2

where � is Planck's constant, 2! is the

center-of-mass energy. M~
 is the photino mass and M~
m
�1
3=2

is squared owing to the

appearance of two longitudinally polarized gravitinos.

We have calculated
[4]

the cross-sections for such processes in detail and have found

that an experiment with doubly tagged e+e� beams looking for the process e+e� !
e+e� + \missing energy/momentum" gets an essentially negligible contribution from

the standard model but has quite a large cross-section in supergravity theories due to

the mechanism described above. In fact, the basic photon-photon cross-section reaches
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around 100 pb at a center-of-mass energy of 100 GeVfor a gravitino mass as light as

allowed by Fayet's bound and a photino mass of around 50 GeV. This process then is

expected to be measurable in the laboratory (e.g. LEP 1) and can be used to better the

existing lower bound on the gravitino mass.

Such large cross-sections also indicate a potential inconsistency in these theories.

Essentially because gravity is non-renormalizable, these theories make sense only as

e�ective low energy theories at the lowest level of perturbation theory. Nevertheless,

one does expect that in the exact theory, the higher orders in the expansion will not

become important at a scale lower than the Planck scale, the inverse of which, (�)

appears as the expansion parameter in the theory. The largeness of these cross-sections

mentioned above however arises from another large ratio in the theory, namely the ratio

between the matter (or gauge) sector supermultiplet mass splits and the gravitino mass.

In principle, this large ratio can come into the perturbative expansion and make the

higher terms important at energies much lower than the Plank scale.

To study this situation, we calculated
[5]

the amplitude for another process in the

theory, namely the fusion of two nonabelian gauge bosons g, e.g. gluons (carrying gauge

indices a,b), to produce the corresponding gaugino ~g (carrying gauge index c) and a

gravitino. By the same argument as before, we expect this process to be proportional to

�!m~gm
�1
3=2

. We explicitly calculate this amplitude and study its partial wave projections.

We �nd that, due to chirality and symmetry properties of this amplitude, the leading

helicity amplitude turns out to be the one in which the initial gauge bosons have opposite

helicities whereas the �nal gaugino and the gravitino have the same helicity. The lowest

partial wave in this channel obviously corresponds to an angular momentum two channel

and is found to be

jT 2;abc

1�1; 1
2
1
2

j = fabc
g�!(m~g � 2m3=2)

48�m3=2
;
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where g is the gauge coupling constant, fabc is the structure constant of the gauge group

and T J;abc
�1�2�3;�4

refers to the J th partial wave projection in the channel in which the initial

gauge boson helicities are �1 and �2, the helicity of the �nal gaugino is �3 and that of the

gravitino is �4.One �nds that this expressions becomes larger than unity, thus explicitly

violating unitarity, at an energy scale !cr: de�ned by

fabc!cr: =
48�

g�

m3=2

(m~g � 2m3=2)
:

The point to be noted above is that, as pointed out earlier, if m~g is not of the same

order as m3=2, !cr: can be much smaller than the Planck scale.

The above process depended heavily on the fact that we started with a non-abelian

gauge theory. However, this fact was not necessary in our general argument at all. To

study this better, and indeed to understand the role of the super-Higgs phenomenon in

generating all the supersymmetry-breaking mass terms better, we studied
[6]

the process

gg ! ~G ~G. This is possible even in abelian gauge theories at the tree-level and does not

see the typically non-abelian interaction terms in the lagrangian. More interestingly, an

application of the reduction formalism to this process can be easily seen to lead to an

amplitude for the scattering of gauge bosons to longitudinally polarized nearly massless

gravitinos proportional to 2
3�

2m�2
3=2

��@x�@
y
� h
jTS�x �S�y jggi�, where �, �� are some spinors

coming from the wavefunction of the gravitino, T is the time ordering symbol, S�,S�

are the supercurrents which stand as the sources for the gravitinos, and h
j and jggi are

the asymptotic vacuum and the incoming two-gauge boson states respectively. Taking

the derivatives in through the time ordering symbol produces two non-zero terms in

general: a `�-commutator' term containing m�2
3=2
f@�S�; S0g�(x0 � y0) and a normal

term going as m�2
3=2

T@�S
�@�S

� . Knowing that the divergence of the supercurrent is

proportional to the supersymmetry breaking masses present in the problem, we �nd

on dimensional grounds that the normal term grows with energy as �2!2 as expected,
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but the `�-commutator' term grows faster, as �2!3. This latter, if present, would lead

to unitarity violations at scales much below the Planck scale even in the absence of a

hierarchy between the gaugino and gravitino masses.

On the other hand, if supersymmetry is broken not by explicit terms in the La-

grangian, but by a super-Higgs mechanism, this conclusion cannot hold. In fact, in

such theories we can proceed to do the calculation in the so-called `R-gauge' and make

use of a Ward-identity there relating the derivative of the matrix element of the time

ordered product of supercurrents (as used above) to the amplitude for the emission of

two goldstinos. In the absence of large mass hierarchies, the couplings of the goldstino

are the usual couplings of matter to supergravity and hence violate unitarity only at

the Planck scale. In fact, to achieve this, the super-Higgs mechanism demands that

one should have certain scalar low-mass particles in the theory which interact in such

a way as to cancel the o�ending amplitude quoted above. These particles, normally

called axions, are thus shown to be the analogues of the Higgs boson in ordinary gauge

theories and are required to exist by the very structure of spontaneously broken local

supersymmetry theories.

With these put in, we have calculated the partial wave amplitudes for this process.

The most stringent bounds come from the helicity channel in which the gauge bosons

have opposite helicities and so do the gravitinos. The lowest partial wave in this channel

is the second one, given by

jT 2
1�1; 1

2
� 1

2

j =
�2!2

72�

 
m2

~g

m2
3=2

� 6

5

!
:

Thus partial wave unitarity is seen to break down at a scale given by

!cr: = 6
p

2�

 
m2

~g

m2
3=2

� 6

5

!�1
2

MPl :

Exactly as in the non-abelian case, this critical energy can be much smaller than the
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Planck scale in the presence of a large ratio between the gaugino and the gravitino

masses.

Apart from these theoretical considerations, an attempt is also made to put di-

rect laboratory limits on the mass of the gravitino. Essentially, the cross-section for

gluon-gluon scattering to a gluino and a gravitino rises with the energy and should

be detectable at the Tevatron in the form of a substantially large mono-jet signature

coming from gluino decaying into a gluon and a gravitino.
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Tree Unitarity Breakdown in Spontaneously Broken N=1 Supergravity

Theories and Phenomenology of a Superlight Gravitino



4. Introduction

It has long been the hope of theoretical physics to put all the known forces and

interactions into a uni�ed framework. Despite some tentative steps, the details of such

a scheme have eluded physicists so far. Even a qualitative understanding of the nature

of such a uni�cation remains problematic. One of the main hurdles in formulating any

consistent uni�ed �eld theory of nature has been the multitude of hierarchically di�erent

scales exhibited. More speci�cally, quantum corrections tend to mix up all the available

scales in the theory unless such mixings are prohibited by some symmetry respected by

the Lagrangian. E�orts have been made, therefore, to qualitatively understand how a

scale as small as the weak scale of about a 100 GeV could survive in the presence of other

scales necessarily present in the problem, e.g. the scale of gravitational interactions of

around 1019 GeV or the grand-uni�cation scale in the range of 1015 - 1016 GeV.

It has been noted for some time that the problem exists essentially because the scale

of the electroweak symmetry is controlled by a bosonic mass parameter in the theory.

Speci�cally, electroweak symmetry is supposed to get broken due to a scalar �eld which

gets a vacuum expectation value due to its self interactions. The exact scale at which

this takes place is controlled by the mass term for this �eld in the Lagrangian, provided

that the self-couplings of the �eld are of order unity. Because the full theory has to

possess much larger scales in it, as mentioned above, this immediately poses two related

problems in all realistic models: naturalness and hierarchy.

First of all, it is aesthetically unpleasant to have many di�erent scales in the theory,

because a di�erent physical origin is needed for every dimensionless parameter in the

theory that is very di�erent from the `natural value' of unity, e.g. the ratio of hierar-

chically di�erent scales. Furthermore, in the absence of any symmetry restricting it,

quantum corrections tend to dilute all herarchies present in the classical action. This
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di�culty is especially severe for the scalar mass terms alluded to above. Quantum cor-

rections to this term, in contrast with those to the fermionic mass terms or the scalar self

interaction term, are additive and are not proportional to the mass originally present in

the classical theory. This happens because of an apparent quadratic divergence present

in the one-loop corrections to the scalar mass; renormalization removes the divergence

and the highest scale present in the problem (e.g. gravitational scale MPl ) may make

everything �nite, but then the squared mass tends to run linearly to this highest scale.

The above contrasts strongly with a fermion mass term. In any chiral gauge theory,

this is controlled by the chiral symmetry. Quantum corrections to this quantity vanish

so long as this symmetry is exact. So, if the scale of symmetry breaking is small for

some reason, the fermion masses will remain small, thus circumventing the naturalness

problem. Now a theory, endowed with a symmetry linking its bosonic and fermionic

sectors, might succeed in solving the naturalness problem mentioned above. In such

a case, that symmetry might demand the equality of masses between the bosonic and

fermionic particles linked by it. The latter cannot develop large masses, on account of

protection by the chiral symmetry, and therefore nor can the former. The exact mech-

anism by which this comes about is a somewhat drastic cancellation in the apparently

divergent terms (between contributions from bosonic loops and fermionic ones) in the

perturbative expansion of the physical mass parameter.

In a theory containing at least one mass scale and a chiral fermion, such a symmetry

is essentially unique
[7;8]

and is called N=1 supersymmetry. Supersymmetry thus is a

symmetry which has both fermions and bosons in the same irreducible representation.

Now, whereas the commutators of bosonic creation operators form a local algebra, only

anticommutators of fermionic operators are local. Hence, supersymmetry is realized

in �eld theory by a graded Lie algebra containing some anticommuting operators on
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the Hilbert space in addition to the usual commuting ones. There are extra generators

linking the bosonic and fermionic particle creation operators, which, because of the

spin-statistics theorem, must di�er in spin by a half integral amount. Since angular

momentum operators form a part of the Poincar�e algebra, supersymmetry generators

cannot commute with the Poincar�e algebra. Furthermore, there is a theorem due to

Haag,  Lopuzanski and Sohnius
[7]

which prohibits supersymmetry from being in a semi-

direct sum along with the Poincar�e algebra. In fact, one of the anticommutators of two

supersymmetry generators can be shown to yield a four-momentum translation generator

which again belongs to the Poincar�e algebra. In other words, the supersymmetry algebra

forms a superalgebra of the Poincar�e algebra in an essential way. This means that

supersymmetry is a spacetime symmetry instead of being an internal symmetry.

The big hurdle in these types of theories is the requirement of breaking supersym-

metry. Experiments clearly show that at low energies supersymmetry is not exact in

the particle spectrum. In fact, examining the properties of the known particles, one

�nds that no two of them can be superpartners of each other. Thus supersymmetry

must be broken, i.e. it must not be present in the spectrum of the theory. Of course,

one could add arbitrary explicitly supersymmetry-breaking terms to the Lagrangian,

but that would be quite ad hoc. A more attractive proposition is a supersymmetric

Lagrangian but a non-supersymmetric spectrum, i.e. a \spontaneous breakdown" of

supersymmetry. This, however, is problematic because of the very cancellations that

give supersymmetry its desirable properties. In fact, there exist non-renormalization

theorems which state that many of the classical attributes of a supersymmetric theory

are not a�ected by quantum corrections. In particular, there exist arguments
[9]

to show

that in a non-gauged version of supersymmetry, quantum corrections alone are unable to

produce any asymmetry in the spectrum. On the other hand, a spontaneously broken
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supersymmetric theory, at the classical level itself leads to phenomenological di�cul-

ties
[10]

. So, on phenomenological as well as theoretical grounds we are forced to deal

with the gauged version of supersymmetry.

To put across the point more clearly, let us make a didactic digression. Any (super-)

symmetry is realized by a (graded-) Lie algebra of operators acting on the Hilbert space

of states of the theory. In fact, in this space there is a unique vacuum state cyclic with

respect to a set of operator valued distributions loosely called the `creation operators'.

The Lie algebra elements (called the `generators' of the symmetry) mentioned above are

realized on the space of the Hilbert space operators by commutation or anticommutation

relations. Take, for example, the translation generators P� belonging to the Poincar�e

algebra. These are realized on all operators as

i[P�; a
y(x)] = @�a

y(x);

where ay is any creation operator. In contrast, supersymmetry is realized through its

spinorial generator Q� ( � being a spinor index) by

[Q�; a
y(x)] = by�(x);

where ay and by are creation operators for some bosonic and fermionic states respectively

in the same supermultiplet.

On gauging the same symmetry, we introduce an algebra of the operators multiplied

by arbitrary functions of spacetime. For spacetime symmetries, an essentially di�erent

algebra is produced because the multiplicative functions of spacetime are not left invari-

ant by the operators belonging to the algebra. Thus, typically, if the Poincar�e group is

gauged, the new algebra of the `momentum generators' should be written as

[f (x)P�; g(x)P� ] = (f(x)@�g(x))P� � (g(x)@�f(x))P�;

This contrasts with the globally symmetric case which had a trivial commutator for
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the translation generators. In fact, physically, the gauged theory de�nes a completely

di�erent situation in which there exists a symmetry under independent changes (e.g.

translation) at each spacetime point. This leads to a much larger invariance and in the

particular case of the Poincar�e symmetry exhibited above, generates general coordinate

invariance | leading thereby to a theory of gravity.

As mentioned above, supersymmetry sits nontrivially in the Poincar�e algebra. For

example, let us consider the anticommutator of two supersymmetry transformations.

Since the supersymmetry generators form a spin-half representation of the rotation

group, the anticommutator of two of these will produce a spin-one generator. However,

the Coleman-Mandula theorem states that the only such object which can be a sym-

metry of a non-trivial theory is the translation generator. Thus we �nd that repeated

supersymmetry transformations produce a translation, i.e.

fQ�; Q�g = 
���P�:

Hence, the enlargement of global supersymmetry to a gauged supersymmetry has to be

accompanied by the gauging of the Poincar�e group. This can be readily seen. Multiply

the supersymmetry generators on the left hand side of the equality by spinorial space-

time dependent functions ���(x) and ��(x) and contract �, �. This leads on the right

hand side to ���(x)
����(x), i.e. a spacetime function times the translation generator,

which is an element of the gauged Poincar�e algebra. Hence, in trying to construct a phe-

nomenologically acceptable theory of supersymmetry, we are invariably led to a theory

of supergravity.

The quantum theory of gravity is beset with its own problems which are in no

way linked directly to the presence or absence of supersymmetry. These problems are

essentially of two kinds: interpretative questions dealing with the global structure of
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any gravity theory
[11]

(stemming from the fact that gravity allows the asymptotic re-

gions to be non-
at) and the di�culty
[12]

in dealing with the theory perturbatively at

small distances
?

(i.e. nonrenormalizablity). Though the �rst still remains a formidable

conceptual problem and will perhaps need a non-perturbative understanding, super-

symmetry does improve upon the second di�culty. In fact, due to the remarkable

cancellations already mentioned above, the short-distance divergences in supergravity

are much weaker. Nonetheless, these divergences are far too severe to be renormalized

into a �nite number of renormalization constants. This situation is markedly di�erent

from the case of most other known interacting �eld theories in four dimensions. In

these theories, at least in certain domains, all physical quantities have an asymptotic

expansion in a perturbation series upto a su�ciently high order. On the other hand,

supergravity today makes sense only at the lowest level of perturbation theory.

In contrast to the above, consistency requirements on the quantum theory (like the

conservation of probability) are statements about the full theory and need not hold

order by order in general. These requirements thus need to be checked out by explicit

calculations. Consequently, the validity of the perturbation expansion to any given order

(or indeed to all orders) can get restricted. Thus, in the supergravity models described

above, one has to check whether the theory satis�es these requirements if truncated

right at the tree level. One of these requirements is unitarity. The truncated theory

should remain unitary for the entire range of energies at which this theory is expected

to be valid as an e�ective theory. In other words, tree diagrams computed in this theory

should satisfy tests of unitarity until the center-of-mass energy increases beyond this

range. This requirement must hold even though the theory is non-renormalizable and

higher order loop calculations cannot be done consistently in this theory.

? To date, no satisfactory non-perturbative quantum approach is known to this problem
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Normally, perturbation theory is expected to be valid in the domain where the

e�ective coupling constant is less than unity. However in gravity the coupling constant

turns out to be � =
p

8�GNewton(= 4:11� 10�19 GeV�1) which is dimensional. Hence,

the e�ective expansion parameter depends on the energy scale of interest. In fact, one

would expect the failure of perturbation theory to take place at energies near the inverse

of this coupling constant, i.e. near the Planck scale (MPl = ��1). This can also be seen

as the scale where the quantum length scale controlled by the Compton wavelength of a

massive particle becomes comparable to the classical length scale set by its Schwarzschild

radius. The validity of perturbation theory upto the Plack scale, however, depends on

the absence of any large (dimensionless) parameters in the theory. If such a large

parameter is present, the non-perturbative nature can manifest itself earlier than the

above scale. In particular, the matrix elements can contain the product of the e�ective

coupling constant with this dimensionless parameter; that quantity can become large

much before the scale at which the coupling constant reaches unity. In this thesis we

intend to show that such large dimensionless numbers do make their appearance in a

class of supergravity theories: no-scale theories which contain a relatively light gravitino.

Hence, it follows that these theories fail to exist perturbatively at relatively low energies

due to internal inconsistencies (namely, failure of tree unitarity).

Our calculation proceeds by considering a typical amplitude present in any realistic

supergravity theory: the scattering of two gauge bosons into gravitinos and possibly

gauginos. In these reactions, when the emitted gravitino is of helicity one-half, one

�nds that the matrix elements are very large. This result can be understood easily

by noting that the massless limit of any theory containing a massive particle of spin

greater than half is singular. The main reason behind this curious fact this is that the

number of physical states for a particle of mass zero in these cases is always two, whereas
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that of the massive particle is larger. Hence, when taking the limit of vanishing mass,

a readjustment of the degrees of freedom takes place among the various �elds in the

theory. Thus for example, a massive spin 3=2 �eld the gravitino eG has two more degrees

of freedom than the massless one. These are the longitudinal degrees of freedom. In

the massless limit they appear as a distinct spin half particle. However, for very small

gravitino masses, these longitudinal polarization states gather large kinematic factors

in their polarization part. In fact, if u� represents a longitudinal polarization state for

the gravitino,
[3]

u�
m3=2!0

=)
r

2

3

p�
m3=2

u

where, m3=2 is the gravitino mass and p� is its momentum. Here u is an ordinary spin 1/2

spinor. It is apparent that in the absence of precise relationships between the interactions

of these �elds, the theory then becomes singular in the massless limit. Indeed, the

requirement of positivity of the norm of the physical states in the Hilbert space along

with the inde�nite nature of the Lorentz metric together imply that particles with spin

greater than half have to be constrained by auxiliary conditions in the Lagrangian. In the

case of Higgs type theories, gauge invariance provides these additional constraints. At

the same time gauge invariance demands a relationship between the di�erent symmetry

breaking masses and the interaction parameters in the theory.

In particular, a gauge symmetry demands that the gauge particle in the theory

(i.e. the particle corresponding to the gauge �eld, which transforms inhomogeneously

under the gauge transformation) must be massless if the vacuum state is left invariant

by the gauge (super-) symmetry. The same condition also implies that the symmetry

partners of any particle must be degenerate in mass with it. A similar argument is

valid for supersymmetry. On the other hand, if the vacuum state is not left invariant

by the symmetry generators, the gauge (super-) symmetry is realized in the (super-)
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Higgs phase. In such a case, the gauge particle gets a mass proportional to the (super-)

gauge coupling and to the (super-) symmetry breaking vacuum expectation value of

some operator O in the theory. The additional degrees of freedom that are necessary for

the gauge particle (nescessarily of spin greater than or equal to unity) are provided by

the `absorption' of the goldstone (goldstino), i.e. states created by the (super-) partner

of the operator O. In other words, the (super-) symmetry partners of this operator

disappear from the spectrum and the corresponding degrees of freedom reappear as the

additional helicity states of the gauge particle.

Another consequence of the gauge (super-) symmetry being realized in the Higgs

phase is that the mass-splits in any (super-) multiplet (S) are proportional to the vacuum

expectation values of the operator O and to the strength of the coupling between the

(super-) multiplet S and that which contains O. Hence, any large ratio in these masses

can come only from large interaction parameters in the theory. This becomes most clear

in the so-called `R-gauge.' Though not very useful for looking at the spectrum of the

theory, it is very convenient for understanding the (super-) Higgs phenomenon. In this

gauge the interactions involving the gravitinos in the helicity state one-half get linked

to matrix elements of the `goldstino' �eld whose interaction strength is naturally given

by the ratio of some supersymmetry breaking mass scale in the process to the mass of

the gravitino. In our example, we therefore �nd that the ratio that becomes relevant is

the ratio of the gaugino mass to the gravitino mass, or alternatively, the dimensionless

coupling of the goldstino super�eld to the gauge supermultiplet.

