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Outline

• Introduction: Motivation
• Classical Statistic Framework: Regression 

Analysis
• Regression Models (Linear & Nonlinear)
• NN Tutorial 
• Some Atmospheric & Oceanic Applications

– Accelerating Calculations of Model Physics in 
Numerical Models

• How to Apply NNs
• Conclusions



Motivations for This Seminar

T (years)1900 – 1949 1950 – 1999 2000 – …

Simple, linear or quasi-linear, single 
disciplinary, low-dimensional systems   

Complex, nonlinear, multi-disciplinary, 
high-dimensional systems

Simple, linear or quasi-linear, 
low-dimensional framework of classical

statistics (Fischer, about 1930)   

Complex, nonlinear, high-dimensional 
framework… (NNs)

Under Construction!

Objects
Studied:

Tools
Used:

Studied at the 
University!

• Problems for Classical Paradigm:
– Nonlinearity & Complexity
– High Dimensionality - Curse of 

Dimensionality  

• New Paradigm under Construction:
– Is still quite fragmentary
– Has many different names and gurus
– NNs are one of the tools developed 

inside this paradigm 

Materials presented here reflect personal opinions and experience of the author!
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Statistical Inference:
A Generic Problem

Problem:
Information exists in the form of sets of values 

of several related variables (sample or 
training set) – a part of the population:                  

{(x1, x2, ..., xn)p, zp}p=1,2,...,N
– x1, x2, ..., xn - independent variables (accurate),
– z - response variable (may contain observation 

errors ε) 
We want to find responses z’q for another set of 

independent variables {(x’1, x’2, ..., x’n)q}q=1,..,M



Regression Analysis (1):
General Solution and Its Limitations

Find mathematical function f which describes this relationship:
1. Identify the unknown function f
2. Imitate or emulate the unknown function f

DATA: Training Set
{(x1, x2, ..., xn)p, zp}p=1,2,...,N

DATA: Another Set
(x’1, x’2, ..., x’n)q=1,2,...,M

zq = f(Xq)

REGRESSION FUNCTION
z = f(X), for all X 

INDUCTION
Ill-posed problem DEDUCTION

Well-posed problem

TRANSDUCTION
SVM

Sir Ronald A. Fisher ~ 1930
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Regression Analysis (2):
Identification vs. Imitation

IDENTIFICATION

IMITATION
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Regression Analysis (2):
A Generic Solution

• The effect of independent variables on the response 
is expressed mathematically be the regression or 
response function f:

y = f( x1, x2, ..., xn; a1, a2, ..., aq)
• y - dependent variable
• a1, a2, ..., aq - regression parameters (unknown!)
• f - the form is usually assumed to be known
• Regression model for observed response variable:

z = y + ε = f(x1, x2, ..., xn; a1, a2, ..., aq) + ε
• ε - error in observed value z
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Regression Models (1):
Maximum Likelihood

• Fischer suggested to determine unknown 
regression parameters {ai}i=1,..,q maximizing 
the functional:

here ρ(ε) is the probability density function 
of errors εi

• In a case when ρ(ε) is a normal distribution
the maximum likelihood => least squares

[ ]∑
=

−=
N

i
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1
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Regression Models (2):
Method of Least Squares

• To find unknown regression parameters {ai}i=1,2,...,q , 
the method of least squares can be applied:

• E(a1,...,aq) - error function = the sum of squared 
deviations.

• To estimate {ai}i=1,2,...,q => minimize E => solve the 
system of equations:

• Linear and nonlinear cases.

E a a a z y z f x x a a aq p p
p

N

p n p q
p

N

( , , ..., ) ( ) [ (( , ..., ) ; , , ..., )]1 2
2

1
1 1 2

2

1
= − = −

= =
∑ ∑

∂
∂
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a

i q
i
= =0 1 2; , ,...,
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Regression Models (3):
Examples of Linear Regressions

• Simple Linear Regression:
z = a0 + a1 x1 + ε

• Multiple Linear Regression:
z = a0 + a1 x1 + a2 x2 + ... + ε =

• Generalized Linear Regression:
z = a0 + a1 f1(x1)+ a2 f2(x2) + ... + ε =

– Polynomial regression, fi(x) = xi,
z = a0 + a1 x+ a2 x2 + a3 x3 + ... + ε

– Trigonometric regression, fi(x) = cos(ix)
z = a0 + a1 cos(x) + a1 cos(2 x) + ... + ε

a a xi i
i

n

0
1

+ +
=
∑ ε

a a f xi i i
i

n

0
1

+ +
=
∑ ( ) ε

No free 
parameters
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Regression Models (4):
Examples of Nonlinear Regressions

