Application of High Precision Two-Way S-band Ranging to the Navigation of the Galileo Earth Encounters

Vincent M. Pollmeier ${ }^{1}$, Pieter 11. Kallemeyn ${ }^{11}$, and Sam W. 'Thurman ${ }^{2}$

Abstract

The application of high-accuracy S/S-bred (2.1GIlzuplink/2.3GIIz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two larth encounters (8 December 1990 and 81)ecember 1992). Analysis of S-band ranging data from Galileo indicated that under favorable siguallevels meterlevel precision was attainable. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft, Explicit modeling of ranging bias parameters for cach station pass is used to large.ly remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle. finding capabilitics of the data. The accuracy achicved using the precision range filtering strategy proved markedly better when compared toposi-flyby reconstructions than did solutions utilizing a traditional I)oppler/range. filter strategy. In addition, the navigation accuracy achicved with precision ranging was comparable to that obtained using deltaDifferenced One-Way Range (ADOR), an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.

INTROIOUCIION

The approach phases leading up to the Galileo spacecraft's Iwo Earth encounters (designated El and E2) provided invaluable opportunities totest the viability of high-precision two-way ranging as an operational radiometric data type. Ranging data from NÅSA's Deep Space Network (ISSN) has been accurate to better than 15 m for more than two decades under favorable radio link conditions. Such data have typically been utilized at assumed data accuracies of 100-10000 m, duc to the cffects of ranging system calibration errors and inadequatel y modeled spacecraft nongravitational accelcrations ${ }^{3}$. Improvements in the accuracy and stabil it y of timing systems, ranging system calibration tecliniques, and transmission media calibrations, when utilized with more sophisticated orbit detemination software, now make it possible to reconsider the use of precision range for interplanctary spacecraft. Other recent experimental attempts to utilize high precision range with the Ulysses spacecraft [1] have met with success. Presented here arc the results of an application of the same filter strategy to the navigation of both of the Galileo Earth encounters. In many ways the Galileo encounters are an ideal test of this strategy. Due to the relative.ly small I~arll-spacecraft range, the radio link performance is

[^0]good and extremely accurate post-flyby knowledge is available to allow for validation of the results.

The analysis considers the approach navigation prior'10 the final maneuver' for cach of the Galileo spacecraft's two Earthencounters. The Galileo spacecraft was launched from the space shuttle on 18 October 1989. lacking the launch energy for a direct Jupiter trajectory, the spacecraft was targeted for a Venus flyby, whichredirected the spacecraft for an Earth flyby on8 December 1990. This flyby put the spacecraft on a two year elliptical orbit, out through the asteroid belt anti back past the Earlion 81)ecember 1992. This final gravity assist placed the spacecraft on a trajectory to Jupiter, with a planned arrival date of 7 December 199S. Due to Earth navigation constraints, at no time during, the approach to either Earthencounter could the probability of the spacceraftimpacting the Earthexceed $1 \times 1()-6$. For this reason, a series of deteministic tatgeting mancuvers were performed duing the Earth approach phase. The final targeting maneuvers were performed at ii-60 days and 1-25 days, with a cleanup maneuver performed at E- 10 days. The data ares for the analyses are bounded by the E-60 day maneuver and the data cut-off for the designof the I-10 day mancuver, which was ati-16 days.

The data used inthe analysis are two-way Doppler and range received at all three of the DSN (Decp Space Network) ground station complexes, located in Goldstone, California, Canberra, Australia, and Madrid, Spain. Additionally, delta-Differenced one-way Range (ADOR) is used. This data type consists of near-simultancous delay measurements of radio signals from the spacecraft and a quasar, which are received at two stations forming an intercontinental baseline. This allows for a direct measurement of angular position of the spacecraftrelative to the known position of the quasar.

THEORETICALBACKGROUND

Sonic insight into the ability of range and I oppler measurements to determine the trajectory of a distant spacecraft can be obtained by analyzing the theoretical precision with which the geocentric spacecraft motion can be sensed fromone or two tracking passes of data, Similar analyses have been performed previously for ranging and Doppler data separately [1-3]. Twoway Doppler and range observations arc physically accomplished by measuring the phase of a carrier signal received from the spacecraft relative to a stable reference signal, in the case of Doppler, and by measuring the phase shift of a series of tones with different frequencies transmitted 10 and received from the spacecraft, in the case of ranging. In this discussion, it shall be assume.d that range and loppler measurements are equivalent to observations of the station-tospacecraft range and range rate, respectively. Amore detailed description of the actual Doppler and ranging systems used in the IDSN is given by Kinman [4].