The above is exactly analogous to calculations in the electroweak theory that limit

the mass of the heaviest fermion (e.g. top quark) on unitarity grounds.
[13]

There again

essentially the same argument applies. In trying to bound the top quark mass in terms

of a given W�mass, one actually bounds an interaction strength in the theory. There

9



are however a few interesting di�erences between that case and the present one. First,

the electro-weak theory is a renormalizable theory and hence the failure of tree-level

unitarity does not imply the breakdown of that theory, though the interactions becoming

strong would have interesting phenomenological consequences. Second, one can calculate

the higher loop corrections, but the Higgs sector couplings in that theory not being

asymptotically free, they only make the bound stronger. In fact, in lattice calculations,

where for very di�erent reasons (triviality of ��4 theories) the theory must be treated

as an e�ective theory, the bounds reappear as consistency bounds in the theory. Finally,

since the spin 3/2 gravitino has a longitudinal mode which couples through its inverse

mass, and since some of the gaugino masses are experimentally constrained
[14]

to be

above around 80 GeV, the amplitude for emitting a gravitino much lighter than this

in processes mediated by gauge bosons is very large. We carry out the partial wave

unitarity of such processes. Consequently, the gravitino mass is constrained, the nature

of the constraint depending on one's theoretical prejudices about the scale at which

supergravity should become strong.

On the phenomenological front, the same inconsistency shows up as a blowing up of

the cross-sections. Hence, far below the point where the theory becomes inconsistent by

violating tree unitarity and needs to be modi�ed, these cross-sections become su�ciently

large to be experimentally observable. This fact can be used to put limits on the

gravitino mass in the theory. In particular, at colliders like the Tevatron, the cross-

section for gravitino production by two gluons fusing into a gluino and a gravitino is

already large enough to improve the existing lower bound on the gravitino mass.

This thesis will be divided into six chapters. In the �rst chapter, we shall describe the

supersymmetry algebra in general and then specialize to the case of N=1 supersymmetry

algebra. The next chapter will describe the construction of the terms in the Lagrangian

10



relevant to our later discussion. The third chapter contains the analysis of a particular

simple process involving one external gravitino. The fourth chapter tries to understand

the results in terms of a qualitative analysis. With this understanding, we treat the

case of multigravitino processes (with an example of a double gravitino process) in the

�fth chapter. The sixth chapter focuses on the experimental limits and the general

phenomenology of superlight gravitinos. Finally, we state our conclusions.
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1. Supersymmetry Algebra and Transformations

Much of the physical essence of a theory can be determined from the symmetry

properties of the theory alone. Attempts have been made to classify all possible sym-

metries of various theories of interest. Speci�cally, symmetries of local quantum �eld

theories have been studied in great detail. Any of these theories is de�ned on a Hilbert

space with a unique vacuum state and contains a complete set of operator valued distri-

butions (`creation and destruction operators') whose commutators or anticommutators

are local, i.e. proportional to the Dirac delta function. Coleman and Mandula
[15]

de-

termined the most general Lie-algebra which could be realized on this operator algebra

as commutators. They found that spacetime symmetries along with the requirements

of analyticity often constrain the interaction matrix to be identically zero. Their pio-

neering result states that the largest Lie-symmetry of a local quantum �eld theory with

a non-trivial S-matrix is a direct product of the conformal group in four dimensional

Minkowskian spacetime with an `internal symmetry group', i.e. one which connects

operators at the same space-time point. This space-time symmetry group contains a

scale transformation and four special conformal transformations apart from the usual

translations and Lorentz boosts which form the Poincar�e subalgebra. Since, in four di-

mensions, no scale-free theory is known (due, amongst other problems, to severe infrared

divergences) scale-transformation cannot be a symmetry of such physical theories. Since

the largest sub-algebra of the conformal algebra not containing scale transformations is

the Poincar�e algebra, the Coleman-Mandula theorem e�ectively states that the largest

`spacetime' Lie-group in these theories is the Poincar�e subgroup of the conformal group.

Haag,  Lopuzanski and Sohnius (HLS) continued with this line of work and relaxed

the requirement of the Lie-algebra nature of the symmetry. They considered the gener-

alization to graded Lie algebras, i.e. those which can be expressed in terms of a �nite

12



Table 1

Description grading symbol number

i The Momentum generators even P� 4

ii The Angular Momentum generators even M�� 6

iii The Supersymmetry generators odd Q�
i 4N

iv The `Outer Automorphisms' even Rn N(2N� 1)

v The Central Charges even ZR;I
ij N(N� 1)

The largest space-time symmetry consistent with the non-triviality of the S-matrix.

number of generators which close under a graded commutation. Speci�cally, they con-

sidered two classes of generators: the `even' and `odd' generators. The generalized

Lie-product is de�ned to be the commutator of an even generator and any other gener-

ator or the anticommutator of two odd generators. This graded Lie agebra is realized

on the space of creation and destruction operators (which is, of course, naturally graded

into the even `bosonic' operators and the odd `fermionic' operators) by commutators or

anticommutators as needed by the grading requirements. HLS found
[7]

that in this case

the symmetry allowed by the requirement of nontrivial S-matrix �a la Coleman-Mandula

is much larger. Discarding, as before, the possibility of exact scale invariance in the

theory, they found the largest allowed space-time symmetry algebra. It is characterized

by a positive integer N and consist of the generators given in Table 1. We note that

apart from the Poincar�e generators, and the fermionic supersymmetry generators, this

algebra contains additional bosonic generators. These elements of the algebra fall into

two categories. The �rst of these classes consists of the `outer automorphisms.' These

generators express a symmetry between the various supersymmetry generators them-

selves. Sitting as a semi-direct sum with the supersymmetry algebra, these need not

13



Table 2

fQ�
i ; Q

�
j g = 2i(
�P�C

�1)���ij + C�1(ZR
ij + i
5ZI

ij

[P�; P� ] = 0

[Q�
i ;M�� ] = �i� �

�� �Q�

[P�;M��] = �i(���P� � ���P�)

[M�� ;M��] = ���M�� + ���M�� � ���M�� � ���M��;

[ZR;I
ij ; P�] = [ZR;I

ij ;M�� ] = [ZR;I
ij ; Q�

k ] = 0

[Rij ; Q
�
k ] = i(Uij)klQ

�
l

The supersymmetry algebra in four dimensions. C refers to the charge conju-

gation matrix. Uij are hermitian matrices forming the generators of an automor-

phism group (either SU(N) or a subgroup of it)

be realised as symmetries of any supersymmetric theory. Hence, in the table, only the

maximum possible numbers
[16]

of these generators are tabulated. The second category of

extra bosonic generators appear only in extended supersymmetries. In this case, it may

not be possible to realize a closed algebra of the above generators in a physical theory.

However, a central extension of the algebra (i.e. one containing additional generators

called the `central charges') often solves the problem.
[16]

The exact extension needed

varies according to the physical requirements. In the the table, the maximal central

extension to the algebra is mentioned. It is to be noted, however, that super-Jacobi

identities restrict the number of outer automorphisms to be less than its maximal value

in theories realized as central extensions.

The (anti-)commutation relations of these generators are shown in Table 2, where,

14



for any two operators A and B, [A;B] represents their commutator, fA;Bg, their an-

ticommutator and [A;Bg, their graded commutator (i.e. fA;Bg if both are odd and

[A;B] otherwise). All the even generators are represented by Hermitian operators in

the Hilbert space of states of the quantum theory, while the Q's are represented by

Majorana spinor operators.
?

Whereas the action of Poincar�e generators on the single particle states is a pure

spacetime operation (like translating or rotating their wavefunctions), supersymmetry

generators change the nature of these particles by altering their spins by half. In fact,

each irreducible representation of the supersymmetry algebra contains both fermionic

and bosonic states. Thus, for example, the ordinary gauge bosons, matter fermions,

Higgs scalars and the graviton, sit in `supermultiplets'. In the simplest case of N = 1

supersymmetry these are:�
fermion

sfermion

�
;

�
higgsino

higgs

�
;

�
gauge boson

gaugino

�
;

�
graviton

gravitino

�
:

Here each of the �rst two supermultiplets consists of spin half and spin zero partners.

The third one comprises spin one and spin half partners while the gravity supermultiplet

has a spin two and a spin three-half member.

Theoretically, N | the number of distinct supersymmetries in the theory | is a

free parameter which must be a power of 2, i.e. of the form 2n for all positive integers

n. However, from the supersymmetry algebra, it is easy to see that sequential appli-

cations of the supersymmetry generators on a state with spin zero will build up states

with higher spins.
y

However, whenever any generator is applied twice, we can use the

? We use the metric convention � = diag(1;�1;�1;�1), and the 
-matrices are de�ned as in

Bjorken and Drell.
[17]

The matrix � is then de�ned by ��� = [
�; 
� ]=4. The Dirac conjugate of a
spinor  is de�ned to be � =  y
0 and its Majorana conjugate is de�ned as  c = C�1 � T, where
the charge conjugation matrix C is numerically equal to i
0
2. A spinor  is said to be Majorana
if  = �i c, and then its components are all real ( or hermitian).

y Needless to say, the square of the supersymmetry generator being equal to the Poincar�e generator,
a non-vacuum state cannot be inert under supersymmetry
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anticommutation relations to express the reult in terms of a smaller number of super-

symmetry generators and some Poincar�e generators. Since the latter do not change the

spins of the states (the magnitude of the angular momentum being a Casimir for the

Poincar�e subalgebra), there is a limit to the maximum spin which one can achieve by

this process. The actual number of spin states required for a given number of super-

symmetry generators is therefore easy to calculate. It turns out that supersymmetry

with n > 2 needs particle states with spins greater than 1. Such particles do not seem

to have consistent interactions (except in supergravity theories). Rigid supersymmet-

ric theories in four dimensions are therefore restricted to have either N = 1; 2; or 4

supersymmetries. Even with the inclusion of supergravity, only N = 8 is allowed in

addition.

Empirically, we know that the gauge group relevant to low energies is chiral. This,

in essence, means that the interactions of gauge bosons with fermions do not conserve

parity in general, i.e. they behave di�erently towards the left and right chiral fermions.

On the other hand, extended supersymmetries always contain the left and the right

chiral spin half fermions in the same extended supermultiplet (provided we do not allow

particles other than gravitons and gravitinos to have a spin more than one). Hence,

if supersymmetry stays unbroken, the interactions cannot be chiral. This leads to a

vectorlike gauge theory in disgreement with the observed chiral nature of the electroweak

theory. Hence, hereafter, we consider only the case of N=1 supersymmetry
[8]

.

Phenomenologically, however, even global N = 1 supersymmetry poses problems.

The absence of mass-degenerate bosons and fermions implies that supersymmetry is not

expressed in the particle spectrum. On the other hand, a study of global supersymme-

try breaking
[10]

establishes mass relations that imply that a supersymmetric theory not
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involving an extra U(1) factor in the gauge group
z

and spontaneously broken at the tree

level always possesses at least one superparticle lighter than the corresponding particle.

Experimentally, such a relation is not tenable as none of the superpartners have yet

been seen. This forces any spontaneous supersymmetry breaking to be a loop e�ect,

arising from quantum corrections to the classically supersymmetric con�guration.

Further, due to the presence of odd generators in the supersymmetry algebra, su-

persymmetric theories contain an equal number of fermionic and bosonic states in any

except possibly the lowest zero energy state.
x

In addition, the same symmetry im-

poses severe constraints on its interactions. Because of these constraints, perturbative

corrections to many processes are highly suppressed, the contributions from bosons be-

ing almost cancelled (due to the similarity of fermionic and bosonic interactions and

yet the antisymmetry of the fermions) by those arising from fermions. As a result,

a number of important non-renormalization theorems
[10]

follow. These theorems show

that a number of interaction terms are not renormalized at all by the perturbative

loop corrections to the lowest order result. Among them an important class consists of

the non-supersymmetric vacuum expectation values in the theory. Thus, perturbative

quantum corrections in a rigid supersymmetric theory can never break a `classically'

unbroken global supersymmetry.
[9]

These arguments, however, do not hold in locally su-

persymmetric or supergravity theories. There one could have a spontaneous symmetry

breaking in a hidden sector of the theory inert under all observable gauge interactions

(so that ordinary phenomenology is not adversely a�ected) either at the tree level or

induced by quantum loops. In the �! 0 limit of the theory (when the `gauge paricles'

of supergravity, i.e. the gravitino and the graviton decouple and one is left with a glob-

z Such factors in the gauge group usually make the theory anomalous and hence are not considered.
x This is obvious because the supersymmetry algebra implies fQ;Qyg / H , where H is the Hamil-
tonian and Qy is the hermitian conjugate of Q. Hence, no nonzero eigenvector of H can be
annihilated by Q.
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ally supersymmetric theory), the e�ect of the breaking will linger in terms of `soft' (i.e.

scale dimensionality < 4) explicit supersymmetry breaking terms in the Lagrangian.

We can now construct the most useful representations of this algebra. For us that

will be the representation on the gauge multiplet which consists of two particles: a mass-

less vector particle corresponding to the �eld A� and a Majorana spin half fermion given

by the �eld �. The in�nitesimal supersymmetry transformations for the noninteracting

theory are given by
[16]

�A� = �i��
��;

�� = �F������;
(1:1)

where F�� is the structure tensor corresponding to the gauge �eld A�. Further, �A on

any �eld A is de�ned to be i[��Q;A] where � is the `anticommuting spinorial parameter'

for supersymmetry transformations. The use of anticommuting variables is mainly for

the purpose of notational convenience. It is de�ned as a Majorana four component

spinor whose entries commute with all complex numbers and bosonic operators and

anticommute with all anticommuting parameters and fermionic operators. We will often

consider this parameter to be a `function' of spacetime coordinate and de�ne a formal

spacetime derivative of this object. Essentially, we enlarge our space of scalars from the

complex numbers to the space of Grassmann numbers,
[18]

with a complex conjugation

operation de�ned. The calculus of these objects is also de�ned in the usual way.
[18]

Furthermore, it is to be noted that the above algebra closes only on shell, i.e. only when

the �elds satisfy their (massless, non-interacting) equations of motion and, then too,

only upto gauge transformations.

The above form is, however, not very useful in trying to construct Lagrangians

in general. This is mainly because these transformations form an algebra when the

equations of motion are satis�ed. However, the latter are known only a posteriori from
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the Lagrangian. Hence, we need the so-called o�-shell version of the algebra, which is

valid without the equations of motion. This requires the introduction of auxiliary �elds

which get eliminated by algebraic equations of motion in the �nal Lagrangian. The

origin of these auxiliary �elds is easy to identify. Essentially, supersymmetry connects

bosonic and fermionic states and hence the number of bosonic states in a supersymmetric

theory is always equal to the number of fermionic states (except possibly for a vacuum

state). This rule is already explicit for all the on-shell multiplets illustrated above.

However, particles of di�erent spins have di�erent number of components o� shell. Thus,

for example, a spin-half fermion has a �rst order equation of motion and hence is a

constrained system. Therefore o�-shell it has four complex degrees of freedom whereas

on-shell it has only four real degrees of freedom. On the other hand, a scalar �eld has the

same number of degrees of freedom o�-shell as on-shell. So the only way that fermionic

and bosonic degrees of freedom can match is when o�-shell there are additional bosonic

�elds which disppear on-shell, i.e. if there are auxiliary �elds in the Lagrangian.

The determination of the exact set of �elds required to close the algebra o�-shell is

quite complicated. Fortunately, there is often enough gauge freedom in the problem to

make useful gauge choices. A particular class of gauges called the Wess-Zumino gauges

is found especially useful. In these gauges, the Lagrangian of the pure gauge sector

of the theory turns out to be
[19]

a polynomial in the �elds and a number of auxilliary

�elds disappear from the Lagrangian. For example, in this gauge, the gauge multiplet

mentioned above needs only one scalar (or pseudo-scalar) �eld D to close the algebra

o�-shell (upto a gauge transformation). This gauge is not supersymmetric; the commu-

tator of two supersymmetry variations gives rise to the required space time translation

only after a gauge transformation. That, however, is known a priori and hence does not

prevent the construction of the Lagrangian. The Lagrangian in any case is always writ-
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ten in a gauge-�xed form. We �nd that in such a case only the fermion transformation

laws pick up extra contributions which on elimination of auxiliary variables become at

least quadratic in the �elds.

The transformation laws for the gravitational multiplet can also be discussed in

a similar spirit. This multiplet, being the `gauge multiplet' for supergravity, contains

inhomogeneous (a�ne) transformations. The multiplet consists of two on-shell �elds:

a massless spin 2 graviton g�� and the spin 3=2 gravitino eG�. It is easier to write the

transformations in terms of the vierbein �elds (ea�) which are the square roots of the

graviton �eld: g�� = ea�ea� , a being a local tangent frame index while � stands for a

global one. The on shell in�nitesimal transformation laws are:

�ea� = i���
a eG�;

� eG� =
2

�
(@� + !�ab�

ab)�;

where �ab = [
a; 
b]=4 and the `spin connection' ! is given by:

!�ab = e�a@[�e�]b � e�b@[�e�]a � e�ae
�
b e

c
�@[�e�]c

+
i�2

4
(2 eG�
[a eGb] + eGa
� eGb);

with the square (round) brackets in the subscripts or superscripts denoting (anti-) sym-

metrization in the indices. The minimal o�-shell formulation of this multiplet requires

the introduction of a complex scalar u and a vector A� auxiliary �eld.
[20]

We shall also brie
y consider later the chiral supermultiplet in an example of the

super-Higgs mechanism. The transformation laws for this multiplet will be given in the

relevant place. This multiplet consists of two on-shell �elds, a complex scalar �eld z

and a spin-half Majorana fermion �eld �. The transformation laws of this multiplet

are chiral (or complex) in the sense that the transformation laws of z involves only one

(conventionally left) chiral component of �. Likewise, the supersymmetry transforma-

20



tion law for the left chiral part of � is linear in z and does not involve z�. Its on-shell

transformation laws are given as

�z =
p

2���L

��L = �
p

2i@/ �Rz

We shall often look upon the complex �eld z as being composed of two real �elds: a

scalar S and a pseudoscalar P . O�-shell this multiplet contains one complex scalar

auxiliary �eld F .

To construct a Dirac fermion we start with two of the above chiral multiplets and

combine them in a complex combination. The �eld content is then doubled. Hence,

the multiplet then contains a Dirac fermion, two complex scalar �elds and two complex

scalar auxiliary �elds. The known Dirac fermions may be realized in supersymmetry by

these multiplets.
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2. Lagrangian of Local Supersymmetry

The Lagrangian for any supersymmetric theory can be constructed in a systematic

fashion in more ways than one. Probably, the simplest method relies on the principle

of Noether coupling. Due to the celebrated Noether's theorem,
[21]

we know that every

global symmetry of the Lagrangian density provides us with a conserved current. In

fact, if �g�g�i represents the variation of a �eld �i under a given symmetry element g

by an in�nitesimal amount �g, then the total variation of the lagrangian density under

this symmetry:

�g�gL = �g

�
�L
��i

�g�i +
�L

�@��i
@��g�i

�
; (2:1)

has to be a total divergence. Let us denote this total divergence by �g@�
�. In that

case, the current de�ned by

J� =
�L
�@��

�g�� 
� (2:2)

is conserved as a result of the equations of motion.

When this particular symmetry is made local, so that the parameter �g becomes a

spacetime function, the original Lagrangian is no longer invariant. In fact, looking at

(2.1) one �nds that the extra contribution to the variation is

�L
�@��i

�g�i@��g: (2:3)

In addition, �g@�
� is no longer a total divergence, and it is less than the true divergence

@�(�g

�) by an amount given by


�@��g: (2:4)

Hence, if the variation of the Lagrangian was reduced by the amount (2:3)� (2:4), then

the new Lagrangian would be symmetric. But, this di�erence is nothing but J�@��g as
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can be seen from (2.2). This reduction is achieved by introducing a gauge �eld A� and

a gauge coupling constant g (dimensionless in 4D), adding a term to the Lagrangian of

the form gA�J
� and prescribing the variation of the gauge �eld to be

�gA� =
1

g
@��g: (2:5)

It is easy to see that this makes the new Lagrangian
?

invariant to the lowest order in g.

One can now proceed from this point and calculate the new variation of the Lagrangian,

the new Noether current and change the Lagrangian by higher order terms in the gauge

coupling constant. If this process terminates, we get a Lagrangian which is symmetric

under the local symmetry.

In cases where the symmetry is known, a priori, only on shell, that is, if the closure

of the symmetry algebra involves the use of equations of motion, the same process can

still be applied. However, in these cases, the variation of the Lagrangian at any nonzero
y

order of the coupling constant can produce terms proportional to the equation of motion

in addition to a total divergence. Nevertheless, it can be shown
[21]

that in such cases,

an adjustment of the symmetry variations �g�i by terms of higher order in the coupling

constant can solve the problem.

In the case of supersymmetric theories, we have an additional problem stemming

from the fact that these theories invariably involve fermions. Furthermore, in carrying

out the Noether technique, we are always dealing with the Lagrangian at a classical

level. It is easy to see that if the fermion �eld operators are treated as ordinary func-

? It is to be noticed that this is equivalent to the minimal coupling scheme of replacing @� by
(@� � igA�) everywhere in the Lagrangian in the simple cases where 
� = 0

y As the onshell algebra is required to be a symmetry of the Lagrangian, the variation of the global
Lagrangian still produces a total divergence. At higher orders, as subsequent symmetry algebra
operations produce terms proportional to the equation of motion in addition to another algebra
operation, this is not true anymore.
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tions of spacetime in the classical limit,
z

we run into contradictions.
x

To avoid this

embarrassment, we extend the space of our classical variables from ordinary complex

numbers to elements of a Grassman algebra, the properties of which have already been

described in the preceding chapter. With the supersymmetry parameter now de�ned to

be a Grassman object as well, the entire procedure outlined above goes through. After a

lot of tedious algebra, one can derive
[21]

the entire Lagrangian and transformation laws

for local supersymmetry.