• Response Transformation Regression:
G(z) = a0 + a1 x1 + ε

• Example:
z = exp(a0 + a1 x1)
G(z) = ln(z) = a0 + a1 x1

• Projection-Pursuit Regression:

• Example:
y a a f xj ji i

i

n

j

k

= +
==
∑∑0

11
( )Ω

z a a b xj j ji i

nk

= + + +
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∑∑0 tanh( )Ω ε
ij 11
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NN Tutorial:
Introduction to Artificial NNs

• NNs as Continuous Input/Output Mappings
– Continuous Mappings: definition and some 

examples
– NN Building Blocks: neurons, activation 

functions, layers
– Some Important Theorems

• NN Training
• Major Advantages of NNs
• Some Problems of Nonlinear Approaches
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Mapping
Generalization of Function

• Mapping: A rule of correspondence established 
between vectors in vector spaces       and       
that associates each vector X of a vector 
space      with a vector Y in another vector 
space      .mℜ
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Mapping  Y = F(X): examples

• Time series prediction:
X = {xt, xt-1, xt-2, ..., xt-n}, - Lag vector
Y = {xt+1, xt+2, ..., xt+m} - Prediction vector

(Weigend & Gershenfeld, “Time series prediction”, 1994)
• Calculation of precipitation climatology:

X = {Cloud parameters, Atmospheric parameters}
Y = {Precipitation climatology}

(Kondragunta & Gruber, 1998)
• Retrieving surface wind speed over the ocean from satellite data (SSM/I):

X = {SSM/I brightness temperatures}
Y = {W, V, L, SST}  

(Krasnopolsky, et al., 1999; operational since 1998)
• Calculation of long wave atmospheric radiation: 

X = {Temperature, moisture, O3, CO2, cloud parameters profiles, surface fluxes, 
etc.}        
Y = {Heating rates profile, radiation fluxes}

(Krasnopolsky et al., 2005) 
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NN - Continuous Input to Output Mapping
Multilayer Perceptron: Feed Forward, Fully Connected
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2y
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my
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2t
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Nonlinear
Neurons

Linear
Neurons

X Y 

Input 
Layer

Output 
Layer

Hidden 
Layer

Y = FNN(X)
Jacobian !
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xn

tjLinear Part
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Some Popular Activation Functions
tanh(x) Sigmoid, (1 + exp(-x))-1

Hard Limiter Ramp Function

X X

X X
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NN as a Universal Tool for Approximation of 
Continuous & Almost Continuous Mappings

Some Basic Theorems:
Any function or mapping Z = F (X), continuous on 
a compact subset, can be approximately 
represented by a p (p ≥ 3) layer NN in the sense of 
uniform convergence (e.g., Chen & Chen, 1995; 
Blum and Li, 1991, Hornik, 1991; Funahashi, 1989, 
etc.) 
The error bounds for the uniform approximation 
on compact sets (Attali & Pagès, 1997):                        

||Z -Y|| = ||F (X) - FNN (X)|| ~ C/k  
k -number of neurons in the hidden layer            
C – does not depend on n (avoiding Curse of 
Dimensionality!)  
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NN training (1)

• For the mapping Z = F (X) create a training set - set 
of matchups {Xi, Zi}i=1,...,N, where Xi is input vector
and Zi - desired output vector

• Introduce an error or cost function E:

E(a,b) = ||Z - Y|| = ,

where Y = FNN(X) is neural network

• Minimize the cost function:  min{E(a,b)} and find 
optimal weights (a0, b0)

• Notation: W = {a, b} - all weights.

2

1
)(∑

=

−
N

i
iNNi XFZ
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NN Training (2)
One Training Iteration

NN
{W}

X        Training Set       Z 

Error
E = ||Z-Y||X 

Input

Y

 Output

Z  Desired
Output

Weight Adjustments
)W 

E#,
No

Yes End
Training

E

BP∆W

E ≤ ε
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Backpropagation (BP) Training Algorithm

• BP is a simplified steepest descent:                            

where W - any weight, E - error function,
η - learning rate, and  ∆W - weight increment

• Derivative can be calculated analytically:

• Weight adjustment after r-th iteration:
Wr+1 = Wr + ∆W

• BP training algorithm is robust but slow

E

W
W r+1 W r

)W 
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Generic Neural Network
FORTRAN Code:

