

The High-Intensity Frontier

- Exploration and understanding
 - Novel phenomena
 - Rare processes
 - High statistics
- Active option in front-line physics: factories for Z, B, τ/Charm, K, antiproton, anti-Hydrogen
 Proton driver → new opportunities for
 - v, muon, kaon, nuclear physics

Neutrino Physics

- v oscillations first evidence for physics beyond the Standard Model
 Seesaw mechanism M_ν
- Still unknown parameters: mixing angle Θ₁₃ CP-violating phase δ Sign of Δm²

- Many other parameters in mininal seesaw models Total of 18: responsible for leptogenesis?
- Some accessible in rare muon processes

Fluxes from Different v Facilities

Sensitivities of Super & β Beams

Schematic Layout of β Beam @ CERN

Sensitivities of Super & B Beams

Schematic Layout of v Factory

Sensitivities to θ_{13}

Neutrino Factory Sensitivity: CP-Violating Phase δ

Signal vs distance

40 kton detector & 50 GeV v factory: 5 yrs 10²¹m /yr

In fact, 20-30 GeV is enough!

Best distance is 2500-3500 km

e.g. Fermilab or BNL -> West Coast or ...

Resolving Ambiguities with v Factory

Getting to ultimate precision means combining data from several channels:

- Wrong-sign muons
- $\nu_e \rightarrow \nu_\tau$
- Conventional Beams

hep-ph/0310014

Neutrinos as Probes of Standard Model

- Enormous interaction rates in nearby detector
- Extraction of α_s , $\sin^2 W$
- Quark and antiquark densities Polarized and unpolarized e.g., strange quarks
- Charm production
- Polarization of Λ baryons also probe of strange polarization

Event Rates in Nearby Detector

- -

Potential Accuracy for $\sin^2\theta_W$

UNCERTAINTIES AT THE ν FACTORY: (×10⁻⁴)

STAT. UNCERTAINTY

SYST. LUMI. UNCERTAINTY

- SIGNAL: FORWARD e TRACK WITH NO HADRONS, $E > E_{min}$
- BACKGROUND: QUASIELASTIC νp SCATTERING, REMOVE WITH p_T CUT

Measuring Strange Partons

Handles on Strange Polarization

Muon Physics

- Proton source produces many muons
- Rare μ decays $\mu \rightarrow e \gamma, \mu \rightarrow eee,$ $\mu A \rightarrow e A$

 $BR(\mu \to e\gamma) \, < \, 1.2 \times 10^{-11}$

 $BR(\mu^+ \to e^+e^+e^-) < 1.0 \times 10^{-12}$

$$R(\mu^{-}Ti \to e^{-}Ti) < 6.1 \times 10^{-13}$$

Expected in susy seesaw model: probe unknown parameters

- Dipole moments:
 - g_{μ} 2, electric dipole moment, CPT tests
- Nuclear, condensed-matter physics: (radioactive) μ-ic atoms, muonium, μ-ic Hydrogen

Measuring Seesaw Parameters

$\mu \rightarrow e\gamma$ in Supersymmetric Seesaw

Anomalous Magnetic Moment

Other Experiments: $\mu A \rightarrow eA$, EDM

Muon Colliders?

- Extrapolate µ cooling technology
- Light Higgs Factory?
 Standard Model vs supersymmetry?
- Factory for heavier supersymmetric Higgses? New probes of CP violation?
- High-energy frontier?

Alternative to CLIC for multi-TeV lepton collisions?

Higgs Studies @ First Muon Collider

Higgs @ Second Muon Collider

Isotope Source for Nuclear Physics

- The limits of nuclear existence:
 - neutron & proton drip lines, superheavy elements, extreme nucleonic matter
- Nuclear astrophysics: rp-process, r-process
- Probes of Standard Model: CKM, P, T, CP
- Materials science:

radioactive spies, curing chemical blindness, positron annihilation studies, applications to biomedicine, etc.

Physics with a Proton Driver

- Long-range programme in v physics: superbeam, β beam, v factory
- Complementary programme in μ physics: rare μ decays, μ properties, μ colliders?
- Next-generation facility for nuclear physics also tests of SM, nuclear astrophysics
- Synergy with FNAL programme?

host laboratory for ILC?

Interesting project – and FNAL would be a good place for it

Possible Layout of SPL at CERN

SPL @ CERN Wish List

USER	CERN COMMITMENT *	USERS' WISHES	
	Short term	Medium term	Long term
		[~asap !]	[beyona 2014]
	Planned beams	Ultimate Iuminosity	Luminosity upgrades
Fixed Target (COMPASS)	4.3⑨10 ⁵ spills/y ?	6⑨10 ⁵ spills/y	
	4.5⑨10 ¹⁹ p/year	Upgrade ~	
	1.92 µA **	Upgrade ~ 9 5	
			> 2 GeV / 4 MW
			1-2 GeV / 5 MW

Possible Upgrades of LHC

Increase luminosity – but beware of integrated radiation dose

Possible EURISOL Site @ CERN

v Oscillation Facilities @ CERN

- CNGS:
 - v beam from SPS: τ production
- Superbeam?
 - intense v beam from SPL
- β beam?
 - signed electron (anti) v beams from heavy ions
- v factory?

muon and electron (anti) ν beams from μ decay

Tests of CVC hypothesis: Probe Standard Model

sible cteristics Beams	6 He id 6 He c 6 He a 6 He n $\overline{\nu}_{e}$ ave Storag Straig Runni
Anti-v, from ⁶ He	Detec $\langle E \rangle / $
v _e from ¹⁸ Ne	$ \frac{\nu_e \text{ interms of } 18 \text{ Ne} \text{ is } 1$
	sible teristics Beams Anti-v _e from ⁶ He v _e from ¹⁸ Ne

ossible characteristics of a beta beam	optimized for the $\overline{ u}_{ m e}$ interval	raction rate
⁶ He ion production	$5 \times 10^{13} / \mathrm{s} \; \mathrm{every} \; \mathrm{8 \; s}$	
⁶ He collection efficiency	20%	
⁶ He accelerator efficiency	65%	
⁶ He maximum final energy	150 GeV/nucleon	
$\overline{\nu}_{\mathrm{e}}$ average energy	582 MeV	
Storage ring total intensity	1×10^{14} ⁶ He ions	
Straight section relative length	36%	
Running time/year	$10^{7} { m s}$	
Detector distance	100 km	
$\left\langle E\right\rangle /L$	$5.9 imes10^{-3}~{ m GeV/km}$	
$\overline{\nu}_{\rm e}$ interaction rate on H_2O	69/kton/year	

Possible characteristics of a beta beam optimized for the ν_e interaction rate.

¹⁸ Ne ion production	$1 \times 10^{12} / \mathrm{s} \ \mathrm{every} \ \mathrm{4 \ s}$	
¹⁸ Ne collection efficiency	50%	
¹⁸ Ne accelerator efficiency	82%	
$^{18}\mathrm{Ne}$ maximum final energy	75 GeV/nucleon	
ν_e average energy	279 MeV	
Storage ring total intensity	1.3×10^{13} ¹⁸ Ne ions	
Straight section relative length	36%	
Running time/year	$10^{7} { m s}$	
Detector distance	130 km	
$\left\langle E\right\rangle /L$	$2.1 imes 10^{-3}~{ m GeV/km}$	
ν_e interaction rate on H_2O	3.1/kton/year	