The other method for deriving the Lagrangian can be appleied to any gauge theory.

In particular, supergravity
[22]

starts o� by de�ning a �ber bundle (involving Grassmann

objects, the resulting structure being called a `superspace') over spacetime with the

gauge group
{

as its structure group. The (super-)multiplets of the matter �elds are then

viewed as sections of this bundle, whereas the gauge �eld is seen to de�ne a connection

on this bundle. In this language, writing down the invariant Lagrangian involves writing

down an appropriate structure out of the �elds and their covariant derivatives de�ned

with the connection speci�ed above. The �nal Lagrangian can then be expanded and

written in terms of the component �elds.

The major di�culty with this approach is that because of its very structure, the La-

grangian is de�ned later than the gauge group. As a result, this requires the symmetry

algebra to be closed without reference to the Lagrangian. In other words, the symme-

try must be known o�-shell. The Noether technique however works and produces a

unique result as long as an o�-shell version of the symmetry exists, whether known or

z Truly speaking, a fermion �eld operator does not have a classical limit. This is permissible since
only fermion bilinears are observables and hence need to have classical limits.

x For example, the fermion kinetic energy written in a form that is real, turns out to be a total
divergence.

{ In case of supersymmetry, we de�ne the group from the algebra in the `usual way' by taking the
exponential maps with Grassman parameters.
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unknown. Fortunately, for N=1 supergravity theory, the o�-shell formulation exists, and

the Lagrangian is fully derived.
[23]

. We shall often use the Lagrangian as quoted there.

The Lagrangian thus constructed is explicitly supersymmetric. In actual practice

however, we want supersymmetry to be spontaneously broken. This can happen when

some of the �elds (or their condensates) which have non-trivial supersymmetry trans-

formations have a non-zero vacuum expectation value. In such a case, though the

Lagrangian is supersymmetric, some physical �elds develop inhomogeneous terms in

their supersymmetry transformation laws. Since Poincar�e invariance is observed to be

an exact symmetry, the object that gets the vacuum expectation value must be a scalar

under Poincar�e transformations. However, if this quantity is the lowest component

(as determined by its mass dimension) of a super-multiplet, then the supersymmetry

transformations (which involve the lowest components only through derivatives) leave

it invariant. Hence this vacuum expectation value fails to break supersymmetry. Thus

for example, the gauge multiplet transformation laws (o�-shell, after gauge �xing to

the so-called Wess-Zumino gauge
[19]

) can be written in terms of the gauge �eld Aa
�, the

Majorana gaugino �eld � and the auxiliary �eld Da as

�gA
a
� = � i

2
��g
��

a

�g� = �1

2
(���F a

�� + Da)�g

�gD
a =

1

2
��g@/�

(2:6)

In this if the auxiliary �eld Da gets a vacuum expectation value, then in the vacuum

state, �g� 6= 0. Hence under a supersymmetry transformation the vacuum does not

remain invariant. Thus, to break supersymmetry, we need either the higher components

of a supermultiplet (which are normally auxiliary �elds and hence composites in the on-

shell representation) or some other composites to develop vacuum expectation values.

The exact quantity which develops a vacuum expectation value is unimportant as far
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as our results are concerned. However, for illustrative purposes, and often to motivate

our results, we shall consider a chiral multiplet whose auxiliary component acquires

a vacuum expectation value, breaking supersymmetry. Further, since we require the

supersymmetry breaking to be unaccompanied by any gauge-symmetry breaking, we

demand this chiral multiplet to be invariant under the observed gauge interactions, and

for simplicity, under all gauge interactions.

A chiral supermultiplet consists of a complex chiral scalar �eld z and a chiral fermion

(conventionally taken to be left handed) ��L as its on shell degrees of freedom. The

algebra is trivially realized o�-shell also with the addition of an extra auxiliary complex

scalar �eld F . In terms of these, the in�nitesimal transformations are

�gz =
p

2 ��g�
�
L

�g�
�
L = �

p
2
�
i@/z + �ReF + i
5ImF

���
�gL

�gF = i ��g@/
����

(2:7)

When the auxiliary �eld F acquires a vacuum expectation value, as expected, �

acquires a constant term in its supersymmetry transformation.

�g�
�
L / hF i �g + �eld dependent parts,

where hF i refers to the vacuum expectation value of F. In addition, the Lagrangian, in

general, develops non-diagonal bilinear terms of the form
[24]

L =
i

2
��@/� +

i

hF i ��
� eG� + � � � :

These mix the gravitino and other �elds, in particular, the �eld � which is the chiral

fermionic component of this multiplet. The �eld combination that mixes with the

gravitino is called the `goldstino.' A rediagonalization of the bilinear terms in the

Lagrangian is then needed to carry out the usual perturbative analysis. Since the
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supervariation of the goldstino contains a chiral piece, this can always be achieved by a

`�eld dependent' supersymmetry transformation that transforms the spinor � identically

to zero. This can also be looked upon as a rede�nition of �eld variables which eliminates

the goldstino �eld �. Of course, as the Lagrangian was supersymmetric to start with,

the new Lagrangian after this transformation, turns out to be precisely the same as

the old one except that all goldstino �eld gets replaced by zero. In other words, the

goldstino �eld gets transformed away into the gravitino. The physical superpartner of

the goldstino, the complex scalar �eld z, however, stays in the spectrum. We shall

usually represent it in terms of its real components, S = Rez=
p

2 and P = Imz=
p

2

which turn out to be a scalar and pseudoscalar respectively. These are analogous to

the Higgs particle in ordinary gauge theory and are responsible for the consistency of

a spontaneously broken theory as opposed to an ordinary (asymmetric) theory with

current conservation. In a later chapter we shall see that they provide cancellations

essential to maintaining tree-level unitarity in the low energy theory. On the other

hand, this breaking now changes the cosmological constant in the theory. This can

be readily understood by noting that a supersymmetry-noninvariant vacuum cannot

have zero energy. Hence, starting from a supersymmetric theory in a Minkowskian

(
at) background, supergravity breaking produces a de Sitter universe. A massless

particle in a de Sitter universe, as opposed to one in a 
at universe, must have a non-

derivative bilinear `mass-like' term in the Lagrangian.
[25]

However, since the broken

Lagrangian has the same form as the unbroken one, there can be no such term in the

theory under consideration, and one can conclude that the gravitino becomes massive

on breakdown of local supersymmetry. Alternatively, if we start from supergravity in an

anti-de Sitter
?

universe (in which case, the super-invariant Lagrangian contains bilinears

in the gravitino �eld as is required of a massless spin-3/2 �eld here), the vacuum energy

? Supersymmetry is not possible in a de-Sitter universe.
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can be tuned to be just enough to make the background space-time Minkowskian after

supergravity breaking. In such a situation, the bilinear term persists on supersymmetry

breaking and in a 
at background appears as a mass for the gravitino. Even though the

details are thus di�erent, this result is exactly analogous to the Higgs mechanism where

a gauge non-singlet scalar �eld gets a constant vacuum expectation value leading to a

massive gauge boson. There, the Lagrangian written in terms of properly de�ned �elds

(which represent 
uctuations about the vacuum), turns out to have terms which mix the

gauge boson (analogous to the gravitino here) with the gauge partner of the �eld getting

a vacuum expectation value. A formal gauge transformation, however, rediagonalises

the kinetic terms leaving no trace of this �eld and producing a mass for the gauge boson.

Because of this formal similarity with the Higgs mechanism, the mechanism here
[26]

is

called the super-Higgs mechanism.

The physical e�ects of the super-Higgs mechanism are very di�erent from those of the

Higgs mechanism. The essential features of any pointlike quantum �eld theory of gravity

is that it is non-renormalizable. Hence, there is no more any physical motivation for a

polynomial Lagrangian. Most of the supergravity Lagrangians considered are therefore

non-polynomial in nature. Now, in a theory based upon a polynomial Lagrangian,

we expect the formal manipulations alluded to above not to introduce any drastically

new scales in the theory: the scales in the physical theory would be more or less those

present in the original Lagrangian. This expectation breaks down in the non-polynomial

theory. The vacuum expectation values and the resulting physical scales now can be

very di�erent from the original one. For example, in the class of Lagrangians of our

interest | namely the so-called no-scale models | the tree-level potential turns out to be


at in certain directions. The exact magnitude of the vacuum expectation value is then

controlled by loop corrections, and can therefore be at a scale which is very di�erent from
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whatever appears in the original Lagrangian. This seed vacuum expectation value then

controls the various masses �nally present in the spectrum of the theory. However, since

these masses are not linked to that vacuum expectation value by polynomial relations,

the physical masses can again be very di�erent in magnitude from the latter. In this

arena, the consistency requirements of perurbative unitarity imposing bounds on various

mass ratios are therefore non-trivial.

To amplify the above point, let us consider supergravity theories in general. A

supergravity theory, being nonrenormalizable, has so much freedom in its coupling pa-

rameters that it is more succinctly de�ned by two arbitrary coupling functions rather

than by coupling constants.
[23]

The �rst of these is a real-valued function G(z; z�) of the

chiral scalar �elds z present in the theory. It is related to K�ahler potential d(z; z�) and

the superpotential f(z) by G(z; z�) = �2d(z; z�)� lnj�3f (z)j2. The other is a complex

analytic function f��(z) of the same variables, which takes values in the symmetric
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tensor product of two adjoint representations of the gauge group in the theory. The

portion of the Lagrangian
[23]

relevant for our discussion here is summarized below:

L = �1

4
hfabiF a

��F
b�� +

1

2�2
R +

1

2
e���� eG�
5
�D�

eG� +
i

2
hfabi ��aD/ �b+

i

6
hui eG��

�� eG� � 1

2�
hFii

�
@fab
@z�i

�
�a�b

where u and Fi refer to the vacuum expectation values of the scalar auxiliary �eld

in the gravitational and chiral multiplets respectively. If no fermion condensate gets

formed, the symmetry transformation laws imply relations among the various auxiliary

�eld vacuum expectation values. Using, in addition, Da to represent the scalar auxiliary

�eld in the gauge multiplet, one has
[23]

hui = 3
D
e�G=2

E
hDai = Re

�
f�1
ab g

@G
@z

T bz

�

hFii = �1

2

D
e
�G

2

E* @2G
@zi@z�j

+�1�
@G
@zj

�

where T a are the representation matrices of the gauge group in the representation to

which z belongs and angular brackets signify vacuum expectation values.

The point to be emphasized in these relations is that the gravitino mass m3=2 is given

by the expression ��1 expf�G=2g. On the other hand, the supersymmetry breaking

mass parameter �mS , characterizing the low-lying mass-splits in the supermultiplets, is

set by the vacuum expectation values of the auxiliary �elds which contain the derivatives

@G=@z amongst others. It is of course obvious from its expression that m3=2 cannot be

made zero so long as the vacuum expectation values mentioned above are non-zero.

However, whereas for any polynomial G, the magnitude of the mass term can be written

down as � times the vacuum expectation values and the coe�cients of
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the polynomial, the same is not true for a non-polynomial G. In fact in a general case,

there is no simple relation between the gravitino mass and the other mass scales in the

theory, e.g. the gaugino mass. Hence, if G is non-polynomial, naturalness, a priori, does

not constrain the gravitino mass to be of the same order of magnitude as � times the

seed vacuum expectation value or the mass-splits in the supermultiplets. Nevertheless,

the super-Higgs mechanism does imply that supergravity cannot be broken without at

the same time giving a mass to the gravitino.

The full Lagrangian shows that in addition to giving the gravitino a mass, the super-

Higgs mechanism also a�ects other supermultiplets. In particular, the members of any

supermultiplet do not remain mass-degenerate any more. Thus, as was expected, the

super-Higgs mechanism implies a broken-supersymmetric spectrum of physical states.

An additional point which shall be relevant to our later analysis is obvious from the

above discussion. Since the mass-splits in the various supermultiplets essentially stem

from the vacuum expectation values of auxiliary scalars of some supermultiplet (call it

the `super-Higgs multiplet'), a supermultiplet which does not couple to this super-Higgs

multiplet remains mass degenerate at the tree level.

Finally, except for the generation of masses and the consequential interaction with

gravity (which couples to the total energy including mass), the interactions in the theory

are not changed by the super-Higgs mechanism. In this sense, we describe the super-

Higgs symmetry breakdown as `soft.' This knowledge enables us to explicitly calculate

any matrix element perturbatively without actually working out the details of the super-

Higgs e�ect. We shall use only this much in our subsequent analysis without making

any assumption about the details of the supersymmetry breaking. Therefore, our results

will be completely general.
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3. Single Gravitino Amplitude

3.1 Introduction

As seen in the Chapter 2, the minimal N=1 supergravity theory contains couplings

of chiral matter and gauge supermultiplets to the fundamental supergravity multiplet.

The physical �elds in the latter are the spin 2 graviton h�� and the Majorana spin 3
2

gravitino eG�. The gauge supermultiplets generically consist of gauge bosons Aa
� and

Majorana spin 1
2 gauginos �a, a being a gauge index. Their couplings are determined

by the requirement of local supersymmetry (which needs to break spontaneously to

allow for mass terms). In this chapter we study a particular helicity amplitude in the

theory, namely, the scattering of two non-abelian gauge bosons (A) to produce the

corresponding gaugino (�) and a gravitino ( eG), i.e. A + A! � + eG.

The terms in the Lagrangian relevant to us in that case then turn out to be precisely

those in the local version of super-Yang-Mills theory except that we also have terms

re
ecting the gaugino mass m~g and the gravitino masse m3=2. This Lagrangian can be

written
[23]

in Bjorken-Drell
[17]

notation (introducing slanted capitals for tangent-frame

indices) as

L =
1

2
����� eG�
5
�(@� � i

4
!�AB�

AB) eG� � e

4
F a
��F

a��+

ie

2
�
a
[(@/ � i

4
!/AB�

AB)�ab � gA/ cfcab]�
b +

ie

2
m3=2

eG��
�� eG� � e

2
m~g�

a
�a+

e�

4
�
a

���� eG�F

a
�� : (3:1)

In (3.1) e = det e A
� and

!�AB = e�A@[�eB�] � e�B@[�eA�] � e�Ae
�
Be

C
� @[�e�]C

+ i
�2

4
(2 eG�
[A eGB] + eGA
� eGB);

e�A is the inverse to the vierbein e A
� . Further, F a

�� = 2@[�A
a
�] + gfabcAb

�A
c
� with g the

gauge coupling constant and fabc the structure constants of the gauge group.
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Figure 1

Vertices relevant to our process. The solid wavy lines represent gauge bosons. A

solid line through the middle indicates the corresponding superpartners. A solid

line through a dashed wavy line represents the gravitino.

The tree level vertex tensors in position space are easily derived from (3.1) by

taking functional derivatives of the action S =
R
d4xL with respect to the �elds which

correspond to the legs of the vertex. For the vertices depicted in Fig. 1, we can therefore

write

�
V A�eG
��

�ab
=

�(iS)

�A�a(x1)��b(x2)�fG�(x3)

�����
0

=
i�

2
���
�

Z
d4x�(4)(x� x2)�

(4)(x� x3)@��(4)(x� x1)�ab;

(32a)�
V A��
�

�abc
=

�(iS)

�A�a(x1)��b(x2)��
c
(x3)

�����
0

= �gfabc
�
Z

d4x�(4)(x� x1)�(4)(x� x2)�
(4)(x� x3); (32b)�

V AAA
���

�abc
=

�(iS)

�A�a(x1)�A�b(x2)�A�c(x3)

����
0

= �igfabc
Z

d4xf����(4)(x� x2)[�
(4)(x� x3)@��

(4)(x� x1)
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� �(4)(x� x1)@��
(4)(x� x3)]

+ ����
(4)(x� x3)[�

(4)(x� x1)@��
(4)(x� x2)

� �(4)(x� x2)@��
(4)(x� x1)]

+ ����
(4)(x� x1)[�

(4)(x� x2)@��
(4)(x� x3)

� �(4)(x� x3)@��
(4)(x� x1)]g; (32c)�

V AA�eG
���

�abc
=

�(iS)

�A�a(x1)�A�b(x2)��c(x3)�fG�(x4)

������
0

=
i

2
�gfabc���
�

Z
d4x�(4)(x� x1)�

(4)(x� x2)�(4)(x� x3)�
(4)(x� x4) :

(32d)

In (32) the subscript zero in the functional derivative implies that all �elds are to

be replaced by their vacuum expectation values after di�erentiation. The momentum

space vertex tensors which appear in the Feynmann diagrams follow from the Fourier

transforms of the above. They are given in Table 3.

3.2 Helicity Amplitudes For A + A! � + eG
The matrix element for our process is best evaluated by going to the CM frame

of the incident gauge bosons. We choose the frame in such a way that the momenta

p1,p2,p3 and p4 of the two gauge bosons, the gravitino and the gaugino respectively (see

Figure 2 ), are given by

p1 =(!; 0; 0;�!);

p3 =(E; 0; k sin �; k cos �);

p2 =(!; 0; 0; !);

p4 =(E0; 0;�k sin �;�k cos �);
(33a)

where
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Table 3

Description Name Expression

A(p1; �
�
1)a�(p2; v)b eG(p3; �u

�) (V A�eG
�� )ab �

2���
�p
�
1 �

ab

A(p1; �
�
1)a�(p2; v)b�(p3; �u)c (V A��

� )abc �gfabc
�

A(p1; �
�
1)aA(p2; �

�
2)bA(p3; �

�
3)c (V AAA

��� )abc gfabc[���(p3 � p1)�

+���(p2 � p3)�

+���(p1 � p2)�]

A(p1; �
�
1)aA(p2; �

�
2)b�(p3; v)c eG(p4; u

�) (V AA�eG
��� )abc i

2�gf
abc���
�

The relevant vertex expressions in the theory. The particle labels are explained

in the text. The quantities within parentheses following the particle labels denote

the momenta and polarization/spin state of the particle. The momenta are all

taken towards the vertex.

E =! +
m2

~g �m2
3=2

4!
;

E0 =! �
m2

~g �m2
3=2

4!
;

k =
q
E2 �m2

~g :

(33b)

Here ! is the CM energy of each incident gauge boson, E and E0 are the energies of the

�nal state gaugino and gravitino respectively and � is the scattering angle. The gauge
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Figure 2

Kinematics for our process.

boson polarization vectors �� (corresponding to helicities �1) and the gaugino spinors
?

v� (corresponding to helicities �1
2) can now be constructed. Our explicit choice is

y

��1 = ��2 =
1p
2

(0; 1;�i; 0); (34a)

v+ =

0BBBBBBBBBBB@

�i sin
�

2

p
E �m~g

� cos
�

2

p
E �m~g

i sin
�

2

p
E + m~g

cos
�

2

p
E + m~g

1CCCCCCCCCCCA
; v� =

0BBBBBBBBBBB@

i cos
�

2

p
E �m~g

� sin
�

2

p
E �m~g

i cos
�

2

p
E + m~g

� sin
�

2

p
E + m~g

1CCCCCCCCCCCA
: (34b)

To construct the gravitino spinors we project out the spin 3
2 part in the direct prod-

uct of the spin 1 and spin 1
2 representations using the Clebsch-Gordan decomposition.

In the helicity basis, we can choose the spin 1 polarization vectors �� (corresponding to

helicities �1) and �L (corresponding to zero helicity) as well as the spin 1
2 spinors u�

? We choose v for the gaugino and u for the gravitino. Since the particles are Majorana, the reverse
choice is equivalent.

y This choice of phase ensures the simplest transformation of the polarizations and spins under
CP-transformations.
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Figure 3

Feynman diagrams contributing to our process at tree-level.

(corresponding to helicities �1
2) to be given by

�� =
1p
2

(0; 1;�i cos �;�i sin �);

u+ =

0BBBBBBBBBBB@

sin
�

2

q
E0 + m3=2

�i cos
�

2

q
E0 + m3=2

sin
�

2

q
E0 �m3=2

�i cos
�

2

q
E0 �m3=2

1CCCCCCCCCCCA
;

�L =
1

m3=2
(k; 0;�E sin �;�E cos �);

u� =

0BBBBBBBBBBB@

cos
�

2

q
E0 + m3=2

i sin
�

2

q
E0 + m3=2

� cos
�

2

q
E0 �m3=2

�i sin
�

2

q
E0 �m3=2

1CCCCCCCCCCCA
:

(3:5)

In terms of these, the gravitino spinors u�3=2 of helicity �( = �1
2 , �3

2) are given by

�
u
� 3

2

3=2

�
�

=��� u�;�
u
� 1

2

3=2

�
�

=�
 

1p
3
��� u� + i

r
2

3
�L� u�

!
:

(3:6)

The Feynman diagrams contributing to our process are shown in Figure 3. Using
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Table 3, we can construct the invariant amplitude:

Mabc =� 2i��u3=2 �

(
i
�
��[�
�]p2��2�

�
(p/1 � p/3 �m~g)

�1
�
�g�/1fabc

�
+ i
�
��[�
�]p1��1�

�
(p/4 � p/1 �m~g)

�1
�
�g�/2f cba

�)
v

+ gfacb

(
��� (�2p1 � p2)

� + ��� (p1 + 2p2)� + ��� (p1 � p2)
�

)
�1��2�

� (�i)
n
��� � (p1 + p2)�(p1 + p2)� (p1 + p2)�2

o
(p1 + p2)�2

� �u3=2 �

(
�2i���[�
� ](p1 + p2)�

)
v

+ �u3=2 �

n
�gf bac(���
� � ���
�)�1��2�

o
v:

(3:7)

The tree-level helicity amplitudes can be calculated from (3.7) by substitution of the

spinors and vectors in the centre-of-mass frame. Let the invariant amplitude with the

two gauge bosons having helicities �1;2 and the gaugino, gravitino having �1, �2 respec-

tively be denoted by Mabc
�1�2;�1�2

, where a, b and c are the gauge indices of the two gauge

bosons and the gaugino respectively. Due to CP invariance and the amplitude being

proportional to fabc,
���Mabc

�1�2;�1�2
(�)
��� =

���Mabc
��1��2;��1��2

(�)
���. Further, the identical

nature of the incident gauge bosons implies that
���Mabc

�1�2;�1�2
(�)
��� =

���Mbac
�2�1;�1�2

(� + �)
���.