DATA W1/.../, W2/.../, B1/.../, B2/.../, A/.../, B/.../ !  Task specific part
!===================================================
DO K = 1,OUT
!
     DO I = 1, HID
          X1(I) = tanh(sum(X * W1(:,I) + B1(I))
     ENDDO !  I

!
     X2(K) = tanh(sum(W2(:,K)*X1) + B2(K)) 
     Y(K) = A(K) * X2(K) + B(K) 

! ---                 
     XY = A(K) * (1. -X2(K) * X2(K))
     DO J = 1, IN 
          DUM = sum((1. -X1 * X1) * W1(J,:) * W2(:,K))
          DYDX(K,J) = DUM * XY
     ENDDO !  J    

!      
ENDDO !  K

NN Output

Jacobian
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Major Advantages of NNs :

NNs are very generic, accurate and convenient
mathematical (statistical) models which are able to emulate 
numerical model components, which are complicated 
nonlinear input/output relationships (continuous or almost 
continuous mappings ).
NNs avoid Curse of Dimensionality
NNs are robust with respect to random noise and fault-
tolerant.
NNs are analytically differentiable (training, error and 
sensitivity analyses): almost free Jacobian!
NNs emulations are accurate and fast but NO FREE LUNCH!
Training is complicated and time consuming nonlinear 
optimization task; however, training should be done only 
once for a particular application!
Possibility of online adjustment
NNs are well-suited for parallel and vector processing
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NNs & Nonlinear Regressions: Limitations (1)

• Flexibility and Interpolation:

• Overfitting, Extrapolation:
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NNs & Nonlinear Regressions: Limitations (2)

• Consistency of estimators: α is a consistent 
estimator of parameter A, if α→ A as the size 
of the sample n → N, where N is the size of 
the population.

• For NNs and Nonlinear Regressions
consistency can be usually “proven” only 
numerically.

• Additional independent data sets are 
required for test (demonstrating consistency
of estimates).
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ARTIFICIAL  NEURAL  NETWORKS:
BRIEF  HISTORY

• 1943 - McCulloch and Pitts introduced a model of the neuron

• 1962 - Rosenblat introduced the one layer "perceptrons", the 
model neurons, connected up in a simple fashion.

• 1969 - Minsky and Papert published the book which practically 
“closed the field”
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ARTIFICIAL  NEURAL  NETWORKS:
BRIEF  HISTORY

• 1986 - Rumelhart and McClelland proposed the 
"multilayer perceptron" (MLP) and showed that it is a 
perfect application for parallel distributed processing.

• From the end of the 80's there has been explosive 
growth in applying NNs to various problems in 
different fields of science and technology 
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Atmospheric and Oceanic NN Applications

• Satellite Meteorology and Oceanography
– Classification Algorithms
– Pattern Recognition, Feature Extraction Algorithms
– Change Detection & Feature Tracking Algorithms
– Fast Forward Models for Direct Assimilation
– Accurate Transfer Functions (Retrieval Algorithms)

• Predictions
– Geophysical time series
– Regional climate
– Time dependent processes

• Accelerating and Inverting Blocks in Numerical Models
• Data Fusion & Data Mining
• Interpolation, Extrapolation & Downscaling
• Nonlinear Multivariate Statistical Analysis
• Hydrological Applications
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Developing Fast NN Emulations for 
Parameterizations of Model Physics

Atmospheric Long & Short Wave Radiations
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General Circulation Model
The set of conservation laws (mass, energy, momentum, water vapor, 

ozone, etc.)
• First Priciples/Prediction 3-D Equations on the Sphere:

– ψ - a 3-D prognostic/dependent variable, e.g., temperature 
– x - a 3-D independent variable: x, y, z & t
– D  - dynamics (spectral or gridpoint)
– P  - physics or parameterization of physical processes (1-D 

vertical r.h.s. forcing)

• Continuity Equation
• Thermodynamic Equation
• Momentum Equations

( , ) ( , )D x P x
t
ψ ψ ψ∂
+ =

∂

Lon
Lat

Height
3-D Grid
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General Circulation Model
Physics – P, represented by 1-D (vertical) parameterizations 

• Major components of P = {R, W, C, T, S}:
– R - radiation (long & short wave processes)
– W – convection, and large scale precipitation processes
– C - clouds
– T – turbulence
– S – surface model (land, ocean, ice – air interaction)

• Each component of P is a 1-D parameterization of 
complicated set of multi-scale theoretical and 
empirical physical process models simplified for 
computational reasons 

• P is the most time consuming part of GCMs!