The station-spacecraft tracking geometry is illustrated in Jig. 1. The topocentric range, ρ, and range rate, $\dot{\mathrm{f}}$, can be approximated over short periods of time (up 10 roughly 24 hr) in terms of the geocentric spacecraft range (r), range-ra[c (\dot{r}, declination (δ), and right ascension (α), as follows:

$$
\begin{gather*}
p=r-\left(r_{s} \cos (\delta) \cos (I 1)+z_{\mathrm{s}} \sin (\delta)\right) \tag{1}\\
\dot{\rho}=i+(1) r, \cos (\delta) \sin (n) \tag{2.}
\end{gather*}
$$

where
$r_{s}=$ stationdistance from Earth's spin axis (spin radius)
$z_{\mathrm{s}}=$ station height above Earih's equator (\%-height)
(1) $=$ - Farth rotation rate $\left(7.3 \times 10^{-5} \mathrm{ra}(\mathrm{i} / \mathrm{see})\right.$

II $=\alpha_{g}+\lambda-\alpha$.
and
$\alpha_{g}=$ rightascension of Greenwich meridian
$\lambda^{0}=$ station cast longitude

Figure 1: Station-spacecraft tracking geometry

IromEqs. (1) and (2), it can be seen that four of the six components of the geocentric spacceraft trajectory - r, $\dot{\mathrm{r}}, \delta$, and $a-$ can bc sensed directly by range and range rate measurements. Over the time period of interest, \dot{r}, δ, and a arc nearly constant; determination of the remaining two coordinates, δ and $\dot{\alpha}$, normally requires the acquisition of multiple passes of data over a period of several days. The accumulated information in each ranging and Doppler pass can be [bought of as a multi-dimensional measurement of lhe spacecraft state, with the statistical combination of several of these "measurements" yielding a complete deternination of the flight path. For data arc lengths exceeding onc or two weeks, the parallax offered by the relative movement of the Larth and the spacecraft around the Sun also plays a significant role in ranging and Doppler-based navigation.

A simple lcasl-squares error analysis of estimates of r , $\dot{\mathrm{r}}, \delta$, and α derived from a single pass of ranging and Doppler data can be formulated analytically (refer to the paper by Ilamilton and Mclboume [3] for a detailed description). For the purposes of this analysis, it is assumed that, $\dot{\mathrm{r}}$, δ, and a arc constants, and that ivaries linearly with time. The information matrix, J, for these coordinates, assuming a tracking pass in which the station-spacecraft hour angle H varies as $-\psi \leqslant$ II $\leq-\mathrm{F} \psi$, can be expressed as

$$
\begin{align*}
\mathrm{J}= & \left(\begin{array}{c}
1 \\
\sigma_{\rho}^{2}(\omega \lambda y
\end{array} \int_{-1}^{v}\left[\begin{array}{c}
\partial \rho \\
\dot{\partial}(\mathrm{r}, \dot{\mathrm{r}}, \delta, \alpha)
\end{array}| | \begin{array}{c}
\partial \rho \\
\partial(\mathrm{r}, \dot{\mathrm{r}}, \delta, \alpha)
\end{array}\right] \mathrm{dII}+\right. \\
& \binom{1}{\sigma_{\dot{\rho}}^{2}(\omega \lambda \mathrm{l}} \int_{-\psi}^{\psi}\left[\begin{array}{c}
\partial \dot{\rho} \\
\partial(\mathrm{r}, \dot{\mathrm{i}}, \delta, \alpha)
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
\partial \dot{\rho} \\
\partial(\mathrm{r}, \dot{\mathrm{r}}, \delta, \alpha)
\end{array}\right] \mathrm{dII} \tag{3}
\end{align*}
$$

where

σ_{ρ}	$=$ range measurement noise one-sigma uncertainty
$0_{p}^{\prime \prime}$	$=$ range rate (Doppler) measurement noise one-sigma uncertainty
$\Lambda 1$	$=$ lime intervalbetwecnmeasurements