Hence, there are only twelve independent helicity amplitudes. We select those in which

the helicity of the �rst gauge boson is +1. Since the values of the CM energy at which

tree-unitarity gets violated are large compared to m3=2 and m~g, we can justi�ably work

in the limit ! � m3=2;m~g. The expressions for the twelve helicity amplitudes in this

limit are enumerated below. The REDUCE 3 program used for evaluating these is
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displayed in Appendix I.����M1 1; 1
2
�

3

2

���� = 0; (38a)����M1 1; 1
2
�

1

2

���� = 2

r
2

3

���fabcg�m~g(m~g � 2m3=2)m
�1
3=2

(sin �)�1
��� ; (38b)���M1 1; 1

2
1
2

��� = 4

r
2

3

��fabcg�m~gm3=2!
�1 cos �

�� (sin �)�2; (38c)���M1 1; 1
2

3
2

��� = 2
p

2
��fabcg�m3=2(sin �)�1

�� ; (38d)����M1 1;� 1
2
� 3

2

���� =
1

2
p

2

���fabcg�m~g(2m
2
~g �m2

3=2)!
�2(sin �)�1

��� ; (38e)����M1 1;� 1
2
� 1

2

���� = 2

r
2

3

���fabcg�m2
~gm

2
3=2!

�3 cos �
��� (sin �)�2; (38f)����M1 1;� 1

2

1

2

���� =
1p
6

���fabcg�(m2
~g + m2

3=2)(m~g � 2m3=2)!
�2(sin �)�1

��� ; (38g)����M1 1;� 1
2

3

2

���� = 0; (38h)����M1�; 1 1
2
� 3

2

���� =
p

2 jfabcg�!(1� cos �)j ; (38i)����M1�; 1 1
2
� 1

2

���� =
1p
6
m�1

3=2
j(1 + cos �)�1fabcg� sin �[f(m~g �m3=2)

2 � 2m2
3=2g

+ f(m~g �m3=2)2 + 2m2
3=2g cos �]j; (38j)����M1�; 1 1

2

1

2

���� =

r
2

3

���fabcg�!m�1
3=2

(m~g � 2m3=2)(1� cos �)
��� ; (38k)����M1�; 1 1

2

3

2

���� =
p

2 jfabcg�m~g sin �j : (38l)

From the helicity amplitudes calculated in the previous section we can project out

the corresponding partial wave helicity amplitudes. For simplicity, we consider only the

lowest nonvanishing partial wave amplitude since this yields the generic high energy

dependence. We need consider only M1�1; 1
2

1
2

which is the sole helicity amplitude

for which unitarity requirement yields a nontrivial constraint. In this case, the lowest

non-vanishing partial wave has J=2. Denoting the Jth partial wave of M�1 �2;�1 �2
by
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T J
�1�2;�1�2

, we have

T J
�1�2;�1�2

=
1

32�

1Z
�1

d cos �M�1 �2;�1 �2
dJ�1��2 �1��2

(�) : (3:9)

It follows from (38k) that

���T 2abc
1�1; 1

2
1
2

��� � fabc
g�!(m~g � 2m3=2)

48�m3=2
: (3:10)

The RHS of (3.10) overshoots unity when ! exceeds !cr: where

!cr: =
48�

g�

m3=2

(m~g � 2m3=2)
: (3:11)

We see that !cr: can be quite small compared to the Planck scale if m3=2 � m~g.

The di�erent factors arising in the �nal expression in (3.10) are quite easy to trace.

The longitudinal part of the gravitino polarization pulls down an m3=2 factor to the

denominator, whereas its interaction vertex brings in a factor of � in the numerator.

Similarly, the nonabelian gauge boson or gaugino vertices (including the quartic AA� eG
vertex) are proportional to g. The \longitudinal" polarization of the gravitino is, how-

ever, proportional to its momentum p4 ( upto terms of order m3=2). This is because

�L� = 1
m3=2

(p4� + o(m2
3=2)). The replacement of the gravitino polarization vector in the

Feynman diagram by this momentum vector is equivalent to taking the divergence of

the supercurrent that is the source of the gravitino. This supercurrent, in turn, is con-

served (divergenceless) except for the gaugino and gravitino mass terms. Dimensional

considerations then force the remaining factor of !.

A similar analysis can be presented for the other partial wave helicity amplitudes

also. However, the helicity �3
2 polarization tensors do not contain the m3=2 factor in the

denominator and hence are unimportant. Further, none of the vertices contains explicit
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factors of m~g. Hence a single gaugino mass factor can arise only from the gaugino

propagator or from the mismatch of chirality and helicity at the external gaugino leg.

However, all fermion vertices involved are chirality 
ipping as also is the part of the

gaugino propagator that is independent of the gaugino mass. Therefore, in all the

diagrams in question, for the case when the chiralities of the gravitino and the gaugino

are the same, the propagator has to contribute a factor of m~g. Conversely, if those

chiralities are opposite, there can be no odd power of m~g arising from the propagator.

If the chirality of a gravitino, represented by a v-spinor, equals its helicity, there

will be a factor of m3=2. For a gaugino represented by a u-spinor, on the other hand, a

mismatch of chirality and helicity produces a factor of m~g. Hence, if the helicities of the

gaugino and the gravitino are opposite, only an even number of fermion mass factors can

appear. This number is at least two because of supercurrent conservation, as mentioned

earlier. Dimensional analysis now makes the leading term independent of energy and

hence uninteresting for unitarity violation unless m~g >� ��1m3=2=m~g. The leading terms

in the only other potentially interesting amplitudes M1 1; 1
2

1
2

and M1 1;�1
2 �1

2
, are found

to cancel on explicit evaluation. Finally, only M1�1; 1
2

1
2

yields the sought after high

energy behaviour.

3.3 Discussion

In this chapter, a particular process involving two non-abelian gauge bosons and

the corresponding gaugino plus a superlight gravitino has been studied as an example

of an amplitude that violates tree level unitarity at a fairly low energy. Normally, tree

unitarity violation in gravitational theories is expected at or beyond the Planck scale.

The present example, however, illustrates that if the gaugino mass is hierarchically larger

than the gravitino mass, the violation will come down to much lower energies. On the
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other hand, if tree-unitarity is to be maintained all the way upto the Planck scale, the

gravitino mass must be larger than or of the same order of magnitude as the gaugino

mass. This result can be modi�ed in perturbation theory only if the gauginos mix with

other particles of very di�erent masses present in the theory, which must necessarily

belong to the adjoint representation of the gauge group to preserve the unbroken gauge

symmetry. In a later chapter, a di�erent example will be constructed to show that

the non-abelian nature of the gauge interaction here was just incidental. Tree-level

unitarity violation at lower energies takes place even in theories with only abelian gauge

interactions.
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4. R-Gauge Analysis of The Super-Higgs Mechanism

In broken supergravity theories with a large mass hierarchy between the gravitino

and the gaugino, it is possible for tree unitarity to be violated at a relatively low scale.

This we saw in Chapter 3 by studying a particular process, viz. the scattering of two

non-abelian gauge boson into a gravitino and a gaugino at the tree level. We have

explained this result in terms of a kinematic factor of the gravitino mass arising in the

denominator of the (longitudinally polarized) gravitino `polarization spinor' and a factor

of gaugino mass in the numerator originating from supercurrent nonconservation. How-

ever, unitarity being a fundamental requirement of the full quantum theory, tree-level

unitarity violation normally results from large coupling constants in the theory. This

would render any perturbative calculation invalid. In this chapter, we proceed to show

that even though large coupling constants are not visible in the supergravity theories

that we consider, these theories must actually contain such large coupling constants as

invalidate perturbative analysis.

We notice that we are dealing with a local symmetry which, after breakdown, is

realized in the `Higgs phase'. It is well known
[27]

that in such a theory, the inherent

symmetry of the Lagrangian still manifests itself in two ways: (i) the physical matrix

elements calculated with di�erent gauge choices turn out to be the same, and (ii) di�er-

ent matrix elements in the same gauge get related by the symmetry. The latter relations

are often known as Ward identities and play a very signi�cant role in these theories.

We can exemplify the situation by considering the case of the ordinary Higgs mech-

anism in a renormalizable gauge theory. For de�niteness, let us consider an abelian

gauge theory containing a gauge boson A� and a single complex scalar �eld �. The
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�elds have the usual gauge freedom under the gauge transformations

A� ! A� + i@��;

�! ei��:
(4:1)

When � develops a vacuum expectation value, conventionally chosen to be real, the

gauge symmetry is said to be realized in the `Higgs phase'. In this case, the true �eld

variable that measures the `�eld oscillations' about the vacuum value and is relevant

to perturbation theory is the `shifted �eld' �0 = � � v where v refers to the vacuum

expectation value of �. If we rewite the original symmetric Lagrangian in terms of

this �eld, it turns out to have terms like A�@�Im�0 where Im�0 is de�ned by �0 =

(Re�0 + iIm�0)=
p

2 ) which are bilinear in A� and Im�0. In fact, the quadratic part of

the Lagrangian turns out to be

Lquadr: = �1

4
F��F

�� +
1

2
(@�Re�0@�Re�0+

@�Im�0@�Im�0)� �2

2
(Re�0)2+

m2

2
A�A

� + mA�@�Im�0:

(4:2)

In (4.2) � is a mass term for the �eld Re�0 and m is the boson mass that gets generated by

this `symmetry breaking' and is related to the vacuum expectation value v as m = gv,

g being the gauge coupling constant. This implies that neither of these �elds is an

asymptotic particle state of the system and the Lagrangian needs to be rediagonalized.

In the so-called U-gauge, where the particle content of the theory is evident, this is

achieved by de�ning the amplitude �amp: and phase �phase oscillators by

�0 = �amp: exp(i�phase): (4:3)

After a trivial �eld rede�nition

A0
� = A� +

1

m
@��phase; (4:4)

it turns out that the Lagrangian is expressible in terms of only two �elds A0
� and �amp:.
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Moreover, it is diagonal in terms of these. In this chosen gauge, the vector boson A0
� is

massive and there is one additional physical �eld, the real scalar �eld �amp:.

It was the gauge freedom in the original that Lagrangian allowed us to �x the value

of @�A
� arbitrarily. Exploiting this feature we could subtract the gauge �xing term

m2=2
�
@�A

� � 1
m Im�0

�2
from the Lagrangian so as to cancel (upto total divergences)

the o�ending o�-diagonal terms mixing A� and �0. In such a gauge we have a massless

vector �eld and a complex scalar �eld as independent �elds. This gauge thus contains

more `�elds' than the U-gauge. The number of physical degrees of freedom is, however,

the same in both the gauges. The longitudinal degree of polarization of the gauge boson

(which is now massless) disppears in this gauge only to reappear as the phase of the

scalar �eld. Moreover, as shown by Lee and Zinn-Zustin
[27]

, matrix elements for any

process involving only gauge bosons and the physical �0 excitations as external states

and evaluated in this so-called R-gauge and the U-gauge are related by simple �eld

rede�nition constants. Thus physical matrix elements can be conveniently evaluated in

the R-gauge even though in this gauge the particle content of the theory is unphysical.

Furthermore, the same gauge invariance implies the existence in the R-gauge of a

Ward identity relating the matrix elements of gauge bosons to those of the Goldstone

�eld �phase. In fact the relation implies

1

m
@�M(A�; : : :) = M(�phase; : : :): (4:5)

In momentum space it thus describes an equivalence of the momentum-contracted ma-

trix element of a gauge boson with the matrix element of a Goldstone �eld.

An exactly similar analysis can be carried over to the super-Higgs e�ect. As men-

tioned in an earlier chapter, in order to get a 
at space broken supergravity theory, we

have to start with an unbroken supergravity theory in an anti-de Sitter space. Let us
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consider such a theory. As shown in reference 24, the part of the Lagrangian bilinear

in the gravitino ( eG) and the goldstino (�) �elds after supersymmetry breaking can be

written as

L =
ie

2
��@/��me��� +

1

2
����� eG�
5
�D�

eG� � em3=2
eG��

�� eG� � e

r
3

2
m3=2 ��
� eG� + � � �

where the vacuum expectation value of the auxiliary �eld has been adjusted to make

the �nal theory appear in 
at space-time. A trivial �eld rede�nition of

eG� ! eG� +
1

2

r
2

3

��

leaves a Lagrangian with only the mixing between the gravitino and the now massless

goldstino in the kinetic sector of the theory. One can now proceed to �x the gauge in

the theory and remove this mixing. As in the case of the Higgs mechanism discussed

above, a Ward identity can now be derived to relate the gravitino matrix elements to

the corresponding ones involving the goldstino.

In this respect, the broken supergravity theory behaves simlar to the ordinary gauge

theories incorporating the Higgs mechanism. The only di�erence now is that the grav-

itino mass (the analogue of the gauge boson mass m in the above discussion) is no longer

related to the vacuum expectation values of the auxiliary �elds that break supersym-

metry quite so simply as in the Higgs case. This fact was, however, irrelevant in the

above discussion. In particular, we still get an R-gauge Ward identity which links the

derivative of the gravitino matrix elements to those of the goldstino.

We now recall the origin of the `singularity' of the massless limit of a theory involving

particles of spin greater than half. This arises from the polarization tensor of such a

particle carrying | as an external state | a factor of its mass in the denominator. Thus,

for example, gravitino S-matrix elements become singular because in the massless limit,
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they contain r
2

3

p�
m3=2

��M( eG�; : : :)� other polarization factors (4:6)

where � is the goldstino spinor and M( eG�; : : :) stands for the rest of the amplitude. As

already mentioned, we can look upon the same amplitude in the R-gauge. In this gauge

the Ward identity mentioned above can be used to reexpress this amplitude in terms ofr
2

3
��M(��; : : :)� other polarization factors;

where M(��; : : :) represents the corresponding matrix element of the goldstino. In this

form, the singular factor of m3=2 in the denominator does not appear!

The reason for this apparent contradiction in the Ward identity is that in a sponta-

neously broken theory, even in the U-gauge the S-matrix element is not really singular.

In addition to providing us with equivalent descriptions (gauge choices) and Ward iden-

tities, gauge invariance also provides for the conservation of the current that is the source

of the gauge particle in the limit that the symmetry is unbroken. Furthermore, in any

broken phase, the Higgs mechanism provides for the gauge particle to have a mass. In

other words the massless limit for the gauge particle is also the current conservation

limit of the theory. In this limit therefore, the numerator which is proportional to the

current non-conserving mass also vanishes and the apparent singularity is resolved.

The R-gauge analysis highlights a few interesting aspects of the theory. We now

know that a large ratio between the symmetry non-conservation scale and the scale

of the gauge particle mass would imply large coupling strengths of the Goldstone (or

goldstino as the case may be) as well. This leads to an interesting observation. As the

symmetry partners of the Goldstone (or the goldstino) stay back as a physical particle

called the Higgs (Re�0 in our example or scalar or pseudoscalar S,P in the super-Higgs

case), there is a possiblity of observing the large couplings of this particle directly from
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experiment. We shall exploit this in our phenomenological discussion of the gravitino

mass later. Furthermore, in the super-Higgs case, the ratio of the gaugino and gravitino

physical masses is proportional to some couplings of the goldstino in the R-gauge. This

will be elaborated in Chapter 5. We only remark here that the failure of perturbation

theory through the violation of tree unitarity at a sub-Planckian scale for a large value

of this mass ratio is due to the largeness of one of those couplings.

In the current context of supergravity theories we can now argue that the high energy

behaviour of the S-matrix element can never be super-Planckian. In other words, at

large energies, the invariant matrix-elements can grow at most as a polynomial in �!

where ! is the center-of-mass energy for the process. This follows trivially in the R-

gauge goldstino matrix elements, as dimensional arguments dictate that in the absence

of any extraneous mass factors in the denominator,
?

the dimensionless invariant matrix

element can only be a function of �! mentioned above. The number of � factors that

appear in the matrix element can however be trivially calculated in perturbation theory

as the number of supergravity vertices in the diagram. Hence, the R-gauge analysis

gives a bound on the high energy behaviour of all matrix elements in the theory. Of

course, since supergravity is not a renormalizable theory, this argument can only be

given for tree diagrams.

In Chapter 3, we derived the same bound on the matrix element that we had from

considerations of current conservation. In this particular case, therefore, the extra anal-

ysis of this chapter does not lead to any new physical results. In fact, the calculations of

Chapter 3 apply to any softly broken supergravity theory which has current conservation

? Mass factors cannot appear in the denominator from any couplings for we do not have any coupling
other than � with inverse mass dimension; nor can they do so from the propagators which at large
energies fall o� with energy. The only places where they can arise are the polarization tensors
of longitudinally polarized particles with spin more than half as external states and these do not
apply to the goldstino.
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in it. This is a property of single gravitino amplitudes and does not hold when more

than one gravitino participates in the process. In the next chapter we shall therefore

study in detail a case of double gravitino emission in which current conservation alone

will not be able to ensure the correct high energy growth of the amplitude.

In fact, consider the scattering of two gauge bosons into two gravitinos. In this case

the application of the methods of Chapter (4.2) leads us to conclude that the matrix

element should be proportional to

1

m2
3=2

@x�@
y
� h
j TS�(x)S�(y) jAAi

where T refers to the time-ordering involved and S� is the supercurrent which is the

source of the gravitino �eld. Taking the derivative operations through the time-ordering

symbol produces the usual @ � S term, but in addition
y
gives a �-anticommutator term

involving fS0; @�S
�g. This term has only a single factor of the supersymmetry breaking

scale in the numerator and hence dimensional analysis would seem to imply a super-

Planckian �2!3m~g=m
2
3=2 growth at high energies.

As we have just argued, such a growth is incompatible with the super-Higgs mech-

anism.Though, we can construct theories in which such a growth is actually realized

even after super-current conservation is ensured, these will not be compatible with the

super-Higgs mechanism. The latter has a stronger constraint which rules out any such

theory. In fact, as will be shown by direct evaluation in the next chapter in a simpli�ed

case of supergravity breaking, the o�ending term is cancelled by contributions arising

from the exchange of the Higgs-like particles | the residual superpartners S and P of

the goldstino. Nevertheless, as will be seen, the remaining, Planckian terms turn out to

provide a stronger limit on the gaugino-gravitino mass ratio.

y A third term which comes both in the single and the double gravitino cases involves the anticom-
mutator between S0's. Being proportional to the Hamiltonian, it vanishes identically between the
non-vacuum and the vacuum state.
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5. The Double Gravitino Process

5.1 Introduction

In this chapter we consider certain amplitudes with two gravitinos. Speci�cally, we

direct our attention to the process gauge boson (A) + gauge boson (A) ! gravitino

( eG) + gravitino ( eG) for abelian as well as nonabelian gauge interactions. We recall that

the process discussed in Chapter 3 was allowed only with non-abelian gauge bosons.

The reason why the process considered now goes both for abelian and nonabelian gauge

interactions is that the �nal state is gauge invariant while the initial state always contains

a gauge invariant part. We look for conditions which ensure the validity of tree unitarity

in this process for all energies upto the natural scale in the theory which is the Planck

mass MPl � ��1.

In Chapter 3 the single gravitino process gauge boson (A) + gauge boson (A) !
gaugino (�) + gravitino ( eG) for nonabelian gauge interactions was considered. There

supercurrent conservation was shown to be responsible for the cancellation of the leading

bad high-energy growth of the tree-level helicity amplitudes. The next-to-leading growth

was found to be present and could be made consistent with unitarity upto the Planck

scale in the absence of any major mass-hierarchy between the gaugino and the gravitino.

In fact, the latter requirement yielded a nontrivial upper bound on the ratio of their

masses. However, supercurrent conservation alone does not cancel all the bad high

energy growths in the double gravitino case. There are additional complications, which

we analyze here.

For the sake of de�niteness, we take a single unbroken gauge multiplet and couple

its members plus their superpartners to a spontaneously broken N = 1 supergravity

system. We do allow for additional chiral matter supermultiplets in connection with
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the super-Higgs e�ect. However, we need not consider their members as external legs in

helicity amplitudes whose leading energy growths we study to look for the violation of

tree unitarity. This is because energy growths leading to such violations arise only from

interactions between the gauge and the gravitino supermultiplets. In the helicity ampli-

tudes for the process AA! eG eG, the leading energy growth, permitted by dimensional

analysis, is again (as in Chapter 3) cancelled by supercurrent conservation. However,

the next-to-leading term, if present, would also have violated tree unitarity much below

MPl ; that gets cancelled by a di�erent mechanism connected with the super-Higgs e�ect.

