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Abstract

We consider the modeling of a time series described by a linear regression component

whose regressor sequence satis�es the generalized asymptotic sample second moment station-

arity conditions of Grenander (1954). The associated disturbance process is only assumed

to have sample second moments that converge with increasing series length, perhaps after

a di¤erencing operation. The model�s regression component is taken to be underspeci�ed,

due perhaps to simpli�cations, approximations, or parsimony. Also, the ARMA or ARIMA

model used for the disturbances need not be correct. Both Ordinary Least Squares and

Generalized Least Squares estimates of the mean function are considered. An optimality

property of GLS relative to OLS is obtained for one-step-ahead forecasting. Asymptotic

bias characteristics of the regression estimates are shown to distinguish the forecasting

performance. The results provide theoretical support for a procedure used by Statistics

Netherlands to impute the values of late reporters in some economic surveys.

1. INTRODUCTION

For many economic indicator series, modeling requires speci�cation of both a regression function

and an autocovariance structure for the disturbance process. Suppose that, possibly after a

variance stabilizing transformation (e.g. di¤erencing), one has data Wt; 1 � t � T of the form

Wt = AXt + yt; (1.1)

where the Xt are column vectors, and the yt are real variates that are asymptotically orthogonal

to the Xt in a sense to be de�ned, whose lagged sample second moments converge as T !1.
With monthly or quarterly seasonal economic data, AXt might describe a linear or higher

degree trend, stable seasonal e¤ects, moving holiday e¤ects (Bell and Hillmer, 1983), trading

day e¤ects (Findley, Monsell, Bell, Otto, and Chen, 1998), or other periodic e¤ects. Xt might

also include values of related stochastic variables, perhaps at leads or lags. We address the

situation in which the modeler considers a model

Wt = A
MXM

t + yMt (1.2)



whose regressor XM
t is not able to reproduce AXt for all t, due to known or unknown omissions,

approximations, simpli�cations, etc. We assume that the modeler, perhaps starting from the

ordinary least squares (OLS) estimate for AM given by (1.5) below, has decided upon an au-

toregressive moving average (ARMA) model family, not necessarily correct, for the disturbance

(or residual) process yMt =Wt �AMXM
t . Such a model for (1.2) is called a regARMA model.

GLS estimation of AM occurs simultaneously with ARMA estimation. The simplest de�ni-

tion of (feasible) GLS estimates of AM , given by (1.3) below, makes use of the ARMA model�s

innovation �lter that is de�ned as follows. With L denoting the lag operator, let �(L) be the

autoregressive polynomial and �(L) the moving average polynomial of a (perhaps incorrect)

candidate ARMA model for yMt , and let � = (1; �1; �2; : : :) denote the coe¢ cient sequence

of the power series expansion �(L)=�(L) =
P1
j=0 �jL

j . When yt in (1.1) and the regressors

missing from XM
t are weakly (i.e. �rst and second moment) stationary with mean zero, then

yMt will be weakly stationary with mean zero. In this case, assuming values of yMt are avail-

able at all past times, yMtjt�1 (�) = �
P1
j=1 �jy

M
t�j is the model�s linear forecast of y

M
t from

yMs ;�1 < s � t � 1; see Section 5.3.3 of Box and Jenkins (1976) or Hannan (1970, p. 147).
The forecast errors at (�) = yMt � yMtjt�1 (�) =

P1
j=0 �jy

M
t�j are called the model�s innovations

series, and the coe¢ cient sequence � is its innovation �lter. If the ARMA model is correct,

then for each t, at (�) is uncorrelated with yMs ;�1 < s � t � 1, and it follows that yMtjt�1 (�)
has minimum mean square error among all such linear forecasts of yMt and that the innovations

at (�) are uncorrelated (white noise). However, we do not assume that a correct ARMA model

exists or that yMt is weakly stationary. For example, when a missing regressor is deterministic,

e.g. periodic, yMt will not be weakly stationary even when yt is, but will instead be asymp-

totically stationary, meaning its lagged sample second moments will converge as T increases.

Their limits form the autocovariance sequence of a weakly stationary process. In e¤ect, it is

this autocovariance sequence for which an ARMA model is sought. All ARMA model-related

quantities of interest in this paper depend only on � and on the Wt and XM
t . Thus we can

express model-dependence in terms of �, as we do throughout the paper. Further motivation

for this �parameterization�is given in Section 3. We refer to each � as a model.

For given Wt; X
M
t , 1 � t � T and �, de�ne Wt [�] =

Pt�1
j=0 �jWt�j and XM

t [�] =Pt�1
j=0 �jX

M
t�j for 1 � t � T , and let 0 denote transpose. Following Pierce (1971), we de�ne

the �-model�s GLS estimator of AM to be

AMT (�) =
TX
t=1

Wt [�]X
M
t [�]0

 
TX
t=1

XM
t [�]XM

t [�]0
!�1

: (1.3)

(We discuss another GLS estimator in Section 8.) With these AMT (�), an estimate of � (and of

the ARMA coe¢ cients determining � when they are identi�ed) can be obtained by conditional or

unconditional maximum likelihood estimation (MLE). (As usual, Gaussian likelihood functions

are used without requiring the data to be Gaussian.) For the conditional MLE estimates

on which we focus for simplicity (see Section 7.1.2 of Box and Jenkins, 1976), for each 1 �
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t � T , one de�nes the �-model�s forecast of Wt from Ws; 1 � s � t � 1 to be AMT (�)XM
t +Pt�2

j=0 (��j+1)
�
Wt�1�j �AMT (�)XM

t�1�j

�
, with the convention

P�1
j=0 = 0. This is the special

caseWM
tjt�1 (�; �; T ) of the more general forecast functionW

M
tjt�1 (�; �

�; T ) de�ned in (1.6) below.

Conditional MLE estimates �T leading to GLS estimates AMT
�
�T
�
are the minimizers

�T = argmin
�2��

1

T

TX
t=1

�
Wt �WM

tjt�1 (�; �; T )
�2
; (1.4)

where �� is a compact set of � speci�ed by ARMA (p, q) models whose AR and MA polynomials

have all zeroes in fjzj � 1 + "g, for some " > 0.
Responding to the extensive literature comparing GLS with OLS, we also consider model

estimates and forecasts based on the OLS estimate of AM ,

AMT =
TX
t=1

WtX
M 0
t

"
TX
t=1

XM
t X

M 0
t

#�1
: (1.5)

This is the special case AMT (�
�) of (1.3) with �� = (1; 0; 0; : : :), the white noise model for yMt .

The forecast function of Wt associated with AMT is obtained by using this choice of �� in

WM
tjt�1 (�; �

�; T ) = AMT (�
�)XM

t +
t�2X
j=0

(��j+1)
�
Wt�1�j �AMT (��)XM

t�1�j
�
: (1.6)

With this formula, for any �xed ��, conditional MLE yields a speci�cation

��T = argmin�2�� T
�1PT

t=1

�
Wt �WM

tjt�1 (�; �
�; T )

�2
.