Inlig. (3), it is assumed that At is the same for both the range and Doppler measurements. The partial derivatives appearing in Eq. (3) at some time 1 with respect to the geocentric coordinates at lime t_{0}, where t_{0} is assumed to be the time at which the spacecraft crosses the local meridian of the ground station, are as follows:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial(r, \dot{r}, \delta, a)}=\left[1, t-t_{0}, r_{s} \sin (\delta) \cos (\mathrm{I} 1)-z_{\mathrm{s}} \cos (\delta),-\mathrm{r}_{\mathrm{s}} \cos (\delta) \cos (\mathrm{II})\right](4) \\
& \partial \dot{\rho}=\left[0,1,-\left(0 r_{s} \sin (\delta) \sin (I I),-(1) r_{s} \cos (\delta) \cos (I I)\right]\right.
\end{aligned}
$$

Using Ieqs. (4) and (5) to carry out the computations specifiedinlig. (3) andinverting the information matrix yields the statistical variances for the geocentric range $\left(\sigma_{\mathrm{T}}^{2}\right)$, range rate $\left(\sigma_{\mathrm{f}}^{2}\right)$, declination $\left(\sigma_{\delta}^{2}\right)$, and right ascension $\left(\sigma_{\alpha}^{2}\right)$ as follows:

$$
\begin{align*}
& \sigma_{\mathrm{r}}^{2}=\omega \Delta \mathrm{t} \mathrm{f}_{1}\left(\psi, \mathrm{r}_{\mathrm{s}}, z_{\mathrm{s}}, \delta, \sigma_{p}^{2}, \sigma_{\dot{\rho}}^{2}\right) \tag{6}\\
& \sigma_{\dot{p}}^{2}=\omega \Lambda \mathrm{t} \mathrm{f}_{2}\left(\psi, \mathrm{r}_{\mathrm{s}}, \delta, \sigma_{p}^{2}, \sigma_{\dot{\rho}}^{2}\right) \tag{7}\\
& \sigma_{\delta}^{2}=\underset{(1) \Delta t}{\left(\mathrm{r}_{\mathrm{s}} \sin \delta\right)^{2}} \mathrm{f}_{3}\left(\psi, \delta, \sigma_{p}^{2}, \sigma_{\dot{\rho}}^{2}\right) \tag{8}\\
& \sigma_{\alpha}^{2}=\frac{(1) \Delta t}{\left(\mathrm{r}_{\mathrm{s}} \cos \delta\right)^{2}} \mathrm{f}_{4}\left(\psi, \sigma_{p}^{2}, \sigma_{\dot{\rho}}^{2}\right) \tag{9}
\end{align*}
$$

Eqs. (6)-(9) arc similar to expressions derived by Anderson 14 in an earlier analysis of this same problem ((he functions f_{1} through $\mathrm{f4}$ arc not shown explicitl y, as they arc fairly complex). Eq. (8), inparticular, predicts that the declination of a spacecraft crossing the celestial equator ($\delta=0$) cannot be sensed, although this indeterminacy is not rigorously correct, but is rather an artifact of
the approximations used in Eqs. (I) and (2). Incontrast, σ_{α} is seenfrom Eq. (8) 10 be proportional to $1 / \cos \delta$, which has little (± 10 percentit) variation over the declination range spanned by the ecliptic plane (± 24 degrees), in whichniost interplanetary spat.cc[afl trajectories lie.

The situation described above changes dramatically when an additional pass of ranging and Doppler data from a properly chosen second station is added into (he. information matrix. Consider a scenario in which a tracking pass is acquired from a station with $\%$-height s_{s} and spin radius 1_{s}, followed immediately by another pass from another station with $\%$-height $-z_{\mathrm{s}}$ and spin radius I_{S} (rig. 2) This choice of station coordinates is actually a good approximation for stations located at the ISN sites at Goldstone, Califomia and near Canterra, Australia, which have spin radii that are nearly equal (to within atrout 5 km) and $\%$-heights that are nearly cqual in magnitude but have opposite signs. Using Eqs. (3)-(5) to compute an infonmation matrix for the first pass, thenadding this matrix to an information matrix for the second pass andinverting the sum yields a covariance matrix for the combined information contained in both passes. This procedure yields a formula for o_{δ}^{2} of very simple form when $\delta=0$:

$$
o_{\delta}^{2}=o_{\rho}^{2}\left(\begin{array}{cc}
(1) \wedge t \\
& z_{\delta}^{?} \\
\psi
\end{array}\right)
$$

