Gridspec: A standard for the description of grids used in Earth System models GO-ESSP Workshop 2008 Seattle WA

V. Balaji¹ Zhi Liang² Alistair Adcroft¹

¹Princeton University

²HPTi Inc.

17 September 2008

Talk outline...

Examples of grids in use in ESMs Horizontal coordinates Vertical coordinates Why a grid standard? Model makers Model data users The Gridspec Geometry Mosaics and tiles Supergrids Gridspec implementations Gridspec tools Grid creation Regridding Analysis and Visualization Outstanding issues

Talk outline ...

Examples of grids in use in ESMs Horizontal coordinates Vertical coordinates Model makers Model data users Geometry Mosaics and tiles Supergrids Analysis and Visualization

Horizontal grids in use in ESMs

Balaji et al (NOAA/GFDL)

Vertical coordinates

The taxonomy of vertical coordinates distinguishes mass-based and space-based vertical coordinates. There is often an attempt to do something in the spirit of geo-referencing: invoking a "standard" reference grid: usually based on pressure levels in the atmosphere, and depth in the ocean.

Balaji et al (NOAA/GFDL)

Talk outline ...

Horizontal coordinates Vertical coordinates Why a grid standard? Model makers Model data users Geometry Mosaics and tiles Supergrids

Earth system models are built from components

- Earth system models nowadays are built from components: subsystems that may be independently discretized.
- Even when all components are built by a cohesive community, the different components must have some conventions to share grid information.
- Furthermore, these days it is increasingly common to build ESMs out of components of independent provenance.

Dependencies across data from many models

 Model intercomparisons have become a primary research avenue for consensus and uncertainty estimates of anthropogenic climate change. This plot is a composite across the entire AR4 archive.

 Model chaining: output from one model used as forcing for another "downstream".

NX=155 NY=130 ds=50km CLAT=47.5 CLON=-97 Mercator

Grid metadata

To be of use by models as well as for interpreting model output, the standard must enable vector calculus and conservative regridding. The following aspects of a grid must be included in the specification:

- distances between gridpoints, to allow differential operations;
- angles of grid lines with respect to a reference, usually geographic East and North, to enable vector operations. One may also choose to include an arc type (e.g "great circle"), which specifies families of curves to follow while integrating a grid line along a surface.
- areas and volumes for integral operations. This is generally done by defining the boundaries of a grid cell represented by a point value. Below we will also consider fractional areas and volumes in the presence of a mask, which defines the sharing of cell between two or more components.

Talk outline ...

Horizontal coordinates Vertical coordinates Model makers Model data users The Gridspec Geometry Mosaics and tiles Supergrids

- The underlying geometry: sphere, spheroid, geoid, plane... In general transformations between different geometries are not well-defined.
- "Sphere" geometries permit geo-referencing: mapping to "canonical" coordinates: geographic longitude and latitude.
- Vertical geometry: mass- or space-based. Again, transformations between these are not well-posed, or must be user-defined functions.
- Analogue of geo-referencing is community-defined standard model levels.
- Vertical coordinates may need terrain information: reference surface is a digital elevation map of the planetary surface. (Dependency on external dataset).

- The underlying geometry: sphere, spheroid, geoid, plane... In general transformations between different geometries are not well-defined.
- "Sphere" geometries permit geo-referencing: mapping to "canonical" coordinates: geographic longitude and latitude.
- Vertical geometry: mass- or space-based. Again, transformations between these are not well-posed, or must be user-defined functions.
- Analogue of geo-referencing is community-defined standard model levels.
- Vertical coordinates may need terrain information: reference surface is a digital elevation map of the planetary surface. (Dependency on external dataset).

- The underlying geometry: sphere, spheroid, geoid, plane... In general transformations between different geometries are not well-defined.
- "Sphere" geometries permit geo-referencing: mapping to "canonical" coordinates: geographic longitude and latitude.
- Vertical geometry: mass- or space-based. Again, transformations between these are not well-posed, or must be user-defined functions.
- Analogue of geo-referencing is community-defined standard model levels.
- Vertical coordinates may need terrain information: reference surface is a digital elevation map of the planetary surface. (Dependency on external dataset).