In this article, we obtain formulas for the limiting values of average squared one-step-ahead

prediction errors obtained from these two types of MLE�s,

lim
T!1

min
�2��

T�1
TX
t=1

�
Wt �WM

tjt�1 (�; �; T )
�2

(1.7)

and, for �xed ��,

lim
T!1

min
�2��

T�1
TX
t=1

�
Wt �WM

tjt�1 (�; �
�; T )

�2
: (1.8)

With Theorems 5.1 and 7.1 we show, under general assumptions on Xt and XM
t given be-

low, that (1.7) is always less than or equal (1.8), typically less. This is the optimality prop-

erty of GLS referred to in the title. (By contrast, in the correct regressor case, when all

our assumptions hold except (2.9) requiring asymptotic non-negligibility of the omitted re-

gressors, the two limits are equal.) Further, using OLS with the white noise model �� =

(1; 0; 0; : : :) for yMt , as is often done, usually leads to even worse forecasts, in the sense that

limT!1 T
�1PT

t=1

�
Wt �WM

tjt�1 (�
�; ��; T )

�2
has a larger value than (1.8); see Subsection 7.1.2.
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1.1. Overview of the Sections and Appendices

The regressor sequenceXt, t � 1 is required to satisfy the conditions of Grenander (1954), which
de�ne a property we call scalable asymptotic stationarity (S.A.S.); see Section 2 and Appendix

B. Grenander introduced this generalization of stationarity to investigate the e¢ ciency of OLS

estimates for a large class of nonstochastic regressors in models with a broad range of weakly

stationary disturbances. We indicate in Subsection 7.2 why e¢ ciency in Grenander�s sense is

rarely applicable in the context of misspeci�ed nonstochastic regressors. For the models we

consider, the regressor XM
t in (1.2), which can be stochastic, is taken to be a proper subvector

of Xt. The remaining entries of Xt can be those of any vector XN
t , compatible with our

assumptions, whose variables compensate for the inadequacies of XM
t in such a way that, for

some AM and AN , the regression function in (1.1) can be decomposed as

AXt = A
MXM

t +ANXN
t : (1.9)

Then, in (1.2), yMt = ANXN
t + yt.

Our requirements for XM
t , X

N
t and yt are comprehensively stated in Section 2 and veri-

�ed for some important classes of models in Subsections 2.1 and 6.2. More information about

ARMA model parameterization with innovations coe¢ cient sequences � = (1; �1; �2; : : :) is pro-

vided in Section 3, which includes some elementary examples. For diagonal scaling matrices

DM;T such that a:s:-limT!1DM;T
PT
t=1X

M
t X

M 0
t DM;T is nonsingular, Theorem 4.1 gives a for-

mula for limT!1
�
AMT (�)�AM

�
T�1=2D�1M;T and establishes that convergence is uniform on

the compact sets �� de�ned in Appendix A. For a given �, this limit is called the asymptotic

bias characteristic of AMT (�) for A
M . Section 5 obtains formulas for the limits of the sample

second moments of the forecast errors Wt � WM
tjt�1 (�; �; T ) and Wt � WM

tjt�1 (�; �
�; T ). The

analogous results for regARIMA-type nonstationary models, for situations in which the distur-

bance process requires a di¤erencing transformation prior to ARMA modeling, are discussed

in Section 6. We describe, in Theorem 7.1 of Section 7, how the optimality property of GLS

mentioned above arises: the better performance of GLS relative to OLS occurs when the OLS

estimate has an asymptotic bias characteristic di¤erent from that of the GLS estimate. These

results provide support for an imputation procedure used by Statistics Netherlands (Aelen,

2004), which uses one-step-ahead forecasts from regARIMA models with stochastic distributed

lag regressors to impute the net contribution of late-reporting �rms to economic time series

from certain monthly surveys, see Subsection 6.1. Subsection 7.1 provides elementary expres-

sions for some asymptotic quantities associated with GLS and OLS estimation when yMt is

modeled as a �rst-order autoregression. These are used to illustrate the generality of GLS�s

optimality. Section 8 discusses related results and extensions.

Proofs of the Theorems are given in Appendix E. They use the auxiliary results of Appendix

D obtained mainly from Findley, Pötscher and Wei (2001) (hereafter FPW 2001).
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2. THE DATA AND REGRESSOR ASSUMPTIONS

In (1.1), we require yt, t � 1 to be asymptotically stationary (A.S.) in the sense of Pötscher

(1987), meaning that for each k = 0;�1; : : :, the lag k sample second moments have asymptotic
almost surely (i.e.,with probability one), denoted a:s: That is, the limits

yk = lim
T!1

1

T

T�jkjX
t=jkj+1

yt+kyt a:s: (2.1)

exist. (By convention,
Pb
t=a = 0, if a < b.) From a well-known result of Herglotz, the sequence

of asymptotic lag k second moments yk has a spectral distribution function Gy(�) such that

yk =
R �
�� e

�ik�dGy (�) for k = 0;�1; : : :.
We require Xt; t � 1 in (1.1) to be scalably asymptotically stationary (S.A.S.), meaning that

the limits

�Xk = lim
T!1

DX;T

T�jkjX
t=jkj+1

Xt+kX
0
tDX;T a:s:; k = 0;�1; : : : (2.2)

exist, where the DX;T are diagonal scaling matrices ,DX;T = diag (d1;T ; : : : ; ddimX;T ), which are

positive de�nite, decrease to zero (DX;T & 0) and satisfy limT!1D
�1
X;T+kDX;T = IX for each

k � 0. Here IX is the identity matrix of order dimX. (Ordinary convergence is meant in (2.2)
if no coordinate of Xt is stochastic.) The resulting sequence �Xk has a spectral distribution

matrix function GX (�): �Xk =
R �
�� e

�ik�dGX (�) for k = 0;�1; : : :, see Appendix B for further
background, including examples.

Partition Xt as

Xt =

"
XM
t

XN
t

#
; (2.3)

where, as in the Introduction, the superscript N designates regressors not in the model (1.2).

Let the corresponding partition of A in (1.1) be A =
h
AM AN

i
, and let those of DX;T , �Xk ,

and GX (�) be, respectively,

DX;T =

"
DM;T 0

0 DN;T

#
;

�Xk =

"
�MM
k �MN

k

�NMk �NNk

#
, GX (�) =

"
GMM (�) GMN (�)

GNM (�) GNN (�)

#
: (2.4)

From DX;T & 0, we have

DM;T & 0: (2.5)

We require �MM
0 to be positive de�nite,

�MM
0 > 0; (2.6)
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and restrict XN
t to being asymptotically stationary,

�Nk = lim
T!1

1

T

T�jkjX
t=jkj+1

XN
t+kX

N 0
t a:s:; k = 0;�1; : : : : (2.7)

Of course, (2.7) is equivalent to DN;T = T�1=2IN , with IN the identity matrix of order

dimXN . We exclude omitted regressors of larger order, e.g. tp with p > 0, because they yield

unbounded yMt dominated by ANXN
t which would easily reveal the inadequacy of XM

t with

large enough T .

Further, the two series yt and Xt must be asymptotically orthogonal, meaning that

lim
T!1

T�
1
2

T�jkjX
t=jkj+1

yt+kX
0
tDX;T = 0 a:s: ; k = 0;�1; : : : : (2.8)

Finally, to keep the focus on the incorrect regressor situation, we assume that

AN�N0 A
N 0 > 0: (2.9)

In summary, our assumptions concerning (1.1) are (2.1)�(2.2) and (2.5)�(2.9).

2.1. Consequences of (2.1), (2.8) and (2.9) for yt and yMt

First we note that, when Xt contains an entry equal to 1 for all t, then the corresponding scaling

factor in DX;T can be taken to be T�1=2, so (2.8) yields limT!1 T�1
PT
t=1 yt = 0 a.s. In this

sense, yt in (1.1) can be thought of as an asymptotically mean zero process.

Now we establish the asymptotic stationarity of the disturbances yMt = ANXN
t + yt of the

misspeci�ed model (1.2). From the requirement (2.7) that XN
t be A.S. and from (2.1) and

(2.8), for each k, Mk = limT!1 T
�1PT�jkj

t=jkj+1 y
M
t+ky

M
t is given by

Mk = AN�NNk AN 0 + yk =

Z �

��
e�ik�dGyM (�); (2.10)

where GyM (�) = A
NGNN (�)AN 0 +Gy(�). From (2.9), we have M0 > 0. (y0 can be zero.)

Finally, we note that, except in special situations like that of Subsection 7.2, the disturbances

and regressors in (1.2) will be asymptotically correlated, meaning

limT!1 T
�1=2PT�jkj

t=jkj+1 y
M
t+kX

M 0
t DM;T = AN�NMk 6= 0 for some k, which will usually cause

AMT (�) to be biased asymptotically for some �, see Theorem 4.1.

2.2. Su¢ cient conditions for (2.1) and (2.8)

The properties (2.1) and (2.8) hold under reasonably general assumptions on yt and Xt. We

consider the case in which yt is weakly stationary with mean zero and Xt is nonstochastic with
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�X0 > 0. The veri�cation of (2.8) for a common type of stochastic regression model is discussed

in Subsection 6.2.