Iequation (10) indicates that the z-height component of the bascline formed by the two stations enables a determination of δ, and that [his detemination is provided solely by the ranging data.
The result for σ_{g}^{2} obtained in the two station case is just the expression in Eq. (9) multiplied by a factor of $1 / 2$. With typical S -band ranging and Doppler data accuracies of 51010 m and 0.3 to $1.0 \mathrm{~mm} / \mathrm{s}$, respectively, for measurements acquired atintervals of a few minutes, ligs. (9) and (10) predict that the angular coordinates of a spacecraft can be sensed wi tha precision of roughly 0.1 $100.35 \mu \mathrm{rad}$ for pass lengths of 8 to $12 \mathrm{hr}(\psi=60$ to 90 degrecs $)$. In comparison, the theoretical angular precision of S-band $\triangle \mathrm{DOR}$, which was also used to obtain angular measurements during Galileo 1 sarth encounter navigation operations, was about $0.04100 .08 \mu \mathrm{rad}$, depending upon the [racking geomerry.

Higure 2: Declination determination using range measurements from two widely separated stations

While the theoreticalresults above snow that ranging can overcome the dependence of IJopplcr-based angle detcmmination on the spacceraft declination, it must be recognized that the effects of systematic range measurementerrors, principally station delay calibration errors and charged particle (Earth ionosphere and solar plasma) calibration errors, will not necessarily be reduced by averaging, as willthe effects of random error sources. These systematic errors must be accounted for in some way, or reduced a priori through the use of highly accurate calibrations.

JHITER STRATEGY

To account for the effects of systematic bias errors on the ranging data, independent bias parameters arc modeled for each station pass, This strategy allows the orbit determination filter to estimate errors duc to miscalibration of the ground system hardware. Additionally, these bias parameters can also be used to approximately account for slowly varying transmission media effects, such as solar plasma delay. These effects, although not truly constant over a pass, vary slowly enough that the major portion of the effect can be modeled as a bias. This simple ranging error model was implemented by estimating a stochastic bias for cachranging pass in the data arc, using a batch-sequent ial filter.

The a priori uncertainty of these bias parameters was chosen to be 5 m . This value was chosen as to allow the filter to estimate bothtransmission media effects as well as errors duc to the calibration of the ground systems. in fact, examination of the values for the station delay calibration (performed prior to each ranging pass) during the E1 approach found an RMS variation of the calibrations of only 55 cm . The stability of the station calibrations during the I 2 2 approach was similar. A complete summary of the filter assumptions used can be found in ' 1 'able 1.

EAR'TH-1 ANAIYSIS AND RLSULITS

The E1data are extends from Iii-59 days to 111-15 days. (10 October 1990 to 23 November 1990). 1)uring this time the Earth-spacecraft distances ranged from 50 [o 12.5 million kilometers and the geocentric declination varied from 15 to 13 degrees. During this period, 3740 Doppler observations (600 scc count time) and 2750 range observat ions were obtained. Ninetecn $\triangle \mathrm{DOR}$ observations were performed, 11 of (hen\} utilizing the Goldstone-Canberra baseline and the remainder utilizing the Goldstone-Madrid baseline. A standard Ioppler weight (one-sigma measurement uncertainty) of $1 \mathrm{~mm} / \mathrm{s}$ (for a 60 scc count) was used and the range weight was varied, from tenmeterstotwometers. The data weight used for the ADOR data was $50 \mathrm{~cm} .{ }^{4} \mathrm{~A}$ series of solutions were performed, These included Ioppler only, and Doppler and range with various range weights ($100,10 \mathrm{~m}$, and 2 m), and a solution using Doppler, range, and ADOR, This final solution closely corresponds to what was used for the operational design of the final maneuver. l'able 2 summarizes the solutions performed,