Consider those helicity amplitudes of the process AA ! eG eG which correspond to

each of the two �nal-state gravitinos having helicity �1=2. Their polarization vectors

then bring down two factors of the gravitino mass m3=2 in the denominator. On the

other hand, the leading term in the numerator, contributed by each of these polarization

vectors, is proportional to the gravitino momentum. The accompanying factor in the

amplitude can be viewed as the matrix element (between the two gauge bosons and the

vacuum) of the (anti-) time-ordered product of two supercurrents. (The origin of this

matrix element is easy to understand once the interaction associated with each gravitino

�eld eG� is written as proportional to fG�S�; S� being the supercurrent). The divergence

of each of these supercurrents yields the low-energy supersymmetry-breaking mass-scale

�MS in the theory, @ � S / �MS. The contractions with the gravitino momenta lead

to
?

two terms in the amplitude, one proportional to (�MS)2�2m�2
3=2

and the other to

�MS�
2m�2

3=2
. By dimensional arguments, the former grows as E2

CM which, being the

standard energy growth of gravitationally mediated second order tree amplitudes, can

be made to respect unitarity upto MPl . The other term, an analogue of the sigma-

commutator in current algebra theories, grows as E3
CM - violating tree unitarity at an

? @x�@
y
� h
j �T �S�(x)S�(y) jAAi = h
j �T@� �S(x)@�S(y)+�(x0�y0)[f �S0(x); @ � S(y)g�f@ � �S(x); S0(y)g] jAAi,

where S� is the spinorial supercurrent.
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energy scale � (m2
3=2M

2
Pl
m�1

~g )1=3. In many broken supergravity theories this would be

much below MPl .

However, in the spectrum of a spontaneously broken N = 1 supergravity theory, there

exist a certain scalar and a pseudoscalar with masses <� �MS , belonging to the hidden

sector. These are the superpartners of the goldstino that is absorbed by the gravitino in

the process of becoming massive through the super-Higgs mechanism. They have only

gravitational couplings to gauge bosons of the observable sector. Nevertheless, they

contribute to our process through interactions that are totally �xed by the super-Higgs

mechanism. Their contributions cancel the o�ending term mentioned earlier.

As mentioned in Chapter 4, this last cancellation can be understood most clearly

by viewing the process in the so-called R-gauge. In this gauge the goldstino appears

as a virtual propagating mode without being present in the initial or �nal state. Since

the gauge condition requires the longitudinal component of the gravitino to be the

divergence of this goldstino �eld, Ward identities can be derived linking the amplitude

for our process to that of double goldstino emission. The latter, however, does not

involve coupling with any massive particle with spin greater than half. It is expected to

yield an energy growth only upto E2
CM and to preserve tree unitarity below MPl . Thus

all unitarity-violating E3
CM terms in our physical amplitude have to cancel.

The above analysis assumes, of course, that all dimensionless constants appearing

in the Lagrangian are of order unity. As explained in Chapter 3, this may not be

the case in some supergravity models { notably in no-scale theories.
[2]

For such models,

severe constraints are put on the parameters by our analysis. In particular, we recover

a stronger version of the principal result of that chapter, that the gaugino mass cannot

exceed the gravitino mass by a large factor. We also �nd a weak upper bound on the

RMS mass of the scalar and pseudoscalar particles S, P mentioned above.
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5.2 Lagrangian and Vertices

The minimal N = 1 supergravity theory
[23]

contains couplings of chiral matter su-

permultiplets Si and gauge multiplets V a (the corresponding spinorial super�elds being

W a) with the gravity supermultiplet embodied in the supervierbein E�
A. In terms of

these the Lagrangian density is

L =

Z
d8z E[�(S; �Se2V

aT a

) + Re R�1fg(S) + fab(S)W aW bg]: (5:1)

Here the superspace measure is d8z = d4x d2� d2��, E is the supervierbein determinant

and R the scalar curvature super�eld. � is a real function and the superpotential g

an analytic function of their respective arguments. T a are the generators of the gauge

group in the representation to which S belongs and fab is an analytic function symmetric

in the adjoint representation indices a and b.

A super-Weyl rescaling of the supervierbein E ! E0 = jg(S)j2=3E can be used to

simplify the Lagrangian of (5.1) to
[23]

L =

Z
d8z E0expf�1

3
G(S; �Se2V

aT a

)g+ Re

Z
d8z E0(R0)�1[1 + fab(S)W aW b]; (5:2)

where R0 is the scalar curvature super�eld calculated from E0 and

G(S; �Se2V
aT a

) = 3 ln �(S; �Se2V
aT a

)� 2 ln jg(S)j:

A rede�nition of �elds, to make the kinetic energy terms diagonal, yields the following

expression for the part of the Lagrangian in (5.2) that is relevant to us:

L0 =
e

2�2
R +

1

2
����� eG�
5
�(@� � i

4
!�AB�

AB) eG� � e

4
Refab F

a
��F

��b

+
i

4
Imfab F

a
��F

b
���

���� +
ie

2
Refab��

a(@/ � i

4
!/AB�

AB)�b + eG00j�iD��zjD
�zi

+
ie

2�
eG=2 eG��

�� eG� +
e

4�
(eG=2G0�lG00�1l�k

f�0abk��aL�
b
R + h:c:)

+
e�

4
Refab ��a
���� eG�F

b
�� +

1

4
����� eG�
� eG�Re(G0�iD�zi)

+ eG(3� G0�lG00�1
l�k

G0k):

(5:3)
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In (5.3) we have denoted the vierbein determinant by e, the scalar curvature by R, the

gravitino �eld by eG�, the gauge �eld strength by F a
�� , the gaugino �eld by � and the

scalar components of the chiral super�elds by z. The spin connection is

!�AB =e�A@[�eB�] � e�B@[�eA�] � e�Ae
�
Be

C
� @[�e�]C

+ i
�2

4
(2 eG�
[A eGB] + eGA
� eGB):

For any object O, O0
�i

means @O=@�z�i and O0
i means @O=@zi. The covariant derivative

D� refers to gauge covariance and the 
-matrix and spinorial conventions are those of

Bjorken and Drell, except that �uu equals twice the mass.

The functions G and fab of (5.2) acquire vacuum expectation values (VEVs) on

account of the super-Higgs mechanism in the spontaneously broken version of the the-

ory. In consequence, the physical �elds have to be rescaled to maintain their canonical

normalization. Any vacuum expectation value developed by Imfab will generate a CP-

violating F ~F term in the Lagrangian. Since CP-violation, as observed, is small, we

demand reality for the VEV of fab, as denoted by


fRab
�
. Being symmetric in a; b, this

matrix can be diagonalized. We choose our basis in the adjoint representation in such

a way that


fRab
�

is diagonal. Now the normalized gauge boson and gaugino �elds are

Âa
� =

p
fRaaA

a
� and �̂a =

p
fRaa�a. Simultaneously, the gauge coupling constant g gets

rescaled to ĝ = g=
p
fRaa. Similarly, a basis can be chosen in the K�ahler manifold (in

which the z's take values) where the (real) VEV of G00
i�j

, i.e.
D
G00
i�j

E
is diagonal. In that

basis the scalar �elds get normalized to ẑi = ��1
pG00iizi. We use normalized �elds

henceforth and drop the hats for convenience.

The Lagrangian of (5.3) can now be written as

L =
e

2�2
R +

1

2
����� eG�
5
�(@� � i

4
!�AB�

AB) eG� � e

4
F a
��F

��a

+
ie

2
��a(@/ � i

4
!/AB�

AB)�a +
e

4

X
i

(@�S
i@�Si + @�P

i@�P i) +
ie

2
m3=2

eG��
�� eG�

54



� e

2
(m~g)ab��

a�b +
e

2

X
i

(m2
Si
S2
i + m2

Pi
P 2
i ) +

e�

4
��a
���� eG�F

��a

+
e�

4

X
i

ciabSiF
a
��F

��b +
�

8

X
i

ciabPiF
a
��F

b
���

����

+
i�

4

X
i

di�
���� eG�
� eG�@�Pi +

ie�

2

X
i

dim3=2
eG��

�� eG�Si: (5:4)

In (5.4) Si = (zi + �z
�i)=
p

2 and Pi = (zi � �z
�i)=(

p
2i). Moreover,

ciab =� 1p
2



f 0abi
�

(

G00i�i� DfRaaEDfRbbE)�1=2; (55a)

di =
1p
2


G0i� (

G00i�i�)�1=2: (55b)

By comparison of (5.3)and (5.4), we see that the gravitino and the gaugino masses are

given respectively by

m3=2 =��1ehGi=2; (56a)

(m~g)ab =� 1

2�

X
i

ehGi=2

G0�i� 
G00�1i�i

�


f 0abi
�

(
D
fRaa

ED
fRbb

E
)1=2: (56b)

It follows from (55) and (56) thatX
i

ciabdi = m�1
3=2

(m~g)ab: (5:7)

(5.7) is our central relation linking the super-Higgs mechanism to the cancellation of

the bad subleading high-energy (E3
CM ) behaviour mentioned earlier.

This relation can also be seen to be the basis of the unitarity violation as is clear

from the R-gauge analysis on the lines of Chapter 4. In fact, if � is the goldstino �eld

the coupling constants ciab and di also make their appearance in the couplings of � to

the gauge-gaugino system and the graviton-gravitino system:

Lgoldstino =
e�p

2
ciab ��iL���F

��a�bL + ie�m3=2dih
�
a
eGR�


a�Li + h:c: (5:8)

where h is the graviton �eld. Since the product of these two quantities ciab and di,

summed over i, is the ratio of the gravitino and gaugino masses in the theory, in case
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the latter ratio is large, one or both of these couplings must be large. The tree unitarity

breakdown that we shall see is just a manifestation of this large coupling in the R-gauge

Lagrangian.

To proceed further, let us assume for simplicity that the gauge-group under consid-

eration admits, as for every simple or U(1) factor of the gauge group, a single invariant

tensor of rank two, �ab. Since only gauge invariant �elds are allowed to have VEVs, it

follows that hfabi = hfi �ab;


f 0iab
�

= hf 0ii �ab. So we have

(m~g)ab =m~g�ab; (59a)

ciab =ci�ab; (59b)X
i

cidi =m�1
3=2

m~g: (59c)

Expressions for the scalar and pseudoscalar masses mSi
and mPi

can be obtained by

expansion of the scalar potential

V (z; �z) = eG(3� G0�lG00�1
l�k

G0k)

around the stable vacuum with zero cosmological constant. The coe�cients of the terms

that are quadratic in the scalar and pseudoscalar shifted �elds can then be isolated and

yield mSi
, mPi

. We omit these detailed expressions since they serve no purpose here.

The relevant vertex tensors can now be written down via functional derivatives of

the action S =
R
d4xL. We �rst de�ne the graviton (h) tensor �eld in terms of the

vierbein

h�� = (
p

2�)�1(eA� e�A � ���);

where ��� is the 
at (+ - - -) metric. The vertex tensors then are

(V A�eG
�� )ab =

�(iS)

�A�a(x1)��b(x2)�fG�(x3)
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=
i�

2
���
�

Z
d4x �(4)(x� x2)�

(4)(x� x3)@
��(4)(x� x1)�

ab:

(510a)

(V GAA
���� )ab =

�(iS)

�A�a(x1)�A�b(x2)�h��(x3)

=4
p

2i�(��
(�
���) �

1

4
������)�
��abZ

d4x �(4)(x� x3)��[
@�]�
(4)(x� x1)��[�@�]�

(4)(x� x2):

(510b)

(V
eGeGG
���� )ab =

�(iS)

�h��(x1)�fG�(x2)�fG�(x3)

=
�

2
p

2
�ab
Z

d4x[�2im3=2(2��(���)�

� ������)�
(4)(x� x1)�

(4)(x� x2)�
(4)(x� x3)

� 1

2
�(4)(x� x2)�

(4)(x� x3)����(�

5[
�; ��)� ]+@

��(4)(x� x1)

+ i�(4)(x� x1)����(�

5
�)f�(4)(x� x3)@

��(4)(x� x2)

� �(4)(x� x2)@
��(4)(x� x3)g]:

(510c)

(V SiAA
�� )ab =

�(iS)

�A�a(x1)�A�b(x2)�Si(x3)

=2i�ci�
ab

Z
d4x (x� x3)@[���]��

(4)(x� x1)@[��
�]
� �

(4)(x� x2):

(510d)

(V PiAA
�� )ab =

�(iS)

�A�a(x1)�A�b(x2)�Pi(x3)

=� i�ci������
ab

Z
d4x �(4)(x� x3)@

��(4)(x� x1)@��(4)(x� x2):

(510c)
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V
eGeGSi
�� =

�(iS)

�Si(x1)�fG�(x2)�fG�(x3)

=� �dim3=2���

Z
d4x �(4)(x� x1)�(4)(x� x2)�

(4)(x� x3)

(510f)

V
eGeGPi
�� =

�(iS)

�Pi(x1)�fG�(x2)�fG�(x3)

=
�

2
di�����


�

Z
d4x �(4)(x� x2)�

(4)(x� x3)@��(4)(x� x1):

(510g)

The usual momentum space rules are obtained as Fourier transforms of these and are

exhibited in Table 4. The corresponding vertices are shown in Fig. 4.

Table 4

Description Designation Expression

A(p1; �
�
1)A(p2; �

�
2)G(P; ���) V AAG

���� �4
p

2i�p1[��
]�p2[���]��

�[��

(�
���) � (1=4)������]

A(p; ��) eG(k; u�)�(q; v) V A�G
�� �(�=2)���p

�
�

G(P; ���) eG(q; u�) eG(k; v�) V GeGeG
���� (�=2

p
2)f����(�
5
�)(k � q)� + (1=2)����(�


5[
�; ��)� ]+P
�

�2im3=2(2��(���)� � ������)g
A(p1; �

�
1 )A(p2; �

�
2 )Si(P ) V AASi

�� �2i�cip1[���]�p
[�
2 �

�]
�

A(p1; �
�
1 )A(p2; �

�
2 )Pi(P ) V AAPi

�� i�ci�����p
�
1p

�
2eG(q; u�) ~G(k; v�)Si(P ) V

eGeGSi
�� i�dim3=2���eG(q; u�) eG(k; v�)Pi(P ) V
eGeGPi
�� (i�=2)di�

����
�P�

The vertex expressions. Here A indicates a gauge boson, G a graviton and Si

and Pi are the scalar and pseudoscalar particles described in the text. � and

eG represent the gaugino and the gravitino repectively. The quantities within

parentheses following the particle label specify the momenta and polarization

vectors/spinors, if any. All momenta are taken towards the vertex.
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Figure 4

Depiction of vertices described in Table 4. The solid and dashed wavy lines stand

for gauge bosons and gravitons respectively. A solid line through the middle

indicates the corresponding superpartners. The dashed and dotted lines represent

the scalar and pseudoscalar particles respectively.

5.3 Helicity and Mass Factor Rules

The dimensional parameters in our helicity amplitudes are �, m3=2 and m~g. Since

this is a second-order gravitational process, �2 factors out. Coming to overall factors of

the gravitino mass m3=2 in the amplitude, let us consider the light gravitino limit. The

gravitino is always an external leg here. Being Majorana, it can be described by either

a u-spinor or a v-spinor. (Of course, a two gravitino �nal state has to be described in

terms of a �u and a v). When the gravitino is described by a u-spinor, the leading term

in it with helicity 1
2 (�1

2) would carry positive (negative) chirality and an accompanying
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factor of m�1
3=2

although there would be a nonleading term of opposite chirality which

is of zeroth order in m3=2. For the case when a v-spinor is chosen, the helicity and

chirality sign correlations for the leading and nonleading terms are exactly opposite.

Thus, for each gravitino here, one can take an overall factor of m�1
3=2

provided that any

helicity-chirality mismatch for the gravitino is taken care of by a corresponding factor

of m3=2. Finally, there is no naturally occurring overall factor of m~g. The origin of

m~g-terms through gaugino-exchange diagrams is discussed later.

From the vertices listed in Table 4 and depicted in Fig. 4, we can derive some

additional consequences regarding mass-factors in speci�c diagrams, given the helicities

of the external particles in our process. These follow either from the 
-structure of any

of the fermionic vertices or from the nature of the boson couplings. We enumerate them

below.

Rule 1 The AAG vertex V AAG
���� �

�
1�

�
2, de�ned with all momenta going inwards and the

gauge boson polarizations contracted, can be explicitly seen to vanish whenever

the gauge bosons have identical helicities.
?

This is equivalent (since helicity 
ips

sign under crossing) to the statement that an incident gauge boson, scattered

in a gravitational �eld, does not change its helicity. The latter fact is a direct

consequence of the geometric origin of the gravitational bending of light: parallel

transport along a null geodesic does not change the polarization of a wave. This

means, however, that the exchange of the graviton in the incident channel can

contribute to the process AA ! eG eG only when the initial gauge bosons have

opposite helicity.

? For instance, take the case when each gauge boson has a positive helicity with polarization vector
�+1;2. Now �+�1 �+�2 V AAG

���� = �+1 � �+2 p1(�p2�)� �
+
1 � p2�

+
2(�p1�)� �

+
2 � p1�

+
1(�p2�)+ p1 � p2�

+
1(��

+
2�)�

1
2p1 �

p2�
+
1 ��

+
2 ���+

1
2p1 ��

+
2 p2 ��

+
1 ��� . In the centre of mass one may use �+1 ��

+
2 = �1; �+1 �p2 = 0 = �+2 :p1

and p�1;2 = !(1; 0; 0;�1), �+�1;2 = 1p
2
(0; 1;�i; 0) to show that this vanishes. The same is the case

when each gauge boson has negative helicity.
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Figure 5

Tree diagrams for A+A! eG+ eG.

Rule 2 Consider the A� eG vertex V A�eG
�� of Table 4 with the momenta and polarizations as

de�ned in the leftmost column. This vertex is always proportional to ���p
��� =

�. Consider the case when the gravitino is in the �nal state. If the Majorana

gravitino spinor is represented by �u�, say, then � acts on �u� to the left. Alterna-

tively, if it is described by v�, � acts on v� to the right. However, in the frame

in which p� = !(1; 0; 0; 1), the polarization vector for a gauge boson of helicity

�1 is ��� = 1p
2
(0; 1;�i; 0). Thus �� = ���p���� = �i!(1 � 
5)

�
�� 0

0 ��

�
and evidently a gauge boson of helicity �1 picks out a gravitino of chirality �.

For a very light gravitino, with spin projection along the line of motion being

1/2, this corresponds (to zeroth order in m3=2) to helicity �1
2 while for a massive

gravitino the sign of the helicity could be the reverse but at the cost of an m3=2

factor in the numerator. In other words, a matching (mismatch) of helicity signs

between the gauge boson and the gravitino in the A� eG vertex will generate an

odd (even, possibly zero) number of m3=2 factors.

Let us take now the gaugino-exchange diagrams for our process (Fig. 5). The
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gaugino mass m~g in the numerator occurs through the chirality-conserving part

of the gaugino propagator. The gaugino internal line, however, has an A� eG ver-

tex on either side. Either chirality has to be conserved or at least an additional

power of m3=2 has to be accommodated through chirality-violation. It follows

from the above reasoning that the gaugino exchange diagram contains an odd

(even, possibly zero) number of m~g; m3=2 linear combination factors whenever

the gauge boson helicities are equal (opposite).

Rule 3 The G eG eG vertex V GeGeG
���� in Table 4 may be seen | to zeroth order in m3=2 |

to contain an odd number of 
-matrices times a 
5. In other words, between a

spinor and a spinor, it conserves chirality. However, two Majorana fermions (in

this case gravitinos) in the same (initial or �nal) state have opposite helicities for

the same chirality. Thus, ignoring m3=2 terms, the helicities of the two gravitinos

in the same state participating in the G eG eG vertex must be opposite. This means

that for such gravitinos having the same (opposite) helicity, one must have an

odd (even, possibly zero) number of m3=2 factors.

Rule 4 Take now the Si eG eG and Pi eG eG vertices. The former 
ips chirality (like a mass-

insertion) but has an accompanying m3=2 factor from the super-Higgs mecha-

nism. The latter conserves chirality like a current vertex but would need a factor

of m3=2 for helicity conservation since two �nal state gravitinos have opposite

chiralities for the same helicity. Thus, if the two gravitinos participating in the

Si eG eG or Pi eG eG vertices have identical (nonidentical) helicities, there will be an

odd (even, at least two) number of accompanying m3=2 factors. More generally,

diagrams involving such vertices have Si - and Pi -exchanges only in the inci-

dent channel provided that the net spin component along the line of motion in

the centre of mass is zero both for the initial and the �nal states. Hence these
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contributions vanish whenever either the two incident gauge bosons or the two

�nal state gravitinos have nonidentical helicities.

Rule 5 All the previous rules are such as to make each helicity amplitude either totally

odd or totally even in the fermion (gaugino, gravitino or any linear combination

of these) masses. Once the �2 factor is taken out, these are the only masses

present in the problem. Hence, in case the leading energy growth in some helicity

amplitude happens to get cancelled, dimensional considerations dictate that the

next-to-leading energy growth of that amplitude should be suppressed by two

powers of the CM energy.