For a.s. convergence in (2.1) and (2.8), it su¢ ces to have yt =
P1
j=0 bj"t�j , with

P1
j=1 jb

2
j <

1 for some independent white noise process "t such that suptE j"tjr <1 with r > 2 if yt has

a bounded spectral density or, if the spectral density of yt is unbounded but square integrable,

with r > 4, see Section 3.1 of FPW (2001).

3. THE �-PARAMETERIZATION OF ARMA MODELS

Three features of our ARMA model situation may be new to readers not familiar with the

vein of research literature of which the articles Pötscher (1987, 1991) are representative: (i) the

disturbances yMt ; 1 � t � T are not required to have means or covariances but only the asymp-
totic stationarity property; (ii) no ARMA model is assumed to be correct in the sense of being

able to exactly model the asymptotic lagged second moment sequence (2.10); (iii) the ARMA

coe¢ cients of a model envisioned as �(L)yMt = �(L)at are replaced by the innovations �lter

� = (1; �1; �2; : : :) de�ned by the property that � (z) =
P1
j=0 �jz

j satis�es � (z) = �(z)=�(z) for

jzj < 1. In this Section, we provide some orienting discussion and examples.
We assume that �(z) 6= 0 for all jzj � 1, i.e. that the model is invertible. When yMt is weakly

stationary with mean zero and de�ned for all t, then there always exists a weakly stationary

series at = at (�) such that the ARMA model formula above holds, namely at =
P1
j=0 �jy

M
t�j .

When yMt is only A.S. and de�ned only for t � 1, we de�ne at [�] =
Pt�1
j=0 �jy

M
t�j , t � 1 This se-

ries is A.S. with asymptotic lag k second moment given by ak (�) =
R �
�� e

�ik� ��� �ei����2 dGyM (�),
with GyM (�) as in (2.10), see (b) of Proposition D.1 in Appendix D. We would call the �-

model correct if the white noise property, ak (�) = 0 for k 6= 0, obtains, or, equivalently, if

Mk = �2
R �
�� e

�ik� ��� �ei�����2 d� for all k for some �2 > 0. However, our theorems do not

require any model for yMt , t � 1 to be correct in this sense.
For subsequent discussions, it will be useful to have in mind the ��s of some simple ARMA

models. As was indicated in Section 1, a white noise model has � = (1; 0; 0; : : :). For the

invertible ARMA (1, 1 ) model, (1� �L) yMt = (1� �L) at, with j�j ; j�j < 1, one has �j =

�j�1 (�� �), j � 1. For AR (1 ) and MA(1 ) models, we have � = (1;��; 0; 0; : : :) and � =
(1; �; �2; : : : ), respectively.

Model parameterization by � is useful because the ��s that are determined by likelihood-

maximizing ARMA coe¢ cients have uniquely de�ned large-sample limits in situations where

the ARMA coe¢ cients themselves do not, due to common zeroes in limiting AR and MA

polynomials. For example, when an ARMA (1, 1 ) model is �tted to white noise, the sequence

of maximum likelihood pairs
�
�T ; �T

�
has multiple limit (or cluster) points, all on the line

f(�; �) : j�j � 1g, see Hannan (1982). However, when � = � for an ARMA (1, 1 ) model, then
� = (1; 0; 0; : : :), so this is the only limit point of the �lter sequence �T de�ned by the maximum

likelihood estimates �T , �T : �T ! � a:s: coordinatewise, i.e. �Tj ! �j a:s:, j � 0.
As in the examples above, the coordinates of � are always continuous functions of the ARMA
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coe¢ cients. The converse holds only if the ARMA model is identi�able, i.e., the AR and MA

polynomials have no common zero, see the Appendix of Pötscher (1991), also for additional

background on the �-parameterization. (Pötscher�s parameter is the coe¢ cient sequence of
~�(z) = �(z)=�(z). The relationship between � and ~� is continuous and invertible; see Section 3

of FPW, 2004.)

To obtain the uniform convergence and continuity properties needed to establish the results

indicated in the Introduction, ARMA (p, q), model coe¢ cient estimation is restricted to com-

pact sets of AR and MA coe¢ cient vectors whose polynomials have all zeroes in fjzj � 1 + "g
for some " > 0. These sets specify compact sets �� of the type discussed in Appendix A.

4. UNIFORM CONVERGENCE OF GLS ESTIMATES

We now present a fundamental convergence property of the AMT (�) de�ned in (1.3). A gen-

eralized inverse is to be used in (1.3) when the inverse matrix fails to exist. This can (with

probability one when XM
t is stochastic) only happen for a �nite number of T values, due to (2.6)

and (d) of Proposition D.1 in Appendix D. For any matrixM , de�ne kMk = �1=2max (MM 0), with

�max (�) denoting the maximum eigenvalue. If M is a vector with real coordinates m1; : : : ;mn,

then kMk =
�Pn

1 m
2
i

�1=2.
Partition �X0 (�) =

R �
��
��� �ei����2 dGX (�) analogously to (2.4), i.e.,
�X0 (�) =

"
�MM
0 (�) �MN

0 (�)

�NM0 (�) �NN0 (�)

#
;

with �MM
0 (�) =

R �
��
��� �ei����2 dGMM (�), etc. For � from an invertible model, de�ne

CNM (�) = �NM0 (�) �MM
0 (�)�1 : (4.1)

In Appendix E, we prove

Theorem 4.1. Let �� be a compact set of models as described Appendix A. Under the as-

sumptions (2.1)�(2.2) and (2.5)�(2.8), we have, uniformly on ��,

lim
T!1

�
AMT (�)�AM

�
T�1=2D�1M;T = A

NCNM (�) a:s: : (4.2)

The function CNM (�) is continuous on �� and thus bounded there, max�2��
CNM (�) <1.

For a given �, limT!1
�
AMT (�)�AM

�
T�1=2D�1M;T , i.e. A

NCNM (�), is called the asymp-

totic bias characteristic of AMT (�) for A
M . It is nonzero for some � if �NMk 6= 0 for some

k, i.e., the series ANXN
t and XM

t are asymptotically correlated. When DM;T = T�1=2, then

ANCNM (�) is the asymptotic bias of AMT (�) for A
M . Omitted variable bias is a fundamental

modeling issue; see, for example, Stock and Watson (2002, pp. 143-149). Section 7 will show
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that, when ANCNM (�) varies with �, there is usually an optimal value of ANCNM (�) for

one-step-ahead forecasting that is determined by the �T sequence of (1.4).

If XM
t has one or more coordinates that are A.S., then for any �AM that di¤ers from AM

only in these coordinates we have, uniformly on ��,

lim
T!1

�
AMT (�)� �AM

�
T�1=2D�1M;T = A

NCNM (�) +
�
AM � �AM

�
a:s: : (4.3)

This reveals the important fact that the asymptotic bias characteristic associated with an

alternative omitted-regressor decomposition, AXt = �AMXM
t + �XN

t with �XN
t = ANXN

t +�
AM � �AM

�
XM
t , di¤ers from the r.h.s. of (4.2) by a term that is independent of �.

Except in special situations, e.g. when the omitted regressors are precisely known, there is

always ambiguity concerning XN
t and AM . However, it is useful to note that if a coordinate

XM
i;t of X

M
t is constant with value one, then �XN = limT!1 T

�1PT
t=1X

N
t can be assumed to

be zero: by de�ning �AM to di¤er from AM in that �AMi = AMi + AN �XN replaces AMi , and by

de�ning �XN
t = XN

t � �XN , one obtains AXt = �A �Xt +A
N �XN

t with limT!1 T�1
PT
t=1

�XN
t = 0.

Then, for �yMt = AN �XN
t + yt we have limT!1 T

�1PT
t=1 �y

M
t = 0.