Figures 3 and 4 shows all of the solutions in the Eilencounter aiming plane (sec Appendix). Jigure 3 shows all of the traditional runs, while Figure 4 shows the precision range filter strategy solutions compared to the best traditional solution. The thi rd component, the linearized time of flight, was the same for all strategies and is therefore not shown. All of these solutions arc compared [0 the post-flyby reconstruction. This reconstruction is accurate to the 100 m level. The best result is from the 5 m range weight solution, although both the S m and 10 m solutions provide solutions which are comparable to that provided by the ADOR solution. All of the range solutions provide considerable improvement over the Doppler only solution. The two meter range weight solution, however, dots not possess uncertainticsthat are any belter than

[^1]the 5 m or 10 m weight solutions. Themovement of this solution is caused by the weighting of the data beyond that which is warranted by the data quality. Although the post-fit RMS of the range residuals in all of the precision range solutions is approximately 1 m over the entire data are, the residuals arc much larger than this for the early part of the data are where the ranging sigtlal-to-noise ratio (which varies as $1 / r^{1}$) was much smaller, yielding substantially larger thermal noise levels. The 5 m range weight solution and the 10 m range weight solution arc in error by 0.48μ radians and 0.37μ radians, respectively. ${ }^{5}$ This compares with an error of 0.76μ radians for the best solution using the conventional filler strategy.

Table 1: Modeling Assumptions

[^2]Figure 5 snows the results of the solutions for the stochastic range biases and their associated 10 uncertainties. It can be seen that the a posteriori uncertainty of the estimates does improve by approximately a factor of two in comparison 10 the a priori uncertainty of 5 m . Both single pass oulliers as wC]] as long term [rends are present. This indicates that the filtef js solving for both station calibration chors (single pass) and longer (cmmphenomena(mostikely solar plasma effects).

Solution	Data Types and Weight			Comments
	Doppler	Range	AIDOR	
1	$1 \mathrm{~mm} / \mathrm{s}$	N/A	N/A	No Stochastic range biases estimated
2.	$1 \mathrm{~mm} / \mathrm{s}$	100 m	N/A	No stochastic range biases estimated
3	$1 \mathrm{~mm} / \mathrm{s}$	10 m	N / A	New filter strategy used
4	$1 \mathrm{~mm} / \mathrm{s}$	5 m	N/A	New filterstrategyured
5	$1 \mathrm{~mm} / \mathrm{s}$	2 m	N/A	New filter strategy used
6	$1 \mathrm{~mm} / \mathrm{s}$	100 m	50 cm	No stochastic range biases estimated

Table 2:Summary of' Solutions

Figure 3: E1 Conventional Solutions
lägure 4: E1 Lligh Precisio n Range Solutions

Figure 5: E1 Range lias solutions and Uncertainties

EARTII-2 ANALYSIS AND RESULIS

The second flyby of Earth in Iecember of 1992 was similar to the first in many aspects. Both flybys were achicved by a series of targeting mane.uvers placed at Earth-60 days, Earth- 2.5 days and Earth- 10 days, Continuous tracking started 35 days prior to closest approach, and a campaign of ADOR observations supplemented the collection of Doppler and range data. " 1 'here were, however, some di fferences betweenthe two flybys worth noting, For one, the spacecraft was much higher in geocentric declination for the second flyby (300 versus 13°). Also, the second flyby resulted in an altitude of 304 km at closest approach, rather than the 960 km altitude at the first flyby. This final difference, however, had no significant effect on the precision range investigation.

The data are for the second flyby was slightly different from the first for two reasons. For the Elanalysis, the data are started immediately after the Earth-60 maneuver. This could notbe done in the Earth-2 case duc to an attitude change 5 days after the Earth- 60 day maneuver. \sim Due to the size. of this turn and its effect on the orbit determination process, it was decided to start the data arc for the I:2 investigation after this turn. This, combined with a data cutoff a day earlier, (for ground sequencing reasons) made the Jarth-2 data arc 6 days shorter than that for E] Secondly, duc to heavy competition for DSN stationtime from November 6-14, fewer ranging opportunilics than in the E1 case were available. Overall, the I 2 data are contains 2260 Doppler points (600 -second count time) and 1834 range. points from October 15 to November 22..In addition to the radiometric data, 2.1 AISOR observations were attempted from October 27 to November 21, resulting in 9 usable $\triangle \mathrm{IIOR}$ observations from the Goldstonc-Canberra baseline and 1() from the Goldstone-Madridbaseline. The list of estimated and considered parameters and their a priori uncertainties for those parameters arc identical to that used in the $1: 1$ analysis. ('I'able 1). Doppler was weighted at $1 \mathrm{~mm} / \mathrm{sec}$ (for a $6(0-\mathrm{sec}$ - nd count) and range was weighed at $100 \mathrm{~m}, 10 \mathrm{~m}, 5 \mathrm{~m}$. and 2 m , exactly as in the E1 investigation.