- The underlying geometry: sphere, spheroid, geoid, plane... In general transformations between different geometries are not well-defined.
- "Sphere" geometries permit geo-referencing: mapping to "canonical" coordinates: geographic longitude and latitude.
- Vertical geometry: mass- or space-based. Again, transformations between these are not well-posed, or must be user-defined functions.
- Analogue of geo-referencing is community-defined standard model levels.
- Vertical coordinates may need terrain information: reference surface is a digital elevation map of the planetary surface. (Dependency on external dataset).

- The underlying geometry: sphere, spheroid, geoid, plane... In general transformations between different geometries are not well-defined.
- "Sphere" geometries permit geo-referencing: mapping to "canonical" coordinates: geographic longitude and latitude.
- Vertical geometry: mass- or space-based. Again, transformations between these are not well-posed, or must be user-defined functions.
- Analogue of geo-referencing is community-defined standard model levels.
- Vertical coordinates may need terrain information: reference surface is a digital elevation map of the planetary surface. (Dependency on external dataset).

- polar_stereographic, lambert_conformal, mercator, none, etc.
- May need auxiliary information: e.g north_pole attribute that is not the geographic North Pole. (a "rotated pole" is not a mapping or a projection but an attribute!)
- Sometimes stored under grid_mapping.

The tripolar grid of Murray (1996) is composed of tiles with different projections: two polar stereographic projections with different poles, and a spherical coordinate system below the polar latitude.

Discretizations

Discretization expresses how to represent coordinate space in arrays.

• The most commonly used discretization in Earth system science is logically rectangular.

A discretization is logically rectangular if the coordinate space (x, y, z) is translated one-to-one to index space (i, j, k). Note that the coordinate space may continue to be physically curvilinear; yet, in index space, grid cells will be rectilinear boxes. The discretization is regular if in addition we can construct coordinate arrays x(i), y(j), z(k).

- Triangular discretizations (and often, irregular LRGs) are often expressed as unstructured grids (x(i), y(i), z(k)).
- Mappings are methods of recovering coordinate locations from a functional form based on the discretization. The current CF grid_mapping does that, but also seems to be a container for projection information.

Balaji et al (NOAA/GFDL)

17 September 2008 14 / 26

Mosaics

The mosaic is a simple but powerful abstraction that allows one to cleanly express complex grids as collections of tiles.

Mosaic Gridspec

• Starting with a simple grid tile...

• you can make a simple mosaic...

add refinement...

Balaji et al (NOAA/GFDL)

add refinement...

Mosaics

The mosaic is a simple but powerful abstraction that allows one to cleanly express complex grids as collections of tiles.

• Starting with a simple grid tile...

you can make a simple mosaic...

Balaji et al (NOAA/GFDL)

17 September 2008 14 / 26

add refinement...

you can make a simple mosaic...

- Starting with a simple grid tile...

cleanly express complex grids as collections of tiles.

The mosaic is a simple but powerful abstraction that allows one to

Mosaic Gridspec

• You can also express nested grids...

• grids with halos...

and complex grids.

Contact regions

- The connection between the tiles in the mosaic is either a boundary or an overlap.
- Boundary specification: anchor points, orientations.
- Overlap specification: exchange grid. Also where to resolve masks (e.g the land-sea boundary).

 Since mosaics are recursive, we can specify a complete coupled model...

Balaji et al (NOAA/GFDL)

Staggering and supergrids

- If the "staggered" quantities are placed on independent coordinate sets (x, y), (x_u, y_u), (x_v, y_v) their relationships are lost.
- We instead define the supergrid: the set of all the points on the grid where physical quantities might be defined.
- Variables are defined on subsets of points on the supergrid.

Talk outline ...