5. UNIFORM ASYMPTOTIC STATIONARITY OF FORECAST ERRORS

We consider sample second moments of the errors of the one-step-ahead forecastsWM
tjt�1 (�; �

�; T )

from (1.6). For 1 � t � T , the forecast errors Wt�WM
tjt�1 (�; �

�; T ) are observable and equal to

Wt [�]�AMT (��)XM
t [�], which yields

Wt �WM
tjt�1 (�; �

�; T ) = yt [�] + fAXt �AMT (��)XM
t g [�] ; 1 � t � T: (5.1)

Thus, setting Ut (T ) =
h
yt T

1
2DM;TX

M
t XN

t

i0
; 1 � t � T and

�T (�
�) =

h
1
�
AM �AMT (��)

�
T�1=2D�1M;T AN

i
, we have

Wt �WM
tjt�1 (�; �

�; T ) = �T (�
�)Ut [�] (T ) ; 1 � t � T: (5.2)

Let ��� be a compact set in the sense of Appendix A. For � (��) =
h
1 �ANCNM (��) AN

i
,

Theorem 4.1 yields

sup
��2���

k� (��)k <1; sup
��2���

k�T (��)� � (��)k ! 0 a:s: : (5.3)

This fact and the properties of the Ut (T ) array described in Appendix C lead to the following

theorem, which is proved in Appendix E. De�ne

BNM (��) = AN
h
�CNM (��) IN

i
; (5.4)
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and

GM;�� (�) = Gy (�) +B
NM (��)GX (�)B

NM (��)0 : (5.5)

For any ��; ���, let �� � ��� denote the Cartesian product set
�
(�; ��) : � 2 ��; �� 2 ���

	
and

de�ne convergence
�
�T ; �T�

�
! (�; ��) in ��� ��� to mean �Tj ! �j and ��Tj ! ��j for all j � 0.

Theorem 5.1. Let �� and ��� be compact sets of models as described in Appendix A. Under

the assumptions (2.1)�(2.2) and (2.5)�(2.8), the forecast-error arrays Wt�WM
tjt�1 (�; �

�; T ) ; 1 �
t � T are continuous on �� � ��� and also jointly uniformly A.S. there. Speci�cally, for each

k = 0;�1; : : :, as T !1, with

�Mk (�; �
�) =

Z �

��
e�ik�

���� �ei�����2 dGM;�� (�) ; (5.6)

for GM;�� (�) as in (5.5), the limits

1

T

T�jkjX
t=jkj+1

�
Wt+k �WM

t+kjt+k�1 (�; �
�; T )

��
Wt �WM

tjt�1 (�; �
�; T )

�
! �Mk (�; �

�) (5.7)

hold uniformly a.s. on ��� ���. Further, the functions �Mk (�; �
�) are continuous and uniformly

bounded on �� � ���. Also, from (5.7) and (5.1), for given � and ��, the values of �Mk (�; �
�)

depend only on the values of the series AXt, XM
t and yt =Wt �AXt, not on the speci�cation

of the compensating regressor XN
t in decompositions AXt = AMXM

t +ANXN
t (see Section 4).

Theorem 5.1 shows that the quantities �M0 (�; �
�) are of special interest because they describe

limiting average squared one-step-ahead forecast errors. With

y0 (�) =

Z �

��

���� �ei�����2 dGy (�) ; (5.8)

(5.5) yields the decomposition

�M0 (�; �
�) = y0 (�) +B

NM (��) �X0 (�)B
NM (��)0 : (5.9)

By specializing the argument used to establish Theorem 5.1, y0 (�) is seen to be the limiting

average squared error of the �-model�s one-step-ahead forecast ofWt when XM
t = Xt. Similarly,

using (4.2), the �nal quantity in (5.9) is seen to be the limit of the average of the squares of one-

step-ahead forecast errors of the regression-function error array AXt�AMT (��)XM
t ; 1 � t � T ,

lim
T!1

1

T

TX
t=1

��
AXt �AMT (��)XM

t

	
[�]
�2

= BNM (��)

�Z �

��

���� �ei�����2 dGX (�)�BNM (��)0 a:s: (5.10)
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It follows from the results for k = 0 in Theorem 5.1 by standard arguments (see Chapter 3

and Lemma 4.2 of Pötscher and Prucha, 1997) that the conditional MLE�s �T of (1.4) converge

a.s. to the set ��0 of minimizers of �M0 (�; �) over ��,

�T ! ��0 a:s: (5.11)

That is, on a set of realizations of the random variables in (1.1) with probability one, the limit

point of each (coordinatewise) convergent subsequence of �T ; T � 1 belongs to ��0. (So if there
is a unique minimizer ��, then �T ! �� a.s.) Equivalently, in terms of the l1-norm, see Appendix

A, limT!1min�2��
�T � �

1
= 0 a.s.

6. EXTENSION TO ARIMA DISTURBANCE MODELS

Now suppose the observed data are ~Wt; 1 � d � t � T from a time series of the form ~Wt =

A ~Xt + ~yt to which a model of the form ~Wt = A
M ~XM

t + ~yMt is being �t. Suppose also that it

has been correctly determined that the disturbances ~yMt require "di¤erencing" with an operator

� (L) =
Pd
j=0 �jL

j , whose zeroes are on the unit circle, in order to obtain residuals for which an

ARMAmodel can be considered. The resulting model is called a regARIMA model for ~Wt. Such

models are extensively used for seasonal time series in the context of seasonal adjustment; see

Findley et al. (1998) and Peña, Tiao and Tsay (2001), often with � (L) = (1� L) (1� Ls) ; s =
4; 12. We assume that (2.1)�(2.2) and (2.5)�(2.8) hold for Wt = � (L) ~Wt, yt = � (L) ~yt, Xt =

� (L) ~Xt, and XM
t = � (L) ~XM

t , and that X
M
t is a subvector of Xt. For any 1 � t � T ,

since ~Wt = Wt �
Pd
j=1 �j

~Wt�j , for given � and �� a natural one-step-ahead forecast for ~Wt

is ~WM
tjt�1 (�; �

�; T ) = WM
tjt�1 (�; �

�; T ) �
Pd
j=1 �j

~Wt�j , with WM
tjt�1 (�; �

�; T ) de�ned by (1.6).

This leads to ~Wt � ~WM
tjt�1 (�; �

�; T ) = Wt �WM
tjt�1 (�; �

�; T ) for 1 � t � T , and therefore to

forecast-error limiting results as in Theorem 5.1 with the same functions �Mk (�; �
�).

6.1. Forecasting a Stochastic Regressor to Impute Values for Late Survey Respon-
ders.

We brie�y consider an application involving regARIMA models with stochastic regressors. Sub-

section 3.3 of Aelen (2004) provides an interesting one-step-ahead forecasting application in-

volving a variety of seasonal time series ~Wt whose values come from enterprises that report

economic data to Statistics Netherlands a month late, and ~XM
t includes the sum of the values

for month t from all enterprises of the same type which report on time, i.e. in the desired month,

and sometimes also lagged values of these sums. Thus ~XM
t is stochastic. In conjunction with

the following discussion of distributed lag models, Theorem 5.1 and Theorem 7.1 in Section 7.3

provide theoretical support for Aelen�s use of the regARIMA model GLS estimation and one-

step-ahead forecasting procedures of X-12-ARIMA (Findley et al., 1998) to obtain Statistics

Netherlands�imputed value for ~Wt in the month in which ~XM
t becomes available.
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6.2. A Class of Distributed Lag Models Satisfying the Assumptions of Theorem 5.1

After di¤erencing, Aelen�s model becomes a distributed lag model with regressors and correlated

disturbances that are both treated as stationary. We now consider a fundamental class of such

models. Suppose Wt and Zt are jointly covariance stationary variates with zero means and

that the spectral density matrix of Zt is Hermitian positive de�nite at all frequencies. Then,

when the autocovariance sequence �Vk of Vt =
h
Wt Z 0t

i0
satis�es

P1
k=�1

�Vk  < 1, there
exist coe¢ cients Ak satisfying

P1
k=�1 kAkk < 1 such that Wt =

P1
k=�1AkZt�k + yt holds,

with EytZ 0t�k = 0, k = 0;�1; : : : , see Theorem 8.3.1 of Brillinger (1975). For any m;n � 0,

setting XM
t =

h
Z 0t+n � � � Z 0t�m

i0
, XN

t =
P
k 6=�n;:::;mAkZt�k , A

M =
h
A�n � � � Am

i
,

and AN = 1 leads to (1.1) and (1.2) having the form of a distributed lag model with stationary

disturbances, see Stock and Watson (2002) for example, and to the assumptions of Theorem 5.1

holding under Gaussianity or weaker assumptions on Vt; see Theorem IV.3.6 of Hannan (1970).