Distribution of Total Climate Model Calculation Time
12%

66%

22%

Dynamics
Physics
Other

Current NCAR Climate Model 
(T42 x L26): ∼ 3° x 3.5°

6%

89%

5%

Near-Term Upcoming Climate 
Models (estimated) : ∼ 1° x 1°
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Generic Problem in Numerical Models
Parameterizations of Physics are Mappings

GCM

x1

x2

x3

xn

y1

y2

y3

ymPa
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Y=F(X)
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Generic Solution – “NeuroPhysics”
Accurate and Fast NN Emulation for Physics Parameterizations

Learning from Data

GCM

X Y

Original Parameterization

F

NN Emulation

YX FNN

Training
Set …, {Xi, Yi}, … ∀Xi∈ Dphys

NN Emulation

FNN



NN for NCAR CAM Physics 
CAM Long Wave Radiation

• Long Wave Radiative Transfer:

• Absorptivity & Emissivity (optical properties):
4
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Magic of NN performance

• NN Emulation Numerical 
Performance is Determined 
by:
– NC of NN emulation

• Functional Complexity (FC) 
of OP, i.e. Complexity of I/O 
Relationship: Y = F(X)

Original
Parameterization NN Emulation

Xi Yi Xi Yi

Y = F(X) YNN = FNN(X)

• OP Numerical Performance is 
Determined by:
– Numerical complexity (NC) of 

OP
• Complexity of OP 

Mathematics
– Complexity of Physical 

Processes

• Explanation of Magic of NN Performance:
– Usually, FC of OP << NC of OP

AS A RESULT
– NC of NN Emulation ~ FC of OP 

and 
NC of NN Emulation << NC of OP 
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Neural Network for NCAR LW Radiation
NN characteristics

• 220 Inputs:
– 10 Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & 

N2O mixing ratios, pressure, cloudiness, emissivity
– Relevant surface characteristics: surface pressure, upward LW flux 

on a surface - flwupcgs
• 33 Outputs:

– Profile of heating rates (26)
– 7 LW radiation fluxes: flns, flnt, flut, flnsc, flntc, flutc, flwds

• Hidden Layer: One layer with 50 to 300 neurons 
• Training: nonlinear optimization in the space with 

dimensionality of 15,000 to 100,000
– Training Data Set: Subset of about 200,000 instantaneous profiles 

simulated by CAM for the 1-st year
– Training time: about 2 to 40 days (SGI workstation)
– Training iterations: 1,500 to 8,000

• Validation on Independent Data:
– Validation Data Set (independent data): about 200,000 instantaneous 

profiles simulated by CAM for the 2-nd year
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Neural Network for NCAR SW Radiation
NN characteristics

• 451 Inputs:
– 21 Profiles: specific humidity, ozone concentration, pressure, 

cloudiness, aerosol mass mixing ratios, etc
– 7 Relevant surface characteristics

• 33 Outputs:
– Profile of heating rates (26)
– 7 LW radiation fluxes: fsns, fsnt, fsdc, sols, soll, solsd, solld

• Hidden Layer: One layer with 50 to 200 neurons 
• Training: nonlinear optimization in the space with 

dimensionality of 25,000 to 130,000
– Training Data Set: Subset of about 100,000 instantaneous profiles 

simulated by CAM for the 1-st year
– Training time: about 2 to 40 days (SGI workstation)
– Training iterations: 1,500 to 8,000

• Validation on Independent Data:
– Validation Data Set (independent data): about 100,000 instantaneous 

profiles simulated by CAM for the 2-nd year



4/4 & 25/4/2006 at EMC/NCEP/NOAA V.Krasnopolsky, "Nonlinear Statistics and NNs" 38

NN Approximation Accuracy and Performance vs. 
Original Parameterization

Parameter Model Bias RMSE Mean σ Performance

NASA 1. 10-4 0.32 1.52 1.46

1.98

1.89

LWR
(°K/day)

NN150 NCAR  3. 10-5 0.28 -1.40 ∼ 150
times faster

SWR
(°K/day)

NN150
NCAR 6. 10-4 0.19 1.47 ∼ 20

times faster



Error Vertical Variability Profiles

RMSE profiles in K/day RMSE Profiles in K/day
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Individual Profiles

Black – Original 
Parameterization
Red – NN with 100 neurons
Blue – NN with 150 neurons

PRMSE = 0.18 & 0.10 K/day PRMSE = 0.05 & 0.04 K/dayPRMSE = 0.11 & 0.06 K/day
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NCAR CAM-2: 10 YEAR EXPERIMENTS

• CONTROL: the standard NCAR CAM version 
(available from the CCSM web site) with the 
original Long-Wave Radiation (LWR) (e.g. 
Collins, JAS, v. 58, pp. 3224-3242, 2001)