5.4 Helicity Amplitudes and Partial Wave Unitarity

The tree amplitude for the process A(p1; �1) + A(p2; �2) ! eG(p3) + eG(p4) can be

written down from the vertices given in Table 4 by use of the gaugino, graviton
?

and

scalar (pseudoscalar) propagators as follows:

M = �2�u�(p4)[�4i ��[�
�]p2��2�(p/1 � p/3 �m~g)
�1��[�
�]p1��1�

� 4i ��[�
�]p1��1�(p/4 � p/1 �m~g)
�1��[�
�]p2��2�

+ 4p1[��1
]p2[��2�]�

�(����

�
� �

1

4
������)(p1 + p2)

�2

(��
(�
���) �

1

2
������):

:f����(�
5
�)(p4 � p3)� � ����(�
5[
�; �
�)�]+(p3 + p4)�

+ im3=2(�4��(���)� + 2������)

+ m3=2�
��
X
i

cidif2ip1[��1�]p[�2 ��]2 ((p1 + p2)
2 �m2

Si
)�1

+ �����p
�
1 �

�
1p2��

�
2 ((p1 + p2)

2 �m2
Pi

)�1
5g]v�(p3) :

(5:11)

In writing (5.11) we have chosen to use a v-spinor for a gravitino with four momentum

? A discussion of the graviton propagator used in (5.11) may be found in Ref. 28.
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Figure 6

Kinematics in the CM frame.

p3 and a u-spinor for a gravitino with four momentum p4. The reverse choice would

lead to the same �nal result.

In order to evaluate this matrix element explicitly, we go to the CM frame (Fig. 6)

with CM energy E and scattering angle �. The momenta are then given by

p1 = (!; 0; 0;�!); p2 = (!; 0; 0; !);

p3 = (!; 0; k sin �; k cos �); p4 = (!; 0;�k sin �;�k cos �);
(5:12)

where ! = 1
2E and k = (E2=4�m2

3=2)1=2. The polarization vectors of the gauge bosons

(positive and negative superscripts stand for helicity +1 and -1 respectively) are given

by

��1 = ��2 =
1p
2

(0; 1;�i; 0): (5:13)

We describe the spin 3/2 gravitino spinors as direct products of spin 1
2 and spin 1

representations. Thus �rst de�ne the additional spin 1 polarization vectors ��� and �L�
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(corresponding to helicities �1 and 0 respectively):

��3� = ��4� =
1p
2

(0; 1;�i cos �;�i sin �);

�L3� = m�1
3=2

(k; 0; ! sin �; ! cos �);

�L4� = m�1
3=2

(k; 0;�! sin �;�! cos �):

(5:14)

Then introduce the following u�� and v��spinors with spin 1
2 and helicities �1

2 :

v+3 =

0BBB@
�i sin �

2

p
! �m3=2

� cos �
2

p
! �m3=2

i sin �
2

p
! + m3=2

cos �
2

p
! + m3=2

1CCCA ;

v�3 =

0BBB@
i cos �

2

p
! �m3=2

� sin �
2

p
! �m3=2

i cos �
2

p
! + m3=2

� sin �
2

p
! + m3=2

1CCCA ;

u+
4 =

0BBB@
sin �

2

p
! + m3=2

�i cos �
2

p
! + m3=2

sin �
2

p
! �m3=2

�i cos �
2

p
! �m3=2

1CCCA ;

u�4 =

0BBB@
� cos �

2

p
! + m3=2

�i sin �
2

p
! + m3=2

cos �
2

p
! �m3=2

i sin �
2

p
! �m3=2

1CCCA :

(5:15)

Finally, the gravitino spinors u��, v�� of helicity � (= �3
2 ;�1

2) can be written as
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v
� 3

2
� (p3) = ���3�v�3 ;

v
� 1

2
� (p3) = �(

1p
3
��3�v�1 + i

r
2

3
�L3�v�1 );

u
� 3

2
� (p4) = ���4�u�4 ;

u
� 1

2
� (p4) = �(

1p
3
��4�u�4 + i

r
2

3
�L4�u�4 ):

(5:16)

From eqs. (5.12)-(5.16) one can compute the helicity amplitudes M�1�2;�1�2
(using the

notation of I) in the di�erent channels. The presence of two identical particles in the

initial state as well as in the �nal state lead to the relations

jM�1�2;�1�2
(�)j = jM�2�1;�1�2

(� + �)j = jM�1�2;�2�1
(� + �)j = jM�2�1;�2�1

(�)j:

Furthermore, due to CP invariance in the theory,

jM�1�2;�1�2
(�)j = jM��1��2;��1��2

(�)j:

Hence there are only sixteen independent helicity amplitudes. We choose these from

among those with helicity +1 for the �rst gauge boson. The energy scale at which

tree unitarity gets violated is much larger than the values of m3=2 and m~g in nearly

all models of low energy supersymmetry. Thus it makes sense to keep only the leading

terms in powers of ! by taking ! � m3=2;m~g. Using the REDUCE 3 program displayed

in Appendix II, we can evaluate the expressions for the sixteen tree helicity amplitudes.

They are then:

jM1 1; 3
2

3
2
j =

1

2
�2!�1jm3

~g + 4m2
3=2m~g cot2 � +

X
i

1

2
cidim3=2(m

2
Si
�m2

Pi
)j; (517a)

jM1 1; 32
1
2
j =

4p
3
�2m~gm3=2j cot �j; (517b)

jM1 1; 3
2
�1

2
j =

2p
3
�2m~g!; (517c)

jM1 1; 3
2
�3

2
j = 0; (517d)
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jM1 1;� 3
2

1
2
j =

1

2
p

3
�2m~gm

2
3=2!

�1; (517e)

jM1 1;� 3
2
�1

2
j =

1p
3
�2m3

~gm3=2!
�2j cot �j; (517f)

jM1 1;� 3
2
�3

2
j = �2!�1jm3

~g �m2
3=2m~g +

1

4

X
i

m3=2cidi(m
2
Si

+ m2
Pi

)j; (517g)

jM1 1; 1
2

1
2
j =

�2

3
!j4m~g +

X
i

cidi(m
2
Si
�m2

Pi
)m�1

3=2
j; (517h)

jM1 1; 1
2
�1

2
j =

4

3
�2m3

~gm
�1
3=2
j cot �j; (517i)

jM1 1;� 1
2
�1

2
j =

4

3
�2!jm2

~gm
�2
3=2

� 1)m~g +
1

4
m�1

3=2

X
i

cidi(m
2
Si

+ m2
Pi

)j; (517j)

jM1�1; 3
2

3
2
j =

1

2
�2m3=2!

�1jm2
~g + m2

3=2(1� 2 sin2 �)j; (517k)

jM1�1; 3
2

1
2
j =

1

2
p

3
�2 sin �jm2

~g � 3m2
3=2(1� 2 cos �) +

2m2
3=2

(1 + cos �)
j (517l)

jM1�1; 3
2
�1

2
j =

1

2
�2m3=2!

�1(1� cos �)jm2
~g + m2

3=2 cos �j; (517m)

jM1�1; 3
2
�3

2
j = �2!2(1� cos �)j sin �j; (517n)

jM1�1; 1
2

1
2
j =

4

3
�2m3=2!jm�2

3=2
m2

~g �
3

2
sin2 �j; (517o)

jM1�1; 1
2
�1

2
j =

2

3
�2!2j sin �[m�2

3=2
m2

~g �
3

2
(1� cos �)]j: (517p)

As explicitly seen from (517), helicity amplitudes with any of the gravitinos carrying

helicity either 3
2 or �3

2 do not contain the sought after term with m�2
3=2

that will lead to

an !2 growth. Thus we need not bother with these any further. On the other hand, not

all of the �ve helicity amplitudes with each gravitino helicity being +1
2 or �1

2 contain

that term, nor do they exhibit the same energy growth. Only the helicity amplitude

of (517p) grows as !2, the rest are either constant or grow more slowly. This may be

understood by employing the helicity and mass-factor rules of Section 5.3

Consider the helicity amplitude M1 1; 1
2

1
2

of (517h) �rst. By rule 1) the incident

channel graviton exchange diagram cannot contribute here. Further, the gauge boson
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and gravitino helicity signs match while the gauge boson helicities are identical. Rule 2)

therefore generates two powers of m3=2 from the two A� eG vertices and an accompanying

factor which could be a linear combination of m~g and m3=2. Thus the gaugino exchange

diagrams grow linearly with !. On the other hand, for the Si; Pi-exchange diagrams,

Rule 4) can at most generate one m3=2 factor and so these can grow as �2m�1
3=2

!3. We

know, however, from our general discussion on the super-Higgs mechanism in the R-

gauge (section 5.1) that such a growth is not allowed. Thus the Si - and Pi -exchanges

must mutually cancel the !3 terms in this helicity amplitude and generate a m2
Si
�m2

Pi

factor (apart from cidi which comes from the vertices) from (4!2�m2
Si

)�1�(4!2�m2
Pi

)�1

in the large ! limit. Employing Rule 5), we see then that the total amplitude exhibits

a linear growth in ! | as explicitly shown above.

We next take up M1 1; 1
2
� 1

2
as given in (517i). Once again, by Rule 1), there is

no graviton exchange. Similarly, the gravitino helicities being nonidentical, by Rule

5), there is no S- or P-exchange. Coming to gaugino exchange diagrams, there is one

matching and one mismatch between gauge boson and gravitino helicity signs with the

gauge boson helicities being identical. Rule 2) now generates one power of m3=2 and

one factor of a linear combination of m~g and m3=2. As such, this would have meant a

leading !2 growth which would go with the lowest partial wave of the dJ (�) function.

However, since the di�erence of the two helicities in the initial state is zero and that in

the �nal state one, by the property of dJ (�) functions, the lowest partial wave is J = 1.

That is incompatible with the Bose symmetry of the initial state and the corresponding

amplitude vanishes. The next partial wave contributes an energy-independent term (see

Rule 5)).

Consider now M1 1;�1
2
�1

2
of (517j). The lack of graviton exchange is evident from

Rule 1). The gaugino exchange diagrams can only yield one mass factor from the identity
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of gauge boson helicities so that an !3 growth is still allowed. The same is true of the

Si -,Pi -exchanges. The super-Higgs mechanism and the R-gauge analysis then dictate

that all these growths must cancel. By Rule 5) only a linear growth in ! survives. The

term corresponding to Si -, Pi -exchanges yields, apart from cidi, a factor m2
Si

+m2
Pi

in

the numerator coming from (4!2)�1 � (4!2 �m2
Si

)�1 � (4!2 �m2
Pi

)�1 in the large !

limit.

Coming to M1�1; 1
2

1
2

of (517o), the gauge-boson helicities being unequal, Si - and Pi

-exchanges are excluded by Rule 5). The incident channel graviton exchange is possible

but by Rule 3) it contributes extra an factor of m3=2 in the numerator. Similarly, in the

gaugino exchange diagrams, one matching of gauge boson and gravitino helicity signs

generates an m3=2 factor by Rule 2). Thus the amplitude would seem to be able to grow

with energy like �2m�1
3=2

!3. We know, however, from our discussion on the R-gauge

in Section 1 that this is not permitted. In fact, supercurrent conservation e�ects a

cancellation of all the !3 terms from the s-, t- and u-channel exchanges leaving, by Rule

5), only a linear growth in !.

Finally, the operative helicity amplitude is M1�1;1
2
�1

2
. Rule 4) implies the absence

of s-channel scalar and pseudoscalar exchange. However, the application of Rules 2)

and 3) to the remaining diagrams can only generate an even number (including zero)

of m3=2 factors. Thus a leading energy growth proportional to �2m�2
3=2

!4 would seem

to be allowed in violation of the R-gauge argument in the Introduction. Once again,

supercurrent conservation comes to the rescue cancelling the !4 terms from all the three

exchange diagrams. By Rule 5) we see that the residual growth in ! has to be quadratic.

An inspection of all the equations in (517) makes it evident that the helicity ampli-

tude M1�1; 1
2
� 1

2
in the last equation has the fastest energy growth. Since the di�erence

of the two helicities in the initial state here is 2, the lowest partial wave, by the property
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of dJ (�) functions is J = 2. The corresponding projected amplitude (changing from !

to E) is

T 2
1�1; 1

2
� 1

2

=
1

32�

1Z
�1

d cos � d221(�) M1�1; 1
2
�1

2
(�)

=
�2E2

288�
(m2

~gm
�2
3=2
� 6

5
):

(5:18)

Thus the partial wave unitarity requirement

jT 2
1�1; 1

2
� 1

2

j < 1

is violated at a critical energy scale

Ecr: = 12
p

2�(m2
~gm

�2
3=2

� 6

5
)�1=2MPl : (5:19)

Alternatively, the requirement of the validity of tree unitarity of E upto ��1 implies the

inequality

m~gm
�1
3=2

< (288� +
6

5
)1=2 � 30: (5:20)

The same requirement as above, imposed on (517j), implies upper bounds on the masses

mSi
, mPi

of the hidden sector chiral scalars and pseudoscalars. In this case the lowest

partial wave projection is

T 0
1 1;� 1

2
� 1

2

=
�2E

24�
[(m2

~gm
�2
3=2

� 1)m~g +
1

4m3=2

X
i

cidi(m
2
Si

+ m2
Pi

)] (5:21)

and this has to obey

jT 0
1 1;� 1

2
�1

2

j < 1:

Suppose that there is only one light scalar, pseudoscalar pair (S,P) which matters prac-

tically for both (59c) and (5.21). Then the requirement of the maintenance of tree uni-

tarity all the way upto MPl dictates the upper bound on the RMS scalar, pseudoscalar

mass

(m2
S + m2

P )1=2 < [96���1m2
3=2m

�1
~g ]1=2: (5:22)
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5.5 Discussion

In this Chapter, we have extended the tree unitarity analysis of Chapter 3 to the

double gravitino amplitude gauge boson + gauge boson ! gravitino + gravitino. This

process has the advantage of being allowed for abelian gauge interactions also. Such was

not the case for the single gravitino amplitude where nonabelian gauge interactions were

required for the reaction to take place. Furthermore, the role of the chiral gauge-singlet

scalar S and pseudoscalar P (superpartners of the goldstino) is quite important here

whereas they were nonexistent in the previous process.

Gravitationally mediated tree amplitudes are generally characterized by Planckian

energy growths where, for high enough energies, the powers of � and ! match. If

for some amplitude the power of ! happens to exceed that of �, the growth is super-

Planckian. This is bad since it brings down the scale of violation of tree unitarity much

below the Planck mass. On the other hand, if the power of ! is lower than that of �,

the energy growth is sub-Planckian and harmless so far as unitarity is considered. The

process considered here is of second order in �. However, two powers of m3=2 in the

denominator are generated for two longitudinally polarized gravitinos. This suggests a

leading super-Planckian energy growth proportional to �2m�2
3=2

!4 which has been shown

to cancel through supercurrent conservation. This is somewhat analogous to the case

in Chapter 3. However, a next-to-leading non-Planckian energy growth proportional

to �2m�2
3=2

�mS!
3 was also possible. That has been shown to cancel in consequence

of the super-Higgs mechanism through the additional exchanges of S and P . This

veri�es through an explicit example the conclusions drawn in Chapter 4: namely that

the R-gauge analysis of the super-Higgs mechanism shows the impossibility of super-

Planckian growth of any tree amplitude in a spontaneously broken N = 1 supergravity

theory. The residual energy growth is Planckian, being proportional at high energies

71



to �2m2
~gm

�2
3=2

!2, as contrasted with g�m~gm
�1
3=2

! in Chapter 3. Numerically, the upper

bound on the gaugino-gravitino mass ratio m~gm
�1
3=2

, imposed by the requirement of

tree unitarity being valid upto the Planck scale, is stronger here by nearly an order of

magnitude as compared with that derived in Chapter 3. In addition, an upper bound

on the RMS mass of the S and the P has emerged.
?

? Recently, unitarity analysis of the elastic scattering of two gravitinos has been carried out. This
yields bounds on the ratio of the masses of the scalar and the pseudoscalar to that of the grav-
itino.

[29]
These bounds are stronger than the ones obtained here.
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6. Phenomenology of a Superlight Gravitino

6.1 Introduction

In the previous chapters we have derived theoretical bounds relating the scale of

tree unitarity violation to the ratio of the gaugino and the gravitino masses in a broken

supergravity theory. While a large value for the latter number and the consequent

breakdown of perturbation theory much below the Planck scale are certainly un�sthetic

features, it is interesting to study the direct experimental consequences of such a theory.

In particular, we note that the scale of unitarity violation can often be much larger than

the laboratory energies for a wide range of values of the gravitino mass relative to

the gaugino mass. In such a case, the question of consistency of the theory will not

arise vis-a-vis laboratory experiments. On the other hand, there will be spectacular

predictions for the latter to verify. In this chapter, we shall indicate a few possible

means of bounding the mass of the gravitino from below by use of direct experimental

considerations. These bounds rely on the following fact. Long before the point of tree

unitarity violation is reached, the perturbative matrix element for any process with a

longitudinally polarized gravitino already grows signi�cantly to be possibly detected in

the laboratory.

Initial estimates of this kind were made by Fayet
[30]

by studying the electron-positron

annihilation processes giving rise to a photino and a gravitino and also to a photon, a

photino and a gravitino. For a photino su�ciently light to be produced in the experi-

ment, he derived a lower bound of 2:3 �eV on the mass of the gravitino from existing

data. We extend this analysis to consider an amplitude in which two photons from e+e�

beams collide and produce two gravitinos in the �nal state. The gravitinos escape de-

tection so that the process studied in the laboratory becomes e�e+ ! e�e++\nothing"
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considered in the double-e�ective-photon approximation. Here the e�, e+ are \tagged"

at very near forward angles so that the two colliding photons are almost real and \noth-

ing" is characterized by missing energy and transverse momentum (\E, \pT ). The lack

of any experimental signal for this process studied at 100 { 200 GeV can be used to

supply an improved lower bound on the mass of the gravitino. This would be an in-

teresting programme to pursue at the LEP and SLC machines. Additionally, we look

at the process of fusion of two gluons into a gluino and a gravitino. At Tevatron and

future hadron accelerators, one can look for this process in mono-jet signatures. The

new preliminary Tevatron runs at a center-of-mass energy of 1.6 TeV suggest that for

modest gluino masses, a lower limit of 3:5 �eV can already be derived on the gravitino

mass.

6.2 Photon-photon Collision

The coupling of a superlight gravitino to the gauge-matter sector is controlled by

�fG�S� where S� is the spinorial source supercurrent and

� = (8�GNewton)1=2 = 4:11� 10�19GeV�1

Since, a longitudinally polarized gravitino �eld is eG�L / m�1
3=2

@��, the coupling can

be written as �m�1
3=2

�mS , where �mS � @�S� is the supersymmetry-breaking mass in

that sector. Hence, for �mS � MW and m3=2 � 10�6 eV, the coupling is � 1015� so

that at an energy scale of 102 GeV or so it becomes measurable. We are speci�cally

interested in the possiblity of measuring sizable cross-sections for the pair production

of such gravitinos in photon-photon collisions (i.e. 
 + 
 ! eG + eG) around
p
s = 100
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GeV at the SLAC Linear Collider SLC or the CERN collider LEP through the process

e�e! e�e + \nothing00 considered in the double-e�ective-photon approximation.
?

A characteristic feature of this process is the following. In addition to the photon

(A�), photino (�), graviton (h��) and the gravitino ( eG�) �elds, one has to consider

certain chiral scalar (Si) and pseudoscalar (Pi) �elds. These are the superpartners of

certain chiral fermions one of which is the Goldstino absorbed by the gravitino in the

process of becoming massive. Their interactions with the gravitino are controlled by the

super-Higgs mechanism. This is analogous to the case of the Higgs particle | in the

standard electroweak theory | whose couplings to the gauge bosons become determined

by the Higgs mechanism. In particular, we shall show that, though these particles belong

to the \hidden sector," their interactions become large enough to cancel the leading

high-energy behaviour of the amplitude in question. Nevertheless, their interactions

with ordinary matter are still su�ciently small for them to be extremely long lived.

Thus their pair production also contributes to the reaction e�e ! e�e + \nothing00. The

fundamental processes contributing to this reaction then are 

 ! eG eG, 

 ! SiSi,



 ! PiPi, and 

 ! SiPi.

On imposing naturalness and CP conservation in the observable sector, the relevant

part of the Lagrangian becomes
[23]

e�1L =� 1

4
F��F

�� +
1

2�2
R +

1

2
e���� eG�
5
�D�

eG� +
1

4
���
���� eG�F�� +

i

2
��D/ �+

1

2

X
i

(@�Si@
�Si + @�Pi@

�Pi) +

+
i

2
m3=2

eG��
�� eG� � 1

2
me


��� +
1

2

X
i

�
m2

Si
S2
i + m2

Pi
P 2
i

�
+

? Certain objections to the use of the DEPA with low mass, more than spin one particles in the
�nal state have been raised by Jayaraman et al.

[31]
Their objection, however, does not apply to

our case as explained in Ref. 32
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�

4

X
i

ci

�
SiF��F

�� +
1

2
Pie

����F��F��

�
+
i�

2

X
i

di

�
m3=2

eGmu�
�� eG�Si +

1

2
e���� eG�
� eG�@betaPi

�
(6:1)

in the notation of Bjorken and Drell. We have normalized the �elds so as to set the

kinetic-energy terms in the canonical form. In (6.1),

F�� = @�A� � @�A�; D�
eG� =

�
@� � i

4
!�ab�

ab

� eG�;

where !�ab is the spin connection given by

!�ab = e �
a @[�eb�] � e �

b @[�ea� � e �
a e �

b ec�@[�e�]c + O(�2):

Furthermore, e �
a and ec� are the vierbein and its inverse, respectively, e is the deter-

minant of the vierbein, e���� is the unit antisymmetric tensor with e0123 = �e�1 and

R is the scalar curvature in the sign convention of Weinberg.
[33]

Here me
 , mSi
, and mPi

are the masses of the photino, the scalars and the pseudoscalars, respectively.
?