7. OPTIMALITY OF GLS

Because of the uniform convergence and continuity results established in Theorem 5.1, for any

compact �� as described in Appendix A, we have

min
�2��

(
1

T

TX
t=1

�
Wt �WM

tjt�1 (�; �; T )
�2)

! min
�2��

�M0 (�; �) a:s:; (7.1)

and, for any �xed �� 2 ��,

min
�2��

(
1

T

TX
t=1

�
Wt �WM

tjt�1 (�; �
�; T )

�2)
! min

�2��
�M0 (�; �

�) a:s: (7.2)

In Appendix E, we establish

Theorem 7.1. Let �� be a compact set as described in Appendix A and suppose (2.1)�(2.2)

and (2.5)�(2.8) hold. Then for any �xed �� 2 ��,

min
�2��

�M0 (�; �) � min
�2��

�M0 (�; �
�) ; (7.3)

with equality holding if and only if a minimizer ��� of �M0 (�; �
�) over �� is always a minimizer

of �M0 (�; �),

�M0
�
��
�
; ��
��
= min

�2��
�M0 (�; �) ; (7.4)

and, simultaneously, the asymptotic bias characteristic of AMT
�
��
�� as an estimator of AM

coincides with that of AMT (�
�),

ANCNM
�
��
��
= ANCNM (��) : (7.5)
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As a consequence, strict inequality obtains in (7.3) if and only if

ANCNM (��) 6= ANCNM
�
��
�

(7.6)

holds for every minimizer �� of �M0 (�; �) over ��. For the MLE�s �
T of (1.4), this condition

implies

lim inf
T!1

�AMT ��T ��AMT (��)�T�1=2D�1M;T > 0 a:s: (7.7)

Conversely, if �M0 (�; �) has a unique minimizer ��, then (7.7) implies (7.6).

Unless �� is a minimizer of �M0 (�; �), we expect that both min�2�� �
M
0 (�; �) < �

M
0

�
��
�
; ��
��

and ANCNM
�
��
�� 6= ANCNM (��) will hold except in quite special situations, the only one

known to us being when ANCNM (��), and therefore also �M0 (�; �
�), does not depend on ��.

In Subsection 7.1 below, this is shown to occur with AR(1) models for yMt only in a singular

situation. Otherwise ��� is unique. Then failure of (7.5) means ��� 6= �� and �M0
�
��
�
; ��
�
<

�M0 (�
�; ��).

Model sets �� usually include the white noise model �� = (1; 0; 0; : : : ) as a degenerate case.

Hence the conclusions of Theorem 7.1 are generally applicable to OLS as an alternative to

GLS. They indicate the following optimality property of GLS: In conjunction with maximum

likelihood estimation of �, asymptotically, OLS estimation is never better than GLS estimation

for one-step-ahead forecasting. When the regressor is underspeci�ed and ANCNM (�) is non-

constant, OLS will typically have larger average mean square error for large enough T , due to

its asymptotic bias characteristic being di¤erent from that of GLS.

Thursby (1987) provides comparisons of OLS and GLS biases when yt is known to be i.i.d.

(white noise), dimXM
t = 2, dimXN

t = 1, the coordinates of Xt are correlated �rst-order

autoregressive processes, and the loss function is the posterior mean squared bias associated

with a prior for the parameters that determine the covariance structure between XN
t and XM

t .

With the aid of numerical integrations for the GLS quantities, he establishes that, depending

on the choice of the autocovariance structure of XM
t , the mean squared asymptotic bias of GLS

is sometimes less and sometimes greater than that of OLS. Theorem 7.1 shows that, for either

outcome, GLS has an asymptotic advantage over OLS for one-step-ahead forecasting.

7.1. Examples with AR(1) Models and dimXM
t = dimXN

t = 1

The condition (7.5) is the easiest to investigate, because, for autoregressive models, ��� is the

solution of a linear system of equations. For simplicity, we consider only the case in which

dimXM
t = dimXN

t = 1 and a �rst-order autoregressive model, i.e. � = � (�) = (1;��; 0; 0; : : : ),
is used for the disturbance series yMt in (1.2). From (5.8) and (5.9), this leads to

�M0 (�; �
�) =

Z �

��

���1� �ei����2 dGy (�) +BNM (��)Z �

��

���1� �ei����2 dGX (�)BNM (��)0 ; (7.8)
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where
R �
��
��1� �ei���2 dGy (�) = �1 + �2� y0�2�y1 and R ��� ��1� �ei���2 dGX (�) = �1 + �2��X0 �

�
�
�X1 + �

X
�1
�
. Also, with �� = (1;���; 0; : : : ), the CNM (��) component of BNM (��) is

CNM (��) =

�
1 + ��2

�
�NM0 � ��

�
�NM1 + �NM�1

��
1 + ��2

�
�MM
0 � 2���MM

1

:

When

2�NM0 �MM
1 �

�
�NM1 + �NM�1

�
�MM
0 6= 0; (7.9)

the derivative of CNM (��) is nonzero on �1 < �� < 1 and CNM (��) is strictly monotonic; see
Subsection 6.3 of Findley (2005), whose derivation also shows that the unique ��� = (1;����; 0; : : : )
minimizing (7.8) is the lag one autocorrelation of GM;�� (�) in (5.5),

��
�
=
y1 +

�
AN
�2 n

�NN1 +
�
CNM (��)

�2
�MM
1 � CNM (��)

�
�NM1 + �NM�1

�o
y0 + (A

N )2
n
�NN0 � (CNM (��))2 �MM

0

o : (7.10)

There is no such simple formula for �� minimizing �M0 (�; �) because the critical point equa-

tion for �� provides �� as a zero of a polynomial of degree �ve in general. However, from

strict monotonicity of CNM (�� (��)), if ��� 6= �� then (7.5) fails, and therefore strict inequal-

ity holds in (7.3) by Theorem 7.1. For the OLS choice, �� = 0, when CNM (��) = CNM ,

(7.10) shows that ��� 6= 0 (except possibly at a single value of
�
AN
�2
), when either y1 or

�NM = �NN1 +
�
CNM

�2
�MM
1 �CNM

�
�NM1 + �NM�1

�
is nonzero, which will usually be the case.

A periodic Xt satisfying (7.9) and �NM 6= 0 is given in the next subsection.
When (7.9) fails, CNM (��) = CNM = �NM0 =�MM

0 for all ��, so equality holds in (7.3).

7.1.1. Periodic Xt and an example of �NM

The trading day and holiday regressors discussed in Findley et al. (1998), Bell and Hillmer

(1983) and Findley and Soukup (2000) are e¤ectively periodic functions, i.e. XM
t+P = XM

t

holds for all t, for rather large periods P (e.g. 12� 28 = 336 months for trading day regressors,
12� 19 = 228 months for some lunar holiday regressors, more for other holidays, e.g. Easter).
The simplest holiday regressors are one-dimensional and specify that the e¤ect of the holiday is

the same for each day in some interval near the holiday, a dubious but simplifying assumption.

For such regressors, the compensating XN
t can be assumed to be one-dimensional and have the

same period.