• LWR/NN: the hybrid version of NCAR CAM 
with NN emulation of the LWR 
(Krasnopolsky, Fox-Rabinovitz, and 
Chalikov, 2005, Monthly Weather Review, 
133, 1370-1383)
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PRESERVATION of Global Annual Means

Parameter Original LWR 
Parameterization

NN 
Approximation

Difference
in %

Mean Sea Level 
Pressure (hPa)

1011.480 1011.481 0.0001

Surface Temperature 
(°K)

289.003 289.001 0.0007

Total Precipitation 
(mm/day)

2.275 2.273 0.09

Total Cloudiness 
(fractions 0.1 to 1.)

0.607 0.609 0.3

LWR Heating Rates 
(°K/day)

-1.698 -1.700 0.1

Outgoing LWR –
OLR (W/m2)

234.4 234.6 0.08

Latent Heat Flux 
(W/m2)

82.84 82.82 0.03
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NCAR CAM-2 Zonal Mean U
10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

contour 0.2 m/sec

all in m/sec



NCAR CAM-2 Zonal Mean 
Temperature

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

contour 0.1°K

all in °K
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NCAR CAM-2 Total 
Cloudiness

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 
all in fractions

Mean Min Max
(a) 0.607 0.07 0.98

(b) 0.608 0.06 0.98

(c) 0.002 -0.05 0.05
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NCAR CAM-2 Total 
Precipitation

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

all in mm/day

Mean Min Max
(a) 2.275 0.02 15.21

(b) 2.273 0.02 14.52

(c) 0.002 0.94 0.65
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How to Develop NNs:
An Outline of the Approach (1)

• Problem Analysis:
– Are traditional approaches unable to solve your problem?

• At all
• With desired accuracy
• With desired speed, etc.

– Are NNs well-suited for solving your problem?
• Nonlinear mapping
• Classification
• Clusterization, etc.

– Do you have a first guess for NN architecture?
• Number of inputs and outputs
• Number of hidden neurons
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How to Develop NNs:
An Outline of the Approach (2)

• Data Analysis
– How noisy are your data? 

• May change architecture 
or even technique

– Do you have enough data?
– For selected architecture: 

• 1) Statistics => N1
A >  nW

• 2) Geometry => N2
A > 2n

• N1
A < NA < N2

A
• To represent all possible patterns => NR

NTR = max(NA, NR)
– Add for test set: N = NTR × (1 +τ ); τ > 0.5
– Add for validation: N =  NTR × (1 + τ + ν); ν > 0.5

Y

X
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How to Develop NNs:
An Outline of the Approach (3)

• Training
– Try different initializations
– If results are not satisfactory, then goto Data 

Analysis or Problem Analysis 
• Validation (must for any nonlinear tool!)

– Apply trained NN to independent validation data
– If statistics are not consistent with those for 

training and test sets, go back to Training or Data 
Analysis
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Conclusions
• There is an obvious trend in scientific studies:

– From simple, linear, single-disciplinary, low dimensional 
systems

– To complex, nonlinear, multi-disciplinary, high dimensional
systems 

• There is a corresponding trend in math & statistical 
tools:
– From simple, linear, single-disciplinary, low dimensional 

tools and models
– To complex, nonlinear, multi-disciplinary, high dimensional 

tools and models
• Complex, nonlinear tools have advantages & 

limitations: learn how to use advantages & avoid 
limitations! 

• Check your toolbox and follow the trend, otherwise 
you may miss the train!
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Recommended Reading
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– B. Ostle and L.C. Malone, “Statistics in Research”, 1988
• NNs, Introduction:  

– R. Beale and T. Jackson, “Neural Computing: An Introduction”, 240 
pp., Adam Hilger, Bristol, Philadelphia and New York., 1990

• NNs, Advanced:
– Bishop, C.M. (1995), Neural Networks for Pattern Recognition, 482 

pp., Oxford University Press, Oxford, U.K. 
– Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, 

696 pp., Macmillan College Publishing Company, New York, U.S.A.
– Ripley, B.D. (1996), Pattern Recognition and Neural Networks, 403 

pp., Cambridge University Press, Cambridge, U.K.
– Vapnik, V.N., and S. Kotz (2006), Estimation of Dependences Based 

on Empirical Data (Information Science and Statistics), 495 pp., 
Springer, New York.

• NNs and Statistics:
– B. Cheng and D.M. Titterington, “Neural Networks:   A Review from 

a Statistical Perspective”, 1994
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Share with your Colleagues! 
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