Horizontal coordinates Vertical coordinates Model makers Model data users Geometry Mosaics and tiles Supergrids Gridspec implementations

- The Gridspec is to some degree language-neutral: if netCDF-3, then it can be entirely done in netCDF-3. Current implementations include the GENIE Implementation in XML (Ian Henderson: http://www.genie.ac.uk) and the GFDL implementation (Zhi Liang: http://www.gfdl.noaa.gov/~vb/grids).
- It can be expressed in various data formats as well as in XML schema: we are still hedging our bets as to whether this will get put in netCDF files or in some "aggregation layer".
- So...it's nice to see that the two prototype implementations are in XML and netCDF-3...

Talk outline ...

Horizontal coordinates Vertical coordinates Model makers Model data users Geometry Mosaics and tiles Supergrids Gridspec tools Grid creation Regridding Analysis and Visualization A command-line tool for creating a horizontal grid file for horizontal_grid_type = spectral_grid, regular_lonlat_grid, tripolar_grid, conformal_cubic_grid, gnomonic_cubic_grid, simple_cartesian_grid, e.g

- make_hgrid -grid_type regular_lonlat_grid -nlon 0,1,3,...360 -nlat -90,-88.2,... creates a lat-lon grid with non-uniform spacing.
- make_hgrid -grid_type conformal_cubic_grid -nlon 48 -nratio 2: created 48 × 48 × 6 cubic grid.

A similar tool called make_vgrid for vertical grids.

Specifying mosaics

- make_solo_mosaic -num_tiles ntiles -tile_file gridtile
 will look for a set of ntiles tile gridspec netCDF files named gridtile#.nc and make a mosaic file mosaic.nc that specifies their linkages.
- make_topog -mosaic mosaic.nc -topog_type realistic -topog_file /archive/fms/mom4/input_data/OCCAM_p5degree.nc -topog_field TOPO specifies the topography/bathymetry.
- make_coupler_mosaic -atmos_mosaic atm_mosaic.nc -ocean_mosaic ocean_mosaic.nc -ocean_topog ocean_topog.nc [-land_mosaic land_mosaic.nc] [-sea_level sea_level] [-interp_method 1] [-mosaic_name mosaic_name] generates a coupler mosaic with land-sea mask, etc.

Balaji et al (NOAA/GFDL)

fregrid is a command-line utility for regridding.

- fregrid -input_mosaic input_mosaic.nc nlon M -nlat N -input_file input_file -field_name temp,salt
- fregrid -input_mosaic input_mosaic.nc
 -output_mosaic output_mosaic.nc -input_file
 input_file -field_name temp,salt

fregrid is now prototyped as a "web service" (see demo by Kevin tomorrow)! We could potentially offer server-side regridding, allowing fields to be stored and manipulated on their native grids, but output data on a different grid if desired.

Analysis and visualization

- ferret, a widely-used analysis and plotting utility is now capable of interpreting gridspec files and displaying the associated mosaic datasets. A "native" capability within ferret is being built. http://www.gfdl.noaa.gov/~atw/ferret/cubed_sphere/
- The MoDAVE project funded by DoE is building mosaic visualization capability within the VisIT tool, to be demo'd by Alex Pletzer of Tech-X tomorrow.

Balaji et al (NOAA/GFDL)

Mosaic Gridspec

Talk outline ...

Horizontal coordinates Vertical coordinates Model makers Model data users Geometry Mosaics and tiles Supergrids Analysis and Visualization Outstanding issues

Outstanding issues

- There is no agreed-upon method for remapping of vector fields: this is still an open research question. In particular for CMIP-5, the question of defining "poleward transport" for ocean models with non-spherical native grids is unresolved.
- Gridspec is still not in the "CF process". This is mostly my fault: some of this stems from my uncertainty as to how to proceed. Perhaps "standardizing" the tools and APIs would be a start? Especially the ability to read mosaics into web services and ESMF/PRISM data structures...
- Handling of Gridspec as an external reference: CF still doesn't do this cleanly. e.g in CMIP-3: sea_cell_area and ocean_cell_volume are stored in the static table and referenced in the 2D and 3D tables through free-text comment attributes.
- Unstructured grids have special issues, and should be a separate but coordinated track.

Balaji et al (NOAA/GFDL)