Every regressor of period P has a Fourier representation
P
j �j cos(2�jt=P )+�j sin(2�jt=P )

with at most P non-zero coe¢ cients, which are uniquely determined linear functions of P

consecutive values of the regressor, see Section 4.2.3 of Anderson (1971). To give a more

complete analysis of (7.3) for the function (7.8), we consider a simpli�ed period P = 4 regressor

XM
t having the representation XM

t = aM1 cos
�
2 t + a

M
2 (�1)t, with aM1 , aM2 6= 0, for which

XN
t = aN1 cos

�
2 t+b

N
1 sin

�
2 t, with a

N
1 , b

N
1 6= 0. ThusXt =

h
XM
t XN

t

i0
= �1 cos

�
2 t+�2(�1)

t+
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�1 sin
�
2 t, where �1 =

h
aM1 aN1

i
, �2 =

h
aM2 0

i
, and �1 =

h
0 bN1

i
. Consequently,

�Xk =
1
2�

0
1�1 cos

�
2k+�

0
2�2 (�1)

k+ 1
2�

0
1�1 sin

�
2k; k = 0;�1; : : :, andGX (�) is piecewise constant

with upward jumps at � = ��=2; �; see Anderson (1971, p. 581).
For this Xt, the l.h.s. of (7.9) has the value �aM1 aN1

�
aM2
�2
, so (7.9) holds. Further, CNM =

aM1 a
N
1

n�
aM1
�2
+ 2

�
aM2
�2o�1

and �NM = �
�
aM2 C

NM
�2
. Strict inequality holds in (7.3) for

OLS estimation except when y1 > 0 and
�
AN
�2
= y1

�
aM2 C

NM
��2
, in which case ��� = 0 = ��.

7.1.2. The inferiority of white noise modeling with OLS

If �� is a compact model set containing the AR (1) models � = � (�) analyzed above, then since,

under (7.9), min�2�� �
M
0 (�; �

�) � �M0
�
��
�
��
��
; ��
�
< �M0 (�

�; ��) when ��� 6= 0, it follows from

(7.2) that, asymptotically, using OLS estimation of AM with a white noise model for yMt leads

to worse one-step-ahead forecasts than using OLS with the minimizer ��T of (1.8) (which, with

strict inequality in (7.3), lead to worse forecasts than GLS with (1.4)).

7.2. Regarding Asymptotic E¢ ciency in the Sense of Grenander (1954)

Here we restrict attention to non-random regressorsXt in (1.1) whose components are polynomi-

als, periodic functions, or realizations of stationary processes with continuous spectral densities

and with convergent sample second moments. The disturbance process yt is assumed to be a

mean zero stationary process with the last-mentioned properties. Grenander (1954) considers

the correct regressor case and calls the OLS estimates AMT =
PT
t=1WtX

0
t

�PT
t=1XtX

0
t

��1
as-

ymptotically e¢ cient if limT!1D
�1
T E

�
(AT �A)0 (AT �A)

	
D�1T is minimal (in the ordering

of symmetric matrices) among all linear, unbiased estimates of A. For this situation, his result,

given on p. 244 of Grenander and Rosenblatt (1984), is that OLS is e¢ cient if and only if the

spectral distribution function GX (�) has at most dimXt jumps, and the sum of the ranks of the

jumps GX (�+) � GX (�+), 0 � � � � is equal to dimXt. These conditions are not satis�ed,
and OLS is not e¢ cient, for most of the regressors discussed in Subsection 7.1.1, including the

calendar e¤ect regressors and the period four regressor with bN 6= 0, see Chapter 7.7 and case
(1) on p. 253 of Grenander and Rosenblatt (1984): usually, the number of terms in the Fourier

representation of Xt, and thus also the number of jumps in GX (�), exceeds dimXt.

To be able to apply this result to our underspeci�ed regression situation, assume XM
t and

yMt have the properties hypothesized above for Xt and yt. Thus XN
t has a continuous spectral

density and so cannot have periodic components. If we consider XM
t having only polynomial

and periodic components, then XN
t and XM

t are asymptotically orthogonal, see Section 6.1 of

Findley (2005). This implies ANCNM (��) = 0 for all ��, resulting in equality in (7.3) always,

because �M0 (�; �
�) does not depend on ��.

On the other hand, with regressors in XM
t that are realizations of stationary processes, if

ANCNM (��) is nonzero, then the analogue for AMT (�
�) of Grenander�s e¢ ciency measure fails

by being in�nite, because some entries of
�
AMT (�

�)�AM
�
D�1M;T will have order T

1=2; see (4.2).

15



Thus this concept of e¢ ciency is not useful in our context.

8. EXTENSIONS AND RELATED RESULTS

From their connection to one-step-ahead forecast error �lters, it is perhaps not surprising that

GLS estimates of regARMA and regARIMA models have an optimality property for one-step-

ahead forecasting. Yet a systematic investigation of the topic has been lacking. A pleasingly

simple result, such as Theorem 7.1�s connection of optimality with asymptotic bias characteris-

tics, seems possible only for the incorrect regressor case. Indeed, if asymptotic e¢ ciency results

are indicative, the correct regressor case will be quite complex. In this case, when the ARMA

model for yt is incorrect, GLS can be more or less e¢ cient than OLS; see Koreisha and Fang

(2001). Even when the ARMA model is also correct, the analysis and examples of Grenander

and Rosenblatt (1984) and of Subsection 7.2 show, for nonstochastic regressors, that OLS is

asymptotically e¢ cient only for a limited range of mostly simple regressors.

For any �xed ��, in the incorrect nonstochastic regressor case, a referee conjectures that,

under additional assumptions and with the aid a result like Theorem 4.1 of West (1996), it can

be shown that the limit as T !1 of the variance of T�1=2
PT
t=1

�
Wt �WM

tjt�1 (�
�; ��; T )

�
does

not depend on ��.

So far, we have only provided asymptotic results for the most simply de�ned GLS estimates,

which are obtained by truncating the in�nite-past forecast error �lters and using conditional

maximum likelihood estimation of the ARMA model. Section 2.4 and (d) of Lemma 10 of

Findley (2005) reveal that the same limits are obtained if the errors of the �nite-past one-step-

ahead forecasts discussed in Newton and Pagano (1983) are used to de�ne GLS estimates in

conjunction with unconditional maximum likelihood estimation of the ARMA model. (Analo-

gous GLS estimates from AR models were considered in Amemiya,1973). See Section 9 of the

technical report Findley (2003) for additional details, and also for details about how to weaken

the assumptions on XM
t to include the frequently used intervention variables of Box and Tiao

(1975). These decay exponentially to zero, and so have weight one in DM;T , causing (2.5) to

fail. Also, with the restriction to measurable minimizers �T discussed in FPW (2001, 2004), in

the case of nonstochastic Xt, all a.s. convergence results hold with convergence in probability

when convergence in (2.1) holds only in this weaker sense.

Findley (2003) also shows how to use the results of Appendix D to generalize Theorem 5.1

to the case of multi-step-ahead forecast errors and to establish the convergence of �-parameter

estimates that minimize average squared multistep-ahead forecast errors (allowing for yMt the

more comprehensive model classes of FPW, 2004).

Findley (2005) uses the results of Theorem 4.1 and 7.1 to obtain formulas and GLS opti-

mality results for the limiting average of squared out-of-sample (real time) forecast errors of

regARIMA models under assumptions on the regressors Xt that are slightly more restrictive

than those of Section 2, but are satis�ed by all of the speci�c regressor types we have mentioned.

The limit formulas are the same as those of the present paper when XM
t is A.S.
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APPENDICES

A. COMPACT ��SETS FOR ESTIMATION

For each " > 0 and integer pair p; q � 0, we de�ne �p;q;" to be the set all of � = (1; �1; �2; : : :)
from invertible ARMA (r, s) models with r � p, s � q such that the zeroes of the (mini-

mal degree) AR and MA polynomials �(z) and �(z) such that �(z) = �(z)=�(z) all belong

to fjzj � 1 + "g. Every sequence �T =
�
1; �T1 ; �

T
2 ; : : :

�
; T = 1; 2; : : : in �p;q;" has a sub-

sequence �S(T ) that converges coordinatewise to some � 2 �p;q;", i.e., �
S(T )
j ! �j ; j � 1.