Finally,

the signature of our metric is (+ ���) and moreover our square brackets and paren-

theses in the superscripts or subscripts denote antisymmetrization and symmetrization,

respectively, with unit weight.

The parameters ci and di that appear in the above Lagrangian are related
[34]

to the

functions G(z; �z) and f��(z) of Ref. 23 by

ci = � 1p
2
h@ifi


G00i ��1=2 hfi�1 ; (62a)

di =
1p
2
h@ifi


G00i ��1=2
(62b)

We choose our basis in the K�ahler manifold such that the matrix


(@=@zi)(@=@ �z�j)G

�
diagonal with hG00i i as the corresponding diagonal elements. We further take the vacuum

? In no-scale supergravity theories the scalar and pseudoscalar masses are zero at the tree level. In
some explicit models (like those considered in Ref. 2), nonperturbative e�ects give them a �nite
but small mass. We neglect these masses in the rest of the calculation
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expectation values (VEV's) not to break the gauge symmetries so that


f��
�

= hfi ���
and



(@=@zi)f��

�
= h@ifi ��� within each simple and U(1) factor of the gauge group.

As discussed in Chapter 5 the super-Higgs mechanism
[23]

implies,

me
 = � 1

2�

X
i

D
eG=2(@iG)G00�1

i

E
h@if i hf i�1 ; (63a)

m3=2 =
1

�

D
eG=2

E
: (63b)

Thus,

me
 = m3=2

X
i

cidi: (6:4)

Equation (6.4) implies that a large hierarchy between the photino and gravitino

masses
[2]

will make the interactions of Si and Pi, which are characterized by ci and

di, non-negligible. We can eliminate h@ifi hfi�1 between (62) and (63). Moreover,

we assume for simplicity that it su�ces to take the contribution from only one scalar-

pseudoscalar pair to the VEV's, those from observable �elds, if any, being small in com-

parison. This leads via the substitution
[23] G = �3 ln(2�Rez + observable-sector �elds)

in the case of no-scale theories, to

c = �
�

2

3

�1=2 me


m3=2
; d = �

�
3

2

�1=2

: (6:5)

The seven basic interaction vertices relevant to us are the following: 
e
 eG, 

G,

G eG eG, 

S, 

P , eG eGS, and eG eGP . The corresponding vertex tensors are de�ned in

Fig. 7

while their expressions in terms of momenta (all incoming) are given in Table 5.

There are �ve Feynman diagrams contributing to the process 

 ! eG eG and two of each

for the processes 

 ! SS, 

 ! PP , and 

 ! SP as shown in Figs.8(a), 8(b), 8(c),
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Figure 7

The relevant vertices in the theory. The solid and dashed wavy lines represent the

photon and the graviton, respectively. A solid line through the center indicates

the corresponding superpartner. The dashed and dotted straight lines represent

the scalar and pseudoscalar particles respectively.

and 8(d), respectively.
y

For m3=2, much smaller than all other scales in the problem, the

gravitino spinors can be approximated, as in Chapter 3, by

u
�1=2
� ' �i(2

3
)1=2

p�
m3=2

u�(p);

v
�1=2
� ' �i(2

3
)1=2

p�
m3=2

v�(p):
(6:6)

In (6.6) u and v are the usual massless spinors of spin half. The m3=2 factor in the

denominator makes the contribution of the �3
2 helicities of the gravitino negligible.

y S-channel graviton exchange in the SS and PP �nal state processes need not be considered from
our approximation since they do not produce any m�1

3=2 factors in the amplitude.
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TABLE 5.

Designation Expression

V 

G
���� �4

p
2i�q1[��
]�q2[���]��


�(��
(�
���) � 1

4�
�����)

V 
e
 eG
�� ��

2���q
�
�

V GeGeG
����

�
2
p
2
[����(�


5
�)(r1 � r2)
� + i

2����(�

5[
�; ��)� ]+P

�

�2im3=2(2��(���)� � ������)]

V 

Si

�� �2i�ciq1[���]�q
[�
2 �

�]
�

V 

Pi

�� i�ci�����q
�
1 q

�
2

V
eGeGSi
�� i�dim3=2���

V
eGeGPi
��

i�
2 di�����


�P �

The relevant vertex expressions in the theory. The vertices are shown in Fig. 7.

Figure 8

The tree level Feynman diagrams contributing to our process. The legend is given

in the caption of Fig. 7.
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Using (6.6), all nonzero helicity amplitudes can be constructed as follows:

jMeGeG
1 1;� 1

2
� 1

2

(�)j = jMeGeG
�1�1; 1

2
1
2

(�)j = 2�2m3
e
!3m2

3=2

�
cos2 �=2

y + cos2 �=2
+

sin2 �=2

y + sin2 �=2

�
;

(67a)

jMeGeG
1�1;� 1

2
1
2

(�)j = jMeGeG
�1 1; 1

2
�1

2

(�)j = jMeGeG
1�1;1

2
�1

2

(� � �)j = jMeGeG
�1 1;� 1

2
1
2

(� � �)j

=
2�2m2

e

!2

3m2
3=2

j sin �j cos2 �=2

y + cos2 �=2
; (67b)

jMSS
1 1 (�)j = jMSS

�1�1(�)j = jMPP
1 1 (�)j = jMPP

�1�1(�)j = jMSP
1 1 (�)j = jMSP

�1�1(�)j

=
4�2m2

e

!2

3m2
3=2

; (67c)

jMSS
1�1(�)j = jMSS

�1 1(�)j = jMPP
1�1(�)j = jMPP

�1 1(�)j

=
2�2m2

e

!2

3m2
3=2

; (67d)

jMSP
1�1(�)j = jMSP

�1 1(�)j =
2�2m2

e

!2

3m2
3=2

j cos �j: (67e)

All other possible helicity amplitudes in the eG eG sector vanish in the present approxi-

mation. In Eqs. (67) the subscripts refer to the helicities, ! is the c.m. energy of one of

the photons, y = m2
e

=4!2, and � is the scattering angle in the center-of-mass frame.

From these helicity amplitudes, the cross-sections in the center-of-mass frame can

be computed to be (with s = 4!2)

�(

 ! eG eG) =
�4m4

e

s

864�m4
3=2

�
1

2
+ 3y � 12y2

�
1� 1

4(1 + y)

�
�

3 ln

�
1 +

1

y

� �
y2 � 4y3

�
1 +

1

2(1 + 2y)

���
; (68a)

�(

 ! SS) = �(

 ! PP ) =
5�4m4

e

s

2304�m4
3=2

; (68b)

�(

 ! SP ) =
13�4m4

e

s

3456�m4
3=2

: (68c)
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Figure 9

Plot of �(

) ! \nothing00) vs the center-of-mass energy of the photon-photon

system for three photino masses of interest. The gravitino mass has been taken

to be 2.3 �eV.

Adding these, we obtain the total cross-section for the experimentally observable process



 ! \nothing00 to be

�tot =
�4m4

e

s

576�m4
3=2

�
5 + 2y � 8y2

�
1� 1

4(1 + y)

�
� 2 ln

�
1 +

1

y

� �
y3 � 4y4

�
1 +

1

4(1 + 2y)

��	
:

(6:9)

Plots of the cross-section against the c.m. energy
p
s are shown in Fig. 9 for various

values of the photino mass and a gravitino mass 2:3 � 10�6eV which is the present

experimental lower bound.
[30]

Note that the cross-section rises sharply and is quite large

for
p
s >� 100GeV.

The main background to our signal comes from the reaction 

 ! ��� which goes

in lowest order via a box diagram. Various combinations of internal lines for the box

are possible. One can have a box with three charged leptons plus one W boson or

with three W 's plus one charged lepton, or with three charged Higgs scalars (in the
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minimal supersymmetric theory) plus one charged lepton or with three charged leptons

plus one charged scalar as well as their supersymmetric counterparts. Since we consider

the external momenta to be comparable to the W -mass and assume that the relevant

superparticle masses are in the same range, there is only one dimensional scale in the

problem. Thus each box diagram contributes a cross-section O(�2G2
F s) � 10�2picobarn.

With three species of neutrinos, there can at the very most be an enhancement factor of

3� 82 yielding a total background cross-section in the picobarn range. As is clear from

the graph, the major region of investigation is thus almost free from any competitive

background.

6.3 Gluon-gluon collisions

In the previous section we showed how a study of the double gravitino process


 + 
 ! eG + eG could lead to a lower bound on the mass of the gravitino. The main

advantage of that process is that it does not need to produce any heavy supersymmetric

particles and therefore, can be applied at energies lower than a couple of hundreds of

GeV | the expected mass scale of the matter-gauge sector superparticles. On the

other hand, this particular experiment is hard, and even in the absence of any sizeable

background, is di�cult to perform since the parent e+, e� of the two photons have to

be doubly tagged.

In this section we shall study a di�erent process which can be studied at hadronic

colliders. As these cross-sections are typically gravitational, the higher energies that

these machines provide would be expected to give better limits than the leptonic data.

On the other hand, because of the hadronic debris, it is not possible to use the the kind of

tests proposed in the previous section in these machines.
[35]

Hence we study the monojet

production in these theories. We note that at su�ciently high energies (above the mass
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thresholds for all the known particles) the standard model predictions for monojet rates

are extremely small. Furthermore, because of R-symmetry, in standard supersymmetric

theories ordinary superparticles are produced in pairs. Hence except for jet merging

and experimental cuts, no `theoretical monojet' events can ever be achieved.

On the contrary, in theories involving a superlight gravitino, one can produce any

of the ordinary supersymmetric particles in conjunction with the gravitino without

violating R-parity. The interactions of the gravitino being extremely weak, this particle

is not observable. Yet, for a gravitino as light as 2.3 �eV and for superparticle mass-splits

larger than 80 GeV as reported by TEVATRON,
[14]

the e�ective coupling �!�mS=m3=2

is already larger than the strong coupling �S � 0:1 at these energies. Hence, any other

supersymmetric particle that may be produced chooses to decay into the corresponding

ordinary particle and a gravitino rather than decaying into other lighter superparticles

as assumed in the globally supersymmetric theory. The net result of this is that in

theories containing a superlight gravitino, the sole signal of supersymmetry will be a

large monojet cross-section.

To illustrate this process let us consider proton-antiproton collisions at 1:8 TeV.

The possible monojet processes include the scattering of two gluons into a gluino and

a gravitino, the scattering of a quark-antiquark pair into a gluino and a gravitino, the

scattering of a quark and a gluon into a squark and a gravitino or processes involving

the scalars and pseudoscalars mentioned in the last section. In each of the above cases

we can assume that the produced superparticle decays into the corresponding particle

and a gravitino. As all these processes add up incoherently, an estimate of the order of

magnitude of the predicted cross-sections can be made on the basis of any one of these

cross-sections. The bound that this will put on the gravitino will be weaker than the

exact bound that can be attained with a complete calculation.
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To illustrate, let us concentrate on the process of gluon-gluon fusion leading to the

production of a gluino and a gravitino. The matrix elements for this process can be

evaluated on the lines of Chapter 3. In the limit that the gravitino mass is much smaller

than the other energy scales in the problem, they turn out to be

jM1 1; 1
2

1
2
(�)j = jM�1�1;�1

2
� 1

2
(�)j = 0; (610a)

jM1 1; 1
2
�1

2
(�)j = jM�1�1;� 1

2
1
2
(�)j

= 2

r
2

3

(1� y)3=2(1 + y)fabcg�m
2
eg

m3=2

j sin �j
(1 + y)2 � (1� y)2 cos2 �

; (610b)
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� 1
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The di�ential cross-section for the process can then be obtained:

d�

d

=

P jMj2
64�2s

; (6:11)

where
P jMj2 refers to the sum of the matrix elements squared averaged over the initial

spin and colour states. We fold this distribution with the proton structure functions
[36]

and select out monojet events in the rapidity range j�j < 1:0 and missing transverse

energy \ET > 40 GeV using a typical Monte-Carlo algorithm. We thus obtain the

cross-section for monojet production in proton-antiproton collisions due to a superlight

gravitino. Experimentally, this cross-section is
[14]

known to be less than 0.14 nb at 90%

con�dence level. We can then plot an excluded region in the gluino gravitino mass plot
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Figure 10

The excluded region in the gluino gravitino mass plot is shaded.

as shown in Fig. 10. We �nd that e�ectively, for a gluino of about a 100 GeV, gravitinos

of masses less than 3.5 � eV are ruled out.

6.4 Discussion

In this chapter, we have studied possible experimental limits on the ratio of masses

of any gaugino and the gravitino. In particular, we have noted that photon-photon

collision experiments at electron-positron colliders can �nd absolute lower limits on the

ratio of the gravitino mass to the photino mass independent of the mass of the photino.

This contrasts with the existing lower bounds on this ratio coming from the process

considered by Fayet
[30]

which had to produce the photino in the �nal state and hence

85



had to assume a light photino. Our result is important because the photino is no more

believed to be such a light particle.

In addition to the above, we have studied the possibility of putting limits on the

gravitino mass from hadronic collisions. In this case, a coloured superparticle, for ex-

ample a gluino, is necessary in the �nal state of the elementary subprocess. This makes

the limit dependent on the mass of this �nal state particle. Nevertheless, because of

the higher energies at which these reactions have already been studied and the more

stringent limit on the gluino mass, the limits that we derive on the gravitino mass from

this calculation turn out to be of the same order of magnitude as those obtained by

Fayet earlier.
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7. Conclusions

In this thesis, some consistency issues relating to the presence of widely di�erent

mass scales in a spontaneously broken N = 1 supergravity theory have been discussed.

The requirement of such consistency all the way upto the Planck scale has been shown

to yield new bounds on the gaugino gravitino mass ratio. Furthermore, in case these

bounds are violated in nature, it has been shown how prominent experimental signatures

will appear much below the energy scale where the theory becomes inconsistent.

Because of the presence of the dimensional coupling constant �, such theories are

non-renormalizable and make sense only as e�ective low energy theories to be treated

perturbatively at the tree level. An important question concerns the energy domain of

validity of this e�ective theory. The general expectation would be for such an e�ective

�eld theory to be a valid description of phenomena upto the scale set by its dimensional

coupling, i.e. the Planck mass ��1 �MPl . It is only around (and not far below) it that

tree-level perturbation theory would be expected to break down, showing the failure of

the e�ective theory.

A large amount of freedom exists in de�ning an e�ective theory such as this. One

can actually adjust tree-level parameters to assign masses of widely di�erent magnitudes

to the various particles in the theory. This would seem to be perfectly compatible with

the symmetry requirements of the e�ective theory. On the other hand, what such a

procedure would do to the energy domain of validity of this theory would not be clear

without a unitarity analysis. In this thesis we have carried out precisely such an anal-

ysis. We demonstrate that large dimensionless ratios of gaugino and gravitino masses

imply large e�ective coupling constants in the theory which destroy the argument of

the preceding paragraph and cause inconsistencies to develop at scales much lower than

the Planck scale. Furthermore, these large couplings imply characteristic experimental
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signatures in such theories drastically below energy scales where they become inconsis-

tent. Experimental searches for these new signatures can therefore put limits on such

large ratios of masses.

The main results obtained in this thesis are as follows:

1. As explained in Chapters 3 and 5, a large ratio of the gaugino mass to the

gravitino mass results in the violation of tree-unitarity and the consequent failure

of perturbation theory at a comparatively low scale. In fact, in the latter of those

two chapters, it was derived that if supergravity are to satisfy the tree-level

unitarity constraints all the way upto the Planck scale, then one must have

m~gm
�1
3=2

< (288� +
6

5
)1=2 � 30: (7:1)

The same constraint of validity of perturbation theory also gives the following

mass bounds on the axion-like scalar and pseudoscalar `super-Higgs' particles in

the theory.

(m2
S + m2

P )1=2 < [96���1m2
3=2m

�1
~g ]1=2: (7:2)

2. Irrespective of theoretical prejudice, there exist experimental means for checking

whether such superlight gravitinos as well as scalars and pseudoscalars exist. In

Chapter 6, two of these methods have been presented and discussed. We have

found that for a gluino as heavy as 80 GeV, a gravitino lighter than a few �eV

would already have been observed in TEVATRON experiments probing monojet

signatures in gluon-gluon collisions. In addition, the possiblity of obtaining an

experimental lower limit on the ratio of the gravitino mass to the photino mass

has also been discussed. This process involves the production of two gravitinos

in the �nal state of a photon-photon collison and hence is not limited in its scope

by the photino mass.
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At this point, it is interesting to speculate on the nature of a theory which violates

the tree-unitarity constraint discussed above. First, we note that a simple modi�ca-

tion of the theory cannot remove the tree-unitarity violation. The reason is that we

have considered the most general N = 1 supergravity theory. The extended (N > 1)

supergravities do not �t low energy phenomenology. Could there be new physics at

the Planck length which would leave residual e�ects (e.g. through contact terms) at

sub-Planckian energies a�ecting our unitarity analysis? One modi�cation of the theory

which can be used to eliminate the tree-unitarity constraint would be to invoke higher-

derivative kinetic energy terms and their associated contact interactions which may arise

from a non-pointlike nature of particles in the theory. This, for example, is the case

with an underlying string theory. A di�erent possiblity is to invoke composite models

which treat both the gauge boson and the gaugino or the gravitino as composites. In

such a case, the description in terms of true pointlike gauge bosons may fail long before

tree-unitarity breaks down. These theories, however, still have to obey the experimental

constraints described above.

On the other hand, it is notionally possible to have a theory in which supergravity

really becomes strong at some high scale and tree-unitarity does get violated there. Such

theories are, of course, quite un�sthetic. In fact, with our present day understanding,

we have very good agreement between the expectations of particle physics and cosmol-

ogy of the early universe. We �nd, for example, that the grand uni�cation scale in

supersymmetric particle physics (assuming the validity of a perturbative analysis) is

around 1016 GeV, while in
ationary models also need a phase transition around the

same scale. In all these calculations supergravity has been assumed to be too weakly

interacting to contribute. This would no longer be true if the gravitino is very light and

the coincidence of scales mentioned above would then have to be explained as fortuitous.

89



Furthermore, being a gauge theory of a spacetime symmetry (namely, supersymmetry),

if supergravity becomes strongly interacting, the nature of spacetime itself could become

very di�erent. For example, if the interaction strengths become large enough for grav-

itino condensates to form, they can introduce macroscopic torsion in the background

spacetime posing a problem for the observed isotropy of the universe.

Finally, we can make one de�nitive statement on spontaneously broken N = 1

supergravity theories as a consequence of the work reported in this thesis. Either our

tree unitarity constraints on the gaugino gravitino mass ratio must be obeyed in nature,

or there would have to be radical new physics at the Planck scale, generating residual

e�ects and experimental signatures at lower energies.
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8. Appendix I: REDUCE 3 Program for A + A ! � + ~G

IN UTILRED$

COMMENT DECLARE$

VECTOR E1,E2$

MASS P1=0,P2=0,P3=M,P4=MM,E1P=0,E2P=0,E1M=0,E2M=0$

MSHELL P1,P2,P3,P4,E1P,E2P,E1M,E2M$

MATRIX UBAR,V,E1DG,E2DG,SDG,TDG,UDG,P1DG,P2DG,P3DG,P4DG,MID$

COMMENT KINEMATICS AND FRAME CHOICE$

MASS E1P=0,E2P=0,E1M=0,E2M=0$ % P AND M AS SUFFIX STAND

% FOR +VE AND -VE

MSHELL E1P,E2P,E1M,E2M$ % "HELICITY".

MATRIX UBARP,UBARM,VP,VM,E1PDG,E1MDG,E2PDG,E2MDG,G0,G1,G2,G3$

P3 #= P4-P1-P2$ % THE MOMENTUM CONVENTION

% TAKES ONLY THE

% GRAVITINO(4)

% AS OUTGOING. HENCE GLUINO

% MOMENTUM (3) IS

% UNPHYSICAL

EPRIME #= W - (M**2-MM**2)/4/W$ % W IS THE CM ENERGY OF

% ONE GLUON AND EPRIME

% IS THE CM ENERGY OF THE

% GRAVITINO.

K #= SQRT(2*W+M-MM)*SQRT(2*W-M-MM)*SQRT(2*W+M+MM)*SQRT(2*W-M+MM)/4/W$

% K IS THE CM MOMENTA OF

% THE FINAL STATE GLUINO

% AND NEGATIVE THAT OF THE

% GRAVITINO.