Thus �p;q;" is compact for coordinatewise convergence. Further, for 0 � "0 < ", the sumsP1
j=0(1 + "0)

j j�j j converge uniformly on �p;q;", i.e., sup�2�p;q;"
P1
j=0(1 + "0)

j j�j j < 1 and

limJ!1 sup�2�p;q;"
P1
j=J(1 + "0)

j j�j j = 0. See Lemmas 2 and 10 of Findley (2005) for these

and other properties mentioned. Our uniform convergence results below follow from these facts

as do some other important properties. First, the functions �
�
ei�
�
=
P1
j=0 �je

i� are continuous

on �� � � � � and uniformly bounded and bounded away from zero on �p;q;":

min
������;�2�p;q;"

���� �ei����� > 0; max
������;�2�p;q;"

���� �ei����� <1:
Second, if a sequence �T ; T = 1; 2; : : : in �p;q;" converges coordinatewise to some �, then it also

converges in the stronger sense that limT!1
P1
j=0(1 + "0)

j
���Tj � �j�� = 0 whenever 0 � "0 < ".

In particular, the topology of coordinatewise convergence on �p;q;" coincides with that of the

l1-norm k�k1 =
P1
j=0 j�j j.

Our theorems apply to any compact �� for which �� � �p;q;" holds, for some " > 0 and

p; q � 0. A typical �� would arise from constraints on the zeroes of the AR and MA coe¢ cients

of the kind of ARMA model of interest.
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B. SCALABLE ASYMPTOTIC STATIONARITY

Under the data assumptions made in Section 2, Xt and yt in (1.1) together form a multivariate

sequence that is scalably asymptotically stationary, a property we now consider in some detail.

Let Ut; t � 1 be a real-valued column vector sequence that is S.A.S., and let IU denote the

identity matrix of order dimU , the dimension of Ut. Thus there is a decreasing sequence

D1 � D2 � : : : of positive de�nite diagonal matrices for which DT & 0 and

lim
T!1

D�1T+kDT = IU (k � 1) (B.1)

hold such that, for each k = 0;�1; : : :, the limits

�Uk = lim
T!1

DT

T�jkjX
t=jkj+1

Ut+kU
0
tDT a:s: (B.2)

exist (�nitely). The properties (B.1)�(B.2) yield limT!1DTUT�j = 0 a:s: ; j � 0. For

example, when j = 0, as T !1,

DTUTU
0
TDT = DT

TX
t=1

UtU
0
tDT �

�
DTD

�1
T�1

�
DT�1

T�1X
t=1

UtU
0
tDT�1

�
D�1T�1DT

�
converges to �U0 � �U0 = 0 a:s: , whence DTUT ! 0 a:s: . Further, DT & 0 leads to

limT!1DTU1+j = 0 a:s: for all j � 0.
Without a formal name, this generalization of stationarity was introduced for regressors in

Grenander (1954) to encompass a variety of nonstochastic regressors, including polynomials.

(Our notation is the inverse of his, using DT where he uses D
�1
T . He only requires the diagonal

elements of �U0 to be positive, which is the nature of (2.9) for �X
N
t = ANXN

t . Our requirement

(2.10) for XM
t is stronger.) Grenander shows that the real matrix sequence �Uk , k = 0;�1; : : :

has a representation �Uk =
R �
�� e

�ik�dGU (�) in which GU (�) is an Hermitian-matrix-valued

function such that the eigenvalues of increments GU (�2)�GU (�1), �2 � �1, are non-negative,
or, equivalently, the increments are Hermitian nonnegative; see also Grenander and Rosenblatt

(1984), Chapter II of Hannan (1970), and Chapter 10 of Anderson (1971). For example, if

Ut = tp; p � 0, then, with DT = T�(p+1=2), one obtains �Uk = (2p+ 1)�1 for each k, so

GU (�) can be taken to be 0 for � < 0 and (2p+ 1)�1 for � � 0. Grenander (1954) and

Grenander and Rosenblatt (1984, Ch. 7) verify the joint S.A.S. property for regressors whose

entries Xi;t are polynomials, linear combinations (perhaps in�nite) of sinusoids, i.e. of cos!jt

and/or sin!jt, for various 0 � !j � � (scaling sequence T�1=2), and, �nally, products of

polynomials tp with linear combinations of sinusoids (scaling sequence T�p�1=2). By contrast,

exponentially increasing regressors, e.g. Ut = ebt with b > 0, are not S.A.S. because (B.1) fails

for DT =
�PT

t=1 e
2bt
��1=2

; see Hannan (1970, p. 77).
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C. VECTOR ARRAY REFORMULATION OF ASSUMPTIONS

The following reformulation of our assumptions (2.1)�(2.2) and (2.5)�(2.8) concerning yt and

Xt will enable us to make use of the results of FPW (2001, 2004). The vector array

Ut (T ) =

"
yt

T 1=2DX;TXt

#
=

264 yt

T
1
2DM;TX

M
t

XN
t

375 ; 1 � t � T; (C.1)

is A.S. More speci�cally, for each k = 0;�1; : : :,

�Uk = lim
T!1

T�1
T�jkjX
t=jkj+1

Ut+k (T )Ut (T )
0 a:s: (C.2)

=

264 
y
k 0 0

0 �MM
k �MN

k

0 �NMk �NNk

375 ; (C.3)

with �MM
0 > 0 and AN�NN0 AN 0 > 0. Further, from Appendix B,

lim
T!1

T�1=2U1+j (T ) = 0 = lim
T!1

T�1=2UT�j (T ) a:s: ; j � 0: (C.4)

Due to (C.3), the spectral distribution matrix of the �Uk sequence has the block diagonal

form GU (�) = blockdiag (Gy (�) ; GX (�)).

D. UNIFORMCONVERGENCERESULTS FOR FILTEREDA.S. ARRAYS

The results below are formulated to encompass more general results indicated in Section 8.

Proposition D.1. Let Ut (T ) ; 1 � t � T be an A.S. column vector array satisfying (C.4) and
let GU (�) denote the spectral distribution matrix of the asymptotic lagged second moments

matrices �Uk de�ned by (C.2). Let H and Z be sets of �lters � = (�0; �1; : : :) and � = (�0; �1; : : :)

such that
P1
j=0

���j�� resp. P1
j=0

���j�� converges uniformly on H resp. Z. Then the �lter output

arrays Ut [�] (T ) =
Pt�1
=0 �jUt�j and Ut [�] (T )

Pt�1
=0 �jUt�j ; 1 � t � T; � 2 H; � 2 Z have the

following properties:

(a) limT!1 sup�2H
T�1=2UT�j;T [�] = limT!1 sup�2H

T�1=2U1+j;T [�] = 0; a:s: j � 0,

and analogously for Ut [�] (T ).

(b) As T ! 1, sup�2H;�2Z
T�1PT�jkj

t=jkj+1 Ut+k [�] (T )Ut [�] (T )
0 � �Uk (�; �)

 ! 0 a:s:, where

�Uk (�; �) =
R �
�� e

�ik��
�
ei�
�
�
�
e�i�

�
dGU (�), for k = 0;�1; : : :.
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(c) The functions �Uk (�; �) are bounded on H � Z,

�Uk (�; �) � �U0  sup
�2H

���� �ei����� sup
�2Z

���� �ei����� <1;
and are jointly continuous in �; � in the sense that, if �T 2 H; �T 2 Z are such that �T ! � and

�T ! � (coordinatewise convergence) with � 2 H; � 2 Z, then �Uk
�
�T ; �T

�
! �Uk (�; �). Also,

if Z = H, then inf�2H;������
��� �ei����2 �U0 � �U0 (�; �) � sup�2H;������ ��� �ei����2 �U0 :

(d) Let H be an index set for a family of arrays Ut (�; T ) ; 1 � t � T , � 2 H such that,

as T !1,

sup
�2H

 1T
TX
t=1

Ut (�; T )Ut (�; T )
0 � �0 (�)