LET CS**2+SN**2=1$ % CS AND SN STAND FOR

% COS (THETA/2) AND
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% SIN(THETA/2)

% WHERE THETA IS THE AN-

GLE

% BETWEEN THE EMRGENT

% GLUINO AND GLUON

% NUMBER 1$

P1.P2 #= 2*W**2$

S #= (P1+P2).(P1+P2)$

T! #= (P4-P2).(P4-P2)$

U #= (P4-P1).(P4-P1)$

P1.P4 #= W*EPRIME-W*K*(CS**2-SN**2)$

P2.P4 #= W*EPRIME+W*K*(CS**2-SN**2)$

P1.E2P #= P1.E2M #= P2.E1P #= P2.E1M #= P1.E1P #= P1.E1M #= P2.E2P #=

P2.E2M #= E1P.E2M #= E1M.E2P #= 0$

P4.E1P #= P4.E2M #= -I*SQRT(2)*K*SN*CS$

P4.E1M #= P4.E2P #= I*SQRT(2)*K*SN*CS$

E1P.E1M #= E2P.E2M #= E1P.E2P #= E1M.E2M #= -1$

EE#= 2*W-EPRIME$ % ENERGY OF THE GLUINO

REMINSM #= SQRT(2*W-M-MM)*SQRT(2*W-M+MM)/2/SQRT(W)$

REPLUSM #= SQRT(2*W+M-MM)*SQRT(2*W+M+MM)/2/SQRT(W)$

REPMINMM #= SQRT(2*W+M-MM)*SQRT(2*W-M-MM)/2/SQRT(W)$

REPPLUMM #= SQRT(2*W+M+MM)*SQRT(2*W-M+MM)/2/SQRT(W)$

VP#=MAT( (-I*SN*REMINSM),(-CS*REMINSM),(I*SN*REPLUSM),(CS*REPLUSM))$

VM#=MAT((I*CS*REMINSM),(-SN*REMINSM),(I*CS*REPLUSM),(-SN*REPLUSM))$

UBARP #= MAT((SN*REPPLUMM,I*CS*REPPLUMM,-SN*REPMINMM,-I*CS*REPMINMM))$

UBARM #= MAT((CS*REPPLUMM,-I*SN*REPPLUMM,CS*REPMINMM,-I*SN*REPMINMM))$

VECTOR ZETAPLUS,ZETAMINUS,ZETAL,ZETA;

LET ZETAPLUS.P1 = 1/SQRT(2)*(I*W)*(2*SN*CS),

ZETAPLUS.P2 = - ZETAPLUS.P1,

ZETAMINUS.P1 = - ZETAPLUS.P1,

ZETAMINUS.P2 = ZETAPLUS.P1,

ZETAL.P1 = 1/MM *(K*W -EPRIME*W*(CS**2-SN**2)),

ZETAL.P2 = 1/MM *(K*W +EPRIME*W*(CS**2-SN**2)),
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ZETAPLUS.E1P = 1/2*(1+CS**2-SN**2),

ZETAPLUS.E1M = 1/2*(1-CS**2+SN**2) ,

ZETAPLUS.E2P = ZETAPLUS.E1M,

ZETAPLUS.E2M = ZETAPLUS.E1P,

ZETAMINUS.E1P = ZETAPLUS.E1M,

ZETAMINUS.E2P = ZETAPLUS.E2M,

ZETAMINUS.E1M = ZETAPLUS.E1P,

ZETAMINUS.E2M = ZETAPLUS.E2P,

ZETAL.E1P = 1/MM/SQRT(2)*(-I*EPRIME*2*SN*CS),

ZETAL.E1M = -ZETAL.E1P,

ZETAL.E2P = -ZETAL.E1P,

ZETAL.E2M = ZETAL.E1P;

MID #= M*MAT((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))$ %M IS GLUINO MASS

G0 #= MAT((1,0,0,0),(0,1,0,0),(0,0,-1,0),(0,0,0,-1))$ %G0 TO G3 ARE GAMMA

G1 #= MAT((0,0,0,1),(0,0,1,0),(0,-1,0,0),(-1,0,0,0))$ %MATRICES

G2 #= MAT((0,0,0,-I),(0,0,I,0),(0,I,0,0),(-I,0,0,0))$

G3 #= MAT((0,0,1,0),(0,0,0,-1),(-1,0,0,0),(0,1,0,0))$

E1PDG #= E2MDG #= -1/SQRT(2)*(G1-I*G2)$ %VDG IS THE GENERAL

E2PDG #= E1MDG #= -1/SQRT(2)*(G1+I*G2)$ %SYMBOL FOR V.G, I.E.

P1DG #= W*(G0+G3)$ %V0*G0-V1*G1-V2*G2

P2DG #= W*(G0-G3)$ %-V3*G3

P4DG #= EPRIME*G0+K*(2*SN*CS*G2+(CS**2-SN**2)*G3)$

P3DG #= P4DG-P1DG-P2DG$

SDG #= P1DG+P2DG$

TDG #= P4DG-P2DG$

UDG #= P4DG-P1DG$

WRITE " SYMBOLS DEFINED "$

%PAUSE$

COMMENT DEFINE MATRIX ELEMENT$

MATRIX SM$

ALGEBRAIC PROCEDURE DOIT(A,B,C,D)$

BEGIN
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COMMENT A,B,C,D CAN BE P OR M SIGNIFYING +VE OR -VE HELICITIES FOR THE

TWO GLUONS,THE GLUINO AND THE GRAVITINO RESPECTIVELY.A AND B CAN

ALSO BE 0 TO REPLACE THE CORRESPONDING POLARIZATION BY THE MOMENTUM$

IF A = P THEN <<E1 #= E1P$ E1DG #= E1PDG >> ELSE

IF A = 0 THEN <<E1 #= P1$ E1DG #= P1DG >> ELSE

IF A = M THEN <<E1 #= E1M$ E1DG #= E1MDG>>

ELSE REDERR 'A! NOT! P!,M! OR! 0$

IF B = P THEN <<E2 #= E2P$ E2DG #= E2PDG >> ELSE

IF B = 0 THEN <<E2 #= P2$ E2DG #= P2DG >> ELSE

IF B = M THEN <<E2 #= E2M$ E2DG #= E2MDG>>

ELSE REDERR 'B! NOT! P!,M! OR! 0$

V #= IF C = P THEN VP ELSE IF C =M THEN VM

ELSE REDERR 'C! NOT! P! OR! M$

IF D = 3 THEN << ZETA#= ZETAPLUS$ UBAR#= UBARP >>

ELSE IF D = 15 THEN << ZETA#=1/SQRT(3)*ZETAPLUS$ UBAR #= UBARM >>

ELSE IF D = 5 THEN << ZETA#=I*SQRT(2/3)*ZETAL$ UBAR #= UBARP >>

ELSE IF D =-15 THEN << ZETA#=-1/SQRT(3)*ZETAMINUS$ UBAR #= UBARP >>

ELSE IF D =-5 THEN << ZETA#=-I*SQRT(2/3)*ZETAL$ UBAR #= UBARM >>

ELSE IF D =-3 THEN << ZETA#= ZETAMINUS$ UBAR#=UBARM >>

ELSE REDERR 'D! INVALID $

SM#= -KAPPA*G*FABC*UBAR*((!%U#=(ZETA.P1*E1DG*(UDG+MID)*E2DG

-ZETA.E1*P1DG*(UDG+MID)*E2DG)/(U-M**2))+(!%T#=-(ZETA.P2*E2DG*(TDG+MID)

*E1DG

-ZETA.E2*P2DG*(TDG+MID)*E1DG)/(T! -M**2))+(!%S#=(ZETA.(P1+P2)*

(-E1DG*(2*P1+P2).E2

+E2DG*(2*P2+P1).E1+E1.E2*(P1DG-P2DG)+(E1.(P1+P2)*(2*P1+P2).E2

-E2.(P2+P1)*(2*P2+P1).E1

-E1.E2*(P1-P2).(P1+P2) )*SDG/S )+(+E1.ZETA*(2*P1+P2).E2-E2.ZETA*(2*P2+P1).E1

-E1.E2*(P1-P2).ZETA+(-(P1+P2).E1*(2*P1+P2).E2+(P1+P2).E2*(2*P2+P1).E1

+E1.E2*(P1+P2).(P1-P2))

*(P1+P2).ZETA/S )*SDG)/S)+(!%C#=-(-ZETA.E2*E1DG +ZETA.E1*E2DG)))*V $

RETURN SM(1,1)$

END$

94



WRITE " MATRIX ELEMENT DEFINED "$

END$
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9. Appendix II: REDUCE 3 Program for A +A! ~G + ~G

OFF ECHO$

IN UTILRED$

COMMENT DECLARE$

VECTOR E1,E1P,E1M,

E2,E2P,E2M,

ZETA1,ZETA1P,ZETA1M,ZETA1L,

ZETA2C,ZETA2CM,ZETA2CP,ZETA2CL$ % C STANDS FOR COMPLEX CONJUGATION.

MATRIX U2BAR,U2BARP,U2BARM, % P AND M AS SUFFIX STAND FOR +VE AND

V1,V1P,V1M, % -VE "HELICITIES" RESPECTIVELY. THE

E1DG,E1PDG,E1MDG, % UNMARKED ONES ARE THE GENERIC NAMES

E2DG,E2PDG,E2MDG, % FOR THOSE AND WILL BE EQUATED TO

ZETA1DG,ZETA1PDG,ZETA1MDG, % THESE BEFORE EVALUATION.

ZETA1LDG,

ZETA2CDG,ZETA2CPDG,ZETA2CMDG,

ZETA2CLDG, % V1,U2 : GRAVITINO(3 & 4)

P1DG,P2DG,P3DG,P4DG,MID, % E1,E2 : GAUGE BOSON (1 & 2)

SDG,TDG,UDG, % DG IS THE GENERAL SYMBOL FOR DOTTING

G0,G1,G2,G3,G5$ % WITH GAMMA.

COMMENT KINEMATICS AND FRAME CHOICE$

MASS P1=0,P2=0,P3=MM,P4=MM, % P1,P2,UNPHYSICAL P3 ARE INCOMING.

E1P=0,E2P=0,E1M=0,E2M=0, % P4 IS OUTGOING. MM IS GRAVITINO MASS.

ZETA1P=0,ZETA2CP=0,ZETA1M=0,ZETA2CM=0$

MSHELL P1,P2,P3,P4,

E1P,E2P,E1M,E2M,

ZETA1P,ZETA2CP,ZETA1M,ZETA2CM$

P3 #= P4-P1-P2$

% W IS THE CM ENERGY OF ONE GLUON

K #= SQRT(W-MM)*SQRT(W+MM)$ % K IS THE CM MOMENTUM OF GRAVITINO 3

LET CS**2+SN**2=1$ % CS AND SN STAND FOR COS (THETA/2) AND SIN(THETA/2)
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% WHERE THETA IS THE ANGLE BETWEEN AN EMERGENT

% GRAVITINO 3 AND GLUON NUMBER 1$

P1.P2 #= 2*W**2$

S #= (P1+P2).(P1+P2)$

T! #= (P4-P2).(P4-P2)$

U #= (P4-P1).(P4-P1)$

P1.P4 #= W*W-W*K*(CS**2-SN**2)$

P2.P4 #= W*W+W*K*(CS**2-SN**2)$

P1.E2P #= P1.E2M #= P2.E2P #= P2.E2M #= 0$

P4.E2M #= -I*SQRT(2)*K*SN*CS$

P4.E2P #= I*SQRT(2)*K*SN*CS$

E2P.E2M #= -1$

REMINSM #= SQRT(W-MM)$

REPM #= SQRT(W+MM)$

V1P#=MAT( (-I*SN*REMINSM),(-CS*REMINSM),(I*SN*REPM),(CS*REPM))$

V1M#=MAT((I*CS*REMINSM),(-SN*REMINSM),(I*CS*REPM),(-SN*REPM))$

U2BARP #= MAT((SN*REPM,I*CS*REPM,-SN*REMINSM,-I*CS*REMINSM))$

U2BARM #= -MAT((CS*REPM,-I*SN*REPM,CS*REMINSM,-I*SN*REMINSM))$

LET ZETA2CM.P1 = 1/SQRT(2)*(I*W)*(2*SN*CS),

ZETA2CM.P2 = - ZETA2CM.P1,

ZETA2CP.P1 = - ZETA2CM.P1,

ZETA2CP.P2 = ZETA2CM.P1,

ZETA2CM.P4 =0,

ZETA2CP.P4 =0,

ZETA2CM.E2M =-1/2*(1-CS**2+SN**2),

ZETA2CM.E2P =-1/2*(1+CS**2-SN**2),

ZETA2CP.E2P = ZETA2CM.E2M,

ZETA2CP.E2M = ZETA2CM.E2P,

ZETA2CP.ZETA2CM = -1,

EPS(E2M,E2P,P1,P2)=2*I*W*W, % ORDER IMPORTANT!!!!!!!!

ZETA1L.P1 = 1/MM * (K*W+W**2*(CS**2-SN**2)),

ZETA1L.P2 = 1/MM * (K*W-W**2*(CS**2-SN**2)),

ZETA1L.P4 = 1/MM * 2*K*W,
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ZETA1L.E2P = 1/MM * (-I*W*2*SN*CS)/SQRT 2,

ZETA1L.E2M = 1/MM * I*W*2*SN*CS/SQRT 2,

ZETA1L.ZETA2CP = 0,

ZETA1L.ZETA2CM = 0,

ZETA2CL.P1 = 1/MM * (K*W-W**2*(CS**2-SN**2)),

ZETA2CL.P2 = 1/MM * (K*W+W**2*(CS**2-SN**2)),

ZETA2CL.P4 = 0,

ZETA2CL.E2P = 1/MM * (I*W*2*SN*CS)/SQRT 2,

ZETA2CL.E2M = 1/MM * (-I*W*2*SN*CS)/SQRT 2,

ZETA2CL.ZETA2CP = 0,

ZETA2CL.ZETA2CM = 0,

ZETA1L.ZETA2CL = 1/MM**2 * (K*K+W*W),

ZETA1P = ZETA2CP,

ZETA1M = ZETA2CM,

E1M = E2P,

E1P = E2M$

MID #= M*MAT((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))$ % MM IS GAUGINO MASS

G0 #= MAT((1,0,0,0),(0,1,0,0),(0,0,-1,0),(0,0,0,-1))$ % G0 TO G3 ARE GAMMA

G1 #= MAT((0,0,0,1),(0,0,1,0),(0,-1,0,0),(-1,0,0,0))$ % MATRICES. G5 IS THE

G2 #= MAT((0,0,0,-I),(0,0,I,0),(0,I,0,0),(-I,0,0,0))$ % GAMMA5 MATRIX.

G3 #= MAT((0,0,1,0),(0,0,0,-1),(-1,0,0,0),(0,1,0,0))$

G5 #= I*G0*G1*G2*G3$

E1PDG #= E2MDG #= -1/SQRT(2)*(G1-I*G2)$ % VDG IS THE GENERAL

E2PDG #= E1MDG #= -1/SQRT(2)*(G1+I*G2)$ % SYMBOL FOR V.G, I.E.

P1DG #= W*(G0+G3)$ % V0*G0-V1*G1-V2*G2-

P2DG #= W*(G0-G3)$ % V3*G3

P4DG #= W*G0+K*(2*SN*CS*G2+(CS**2-SN**2)*G3)$

P3DG #= P4DG-P1DG-P2DG$

SDG #= P1DG+P2DG$

ZETA1PDG #= -(G1+I*(CS**2-SN**2)*G2-2*I*CS*SN*G3)/SQRT 2$

ZETA2CMDG #= -(G1-I*(CS**2-SN**2)*G2+2*I*CS*SN*G3)/SQRT 2$

ZETA1MDG #= ZETA2CMDG$

ZETA2CPDG #= ZETA1PDG$
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ZETA1LDG #= (K*G0-2*W*CS*SN*G2-W*(CS**2-SN**2)*G3)/MM$

ZETA2CLDG #= (K*G0+2*W*CS*SN*G2+W*(CS**2-SN**2)*G3)/MM$

TDG #= P4DG-P2DG$

UDG #= P4DG-P1DG$

WRITE " SYMBOLS DEFINED "$

PAUSE$

COMMENT DEFINE MATRIX ELEMENT$

MATRIX SM,!%G,!%S,!%P,!%T,!%U$

ALGEBRAIC PROCEDURE DOIT(A,B,C,D)$

BEGIN

COMMENT A,B,C,D CAN BE P OR M SIGNIFYING +VE OR -VE HELICITIES FOR THE

TWO GLUONS,THE GLUINO AND THE GRAVITINO RESPECTIVELY.A AND B CAN

ALSO BE 0 TO REPLACE THE CORRESPONDING POLARIZATION BY THE MOMENTUM$

IF A = P THEN <<E1 #= E1P$ E1DG #= E1PDG >> ELSE

IF A = 0 THEN <<E1 #= P1$ E1DG #= P1DG >> ELSE

IF A = M THEN <<E1 #= E1M$ E1DG #= E1MDG>>

ELSE REDERR 'A! NOT! P!,M! OR! 0$

IF B = P THEN <<E2 #= E2P$ E2DG #= E2PDG >> ELSE

IF B = 0 THEN <<E2 #= P2$ E2DG #= P2DG >> ELSE

IF B = M THEN <<E2 #= E2M$ E2DG #= E2MDG>>

ELSE REDERR 'B! NOT! P!,M! OR! 0$

IF C = P3B2 THEN <<V1 #=-V1P$ ZETA1DG #= ZETA1MDG$ ZETA1 #= ZETA1M>>

ELSE IF C = P1T THEN <<V1 #= -V1M$ ZETA1DG #= ZETA1MDG/SQRT(3)$

ZETA1 #= ZETA1M/SQRT(3)>>

ELSE IF C = P1L THEN <<V1 #= -V1P$ ZETA1DG #= ZETA1LDG*SQRT(2/3)*I$

ZETA1 #= ZETA1L*SQRT(2/3)*I>>

ELSE IF C = M1L THEN <<V1 #= V1M$ ZETA1DG #= ZETA1LDG*SQRT(2/3)*I$

ZETA1 #= ZETA1L*SQRT(2/3)*I>>

ELSE IF C = M1T THEN <<V1 #= V1P$ ZETA1DG #= ZETA1PDG/SQRT(3)$

ZETA1 #= ZETA1P/SQRT(3)>>

ELSE IF C = M3B2 THEN <<V1 #= V1M$ ZETA1DG #= ZETA1PDG$ ZETA1 #= ZETA1P>>

ELSE REDERR 'C! NOT! P!,M! OR! 0$
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IF D = P3B2 THEN <<U2BAR #= U2BARP$ ZETA2CDG#=ZETA2CPDG$ ZETA2C #= ZETA2CP>>

ELSE IF D = P1T THEN <<U2BAR #= U2BARM$ ZETA2CDG #= ZETA2CPDG/SQRT(3)$

ZETA2C #= ZETA2CP/SQRT(3)>>

ELSE IF D = P1L THEN <<U2BAR #= U2BARP$ ZETA2CDG #=-ZETA2CLDG*SQRT(2/3)*I$

ZETA2C #=-ZETA2CL*SQRT(2/3)*I>>

ELSE IF D = M1L THEN <<U2BAR #=-U2BARM$ ZETA2CDG #=-ZETA2CLDG*SQRT(2/3)*I$

ZETA2C #=-ZETA2CL*SQRT(2/3)*I>>

ELSE IF D = M1T THEN <<U2BAR #=-U2BARP$ ZETA2CDG #= ZETA2CMDG/SQRT(3)$

ZETA2C #= ZETA2CM/SQRT(3)>>

ELSE IF D = M3B2 THEN <<U2BAR #=-U2BARM$ ZETA2CDG#=ZETA2CMDG$

ZETA2C #= ZETA2CM>>

ELSE REDERR 'D! NOT! P!,M! OR! 0$

SM#= -I*KAPPA**2*

((!%T #= U2BAR*((P2DG*E2DG-E2DG*P2DG)/4*ZETA2CDG*(TDG+MID)*

ZETA1DG*(P1DG*E1DG-E1DG*P1DG)/4)*V1/(T! -M**2))

+ (!%U #= U2BAR*((P1DG*E1DG-E1DG*P1DG)/4*ZETA2CDG*(UDG+MID)*

ZETA1DG*(P2DG*E2DG-E2DG*P2DG)/4)*V1/(U -M**2))

+ (!%G #= IF A=B THEN MAT((0))

ELSE U2BAR*E1DG*V1 * (+ZETA2C.E1 * P4.ZETA1

+ZETA1.E1 * P3.ZETA2C

-(P4+P3).E1 * ZETA2C.ZETA1

/2) )

+ (!%S #= -2*M*(P1.P2*E1.E2-P1.E2*E1.P2)/2/(S-MS**2)*

ZETA2C.ZETA1 * U2BAR*V1)

+ (!%P #= I*M*EPS(P1,E1,P2,E2)/(S-MP**2)*ZETA2C.ZETA1 *

U2BAR*G5*V1)

)$

RETURN SM(1,1)$

END$

ALGEBRAIC PROCEDURE MATELEM(A,B,C,D)$

IF C=P1B2 THEN

IF D=P1B2 THEN

DOIT(A,B,P1L,P1L)+DOIT(A,B,P1L,P1T)+DOIT(A,B,P1T,P1L)+
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DOIT(A,B,P1T,P1T)

ELSE IF D=M1B2 THEN

DOIT(A,B,P1L,M1L)+DOIT(A,B,P1L,M1T)+DOIT(A,B,P1T,M1L)+

DOIT(A,B,P1T,M1T)

ELSE

DOIT(A,B,P1L,D)+DOIT(A,B,P1T,D)

ELSE IF C=M1B2 THEN

IF D=P1B2 THEN

DOIT(A,B,M1L,P1L)+DOIT(A,B,M1L,P1T)+DOIT(A,B,M1T,P1L)+

DOIT(A,B,M1T,M1T)

ELSE IF D=M1B2 THEN

DOIT(A,B,M1L,M1L)+DOIT(A,B,M1L,M1T)+DOIT(A,B,M1T,M1L)+

DOIT(A,B,M1T,M1T)

ELSE

DOIT(A,B,M1L,D)+DOIT(A,B,M1T,D)

ELSE

IF D=P1B2 THEN

DOIT(A,B,C,P1L)+DOIT(A,B,C,P1T)

ELSE IF D=M1B2 THEN

DOIT(A,B,C,M1L)+DOIT(A,B,C,M1T)

ELSE

DOIT(A,B,C,D);

WRITE " MATRIX ELEMENT DEFINED "$

END$
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