! 0 a:s:; (D.1)

where the �0 (�) are positive de�nite matrices whose minimum eigenvalues are bounded away

from zero, that is

inf
�2H

�min (�0 (�)) � mH (D.2)

holds for some mH > 0. Then

sup
�2H


 
1

T

TX
t=1

Ut (�; T )Ut (�; T )
0
!�1

� �0 (�)�1
! 0 a:s: (D.3)

Proof. Parts (a)�(c) are straightforward vector extensions of special cases of Theorem
2.1 and Proposition 2.1 of FPW (2001). For (d), it follows from (D.1) and (D.2) that, given

" > 0, for each realization except those of an event with probability zero, there is a T" such

that for T � T" the inequalities sup�2H
T�1PT

t=1 Ut (�; T )Ut (�; T )
0 � �0 (�)

 < "
2m

2
H and

inf�2H �min
�
T�1

PT
t=1 Ut (�; T )Ut (�; T )

0
�
� 1

2mH hold. Hence for these T and all � 2 H,

sup
�2H


 
1

T

TX
t=1

Ut (�; T )Ut (�; T )
0
!�1

� �0 (�)�1


� sup
�2H

8<:

 
1

T

TX
t=1

Ut (�; T )Ut (�; T )
0
!�1

 1T
TX
t=1

Ut (�; T )Ut (�; T )
0 � �0 (�)

�0 (�)�1
9=;

� 1

mH
sup
�2H

(
��1min

 
1

T

TX
t=1

Ut (�; T )Ut (�; T )
0
!)

sup
�2H

( 1T
TX
t=1

Ut (�; T )Ut (�; T )
0 � �0 (�)


)

< ";

which establishes (D.3).
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We also need the following lemma, whose proof can be obtained by standard arguments, as

in the proof of (5.18) of FPW (2004).

Lemma D.2. Suppose that, on a set ���, the sequence �T (�
�) ; T = 1; 2; : : : of row vector

functions converges uniformly a.s. to a bounded function � (��), i.e., (5.3) holds, and similarly

for �T (��), T � 1 and its limit � (��). Let Ut (�; T ) ; � 2 H and Wt (�; T ) ; � 2 Z; 1 � t � T be
families of column vector arrays of the same dimension as � (��) and � (��), respectively, such

that, for k = 0;�1; : : :,

sup
�2H;�2Z

 1T
T�jkjX
t=jkj+1

Ut+k (�; T )Wt (�; T )
0 � �k (�; �)

! 0 a:s:

holds for functions �k (�; �) with sup�2H;�2Z k�0 (�; �)k <1. Then, as T !1,

sup
��2���
�2H;�2Z

 1T
T�jkjX
t=jkj+1

�T (�
�)Ut+k (�; T )Wt (�; T )

0 �T (�
�)0 � � (��) �k (�; �) � (��)0


! 0 a:s:

E. PROOFS

Proof of Theorem 4.1. We have

�
AMT (�)�AM

�
T�1=2D�1M;T

= T�1=2
TX
t=1

yMt [�]X
M
t [�]0DM;T

 
DM;T

TX
t=1

XM
t [�]XM

t [�]0DM;T

!�1

= T�1=2
TX
t=1

yt [�]X
M
t [�]0DM;T

 
DM;T

TX
t=1

XM
t [�]XM

t [�]0DM;T

!�1

+AN

 
T�1=2

TX
t=1

XN
t [�]X

M
t [�]0DM;T

! 
DM;T

TX
t=1

XM
t [�]XM

t [�]0DM;T

!�1
:

By (b) and (c) of Proposition D.1, T�1=2
PT
t=1 yt [�]X

M
t [�]0DM;T converges uniformly a.s. to 0

and T�1=2
PT
t=1X

N
t [�]X

M
t [�]0DM;T and DM;T

PT
t=1X

M
t [�]XM

t [�]0DM;T converge uniformly

a.s. to the continuous limits �NM0 (�) and �MM
0 (�), respectively, with �MM

0 (�) bounded below

by the positive de�nite matrix m2
��
�MM
0 , where m�� = min�����;�2��

��� �ei���� > 0; see Appendix
A. It follows from (d) of Proposition D.1 that

�
DM;T

PT
t=1X

M
t [�]XM

t [�]0DM;T
��1

converges

uniformly to �MM
0 (�)�1, which is therefore continuous (and bounded above by m�2

��

�
�MM
0

��1
).

Hence
�
AMT (�)�AM

�
T�1=2D�1M;T converges uniformly a.s. to A

NCNM (�), which is continuous

on �� as well as bounded.
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Proof of Theorem 5.1. The assertions follows from Lemma D.2 with �T (��) = �T (�
�),

H = Z = ��, and Ut (�; T ) = Wt (�; T ) = Ut[�] (T ) =
Pt�1
j=0 �jUt�j (T ), for Ut�j (T ) de�ned

by (C.1), because the uniform convergence of T�1
PT�jkj
t=jkj+1 Ut+k[�] (T )Ut[�] (T )

0 to �Uk (�) =R �
�� e

�ik� ��� �ei����2 dGU (�) and the boundedness of �U0 (�) on ��, which are required to apply
Lemma D.2, follow from (b) and (c) respectively of Proposition D.1. The uniform convergence

of
P1
j=0 j�j j required by the Proposition is the special case "0 = 0 in Appendix A. The fact that

GU (�) = blockdiag (Gy (�) ; GX (�)), because of (C.3), yields the form of GM;�� (�) in (5.5).

Proof of Theorem 7.1. We start by establishing that, for any invertible � and ��, we
have �M0 (�; �) � �M0 (�; �

�) with equality holding if and only if ANCNM (��) = ANCNM (�).

Indeed, the component of �M0 (�; �
�) that depends on �� can be reexpressed in terms of the

analogues of CNM (��) and �X0 (�) obtained by replacing X
N
t with �XN

t = ANXN
t . Denoting

these analogues by �CNM (��) and ��X0 (�), we have

AN
h
�CNM (��) IN

i
�X0 (�)

h
�CNM (��) IN

i0
AN 0

=
h
� �CNM (��) 1

i
��X0 (�)

h
� �CNM (��) 1

i0
:

By a standard calculation, for any C with the dimensions of �CNM (�),h
� �CNM (��) 1

i
��X0 (�)

h
� �CNM (��) 1

i0
�
h
�C 1

i
��X0 (�)

h
�C 1

i0
; (E.1)

with equality holding in (E.1) if and only if C = ~CNM (�) (= ANCNM (�)).

Next, note that because �M0 (�; �) and �
M
0 (�; �

�) are continuous functions of � on ��, they

have minimizers ��, resp. ��� over ��. From the result just established, we obtain

�M0
�
��; ��
�
� �M0

�
��
�
; ��
�� � �M0 ����; ��� : (E.2)

Thus �M0
�
��; ��
�
= �M0

�
��
�
; ��
�
holds, i.e. equality in (7.3), if and only if (7.4) and �M0

�
��
�
; ��
��
=

�M0
�
��
�
; ��
�
do, and the latter is equivalent to (7.5), as was just shown.

In particular, equality in (7.3) implies the failure of (7.6) for ��� for which (7.4) holds.

Conversely, failure of (7.6) for some minimizer ��, i.e. ANCNM (��) = ANCNM
�
��
�
, implies

�M0
�
��
�
; ��
�
� �M0

�
��; ��

�
= �M0

�
��; ��
�
, which, from (E.2), yields �M0

�
��
�
; ��
�
= �M0

�
��; ��
�
=

�M0
�
��
�
; ��
��, i.e. equality in (7.3). Therefore (7.6) for all �� minimizing �M0 (�; �) is necessary

and su¢ cient for strict inequality in (7.3).

From Theorem 4.1 and (5.11), it follows that the l.h.s. of (7.7) is equal a.s. to the l.h.s. of

lim inf
T!1

AN �CNM ��T �� CNM (��)� � min
��2��0

AN �CNM ����� CNM (��)� a:s: (E.3)

The assertions concerning (7.7) follow from (E.3) and the fact that, when ��0 =
�
��
	
, equality

holds in (E.3) because �T ! �� a.s., from (5.11).
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