The results of the E2 analysis are shown in Figures 6 and 7. As was done for the I:1 experiments, all results were mapped to the Earth-centered aiming plane at the time of closcsL approach. As was true for E1, the aiming plane was nearly coincident with the plane-of-sky, which meant the ability of each strategy to determine the aim point for the encounter was closely related to the ability to determine the geocentric angular position of the spacecraft over the data arc. All solutions arc Compared to the post-flyby reconstruction. Higure 6 shows the aiming plane results from the more traditional data fitting techniques, while Figure 7 shows solutions produced via the precision range filter. The 1 -sigma uncertaint y cllipses are also shown for each solution. In every case, the solution was within 1 -sigma of the true solution. Of all solutions shown in Jigure 6 the Doppler-range-AIXIR case was the best with an error of 1.6 km in the B plane.

Of the three solutions shown in Figure 7, the 2 meter solution yields the best estimate, with an error of 2.5 km in the aiming plane. This number corresponds to an angular accuracy of $0.16 \mu \mathrm{rad}$ at 16 days before closcsi approach, which is consistent with \{he. theoretical angle finding precision of the ranging data. Because of the high declination situation in Earlh-2, the Doppler solution is a strong onc to begin with. Therefore, the true strength of the precision ringing technique only comes into play when the range is weighted belter than 5 meter accuracy. The improvement in the 2 m solution as compared to the performance of a 2 m weight solution from I:1 was expected, as most of the ranging data obtained for I 2 was acquired over smaller distances than El, resulting in a smaller thermal noise level in the data. The range data quality at I:2, was twice that of E1, with a post-fit RMS for the range residuals of 50 cm .

[^3]Figure 8 show the results of the tange bias solutions for the 2 m range weight solution. Ranging from all three stations, especially Goldstone, during the early part of November was sparse due to conflicts withother projects and activities for station tracking and calibration time. Continuous ranging was available on day 318 , and gaps after that date are where the range data was deleted duc to unusable station calibration data. The largestrange bias value of 50 range units (7.2 meters) occurred at Madrid on DOY 289 , and when compared with a range residuals display for a 100 meter range fit, could be explained as an unusually large station calibration error for that day. Where the range data was near-continuous, there is some slight conclation in all three stations (seen as a downward slope from day 320 to day 325). Since the behavior is similar for all three stations, it suggests the filter is detecting range delay variations induced from nonstation sources, such as the effect of solar plasma, or perhaps the spacecraft transponder electronic delay.

Figure 8:1:2 Range Bias Solutions and Uncertainties

CONCl.USIONS

The E1 and I:2 orbit determination analysis results are similar in many respects. In both cases, the perfomance of the precision range filterstrategy yielded solutions comparable to or better than those obtained using 1 DOR , although in theory $\triangle \mathrm{DOR}$ provides more accurate angular position measurements. The relatively poor performance of the conventional solutions using $\triangle D O R$ is altributed to the relative sparseness and irregular distribution of the $\triangle D O R$ data set. This is in tum duc to the operational requirements associated withobtaining ADOR observations, which preclude as frequent an acquisition of observations as Doppler and range. The relative case of ranging data acquisition and processing, makes ranging an attractive altemative to $\triangle D O R$ when the precision of the $\triangle D O R$ observations are not required.

ACKNOWIIID(GMENIS

The authors wish to acknowledge lilt valuable contributions and suggestions reccived from ' 1 '. P. Mcklrath and R. A. Jacobson. The work described in this paper was carried out at the Jet Propulsion laboratory, California Institute of Technology, under contract with tile National Acronautics and Space Administration.

REMERENCES

1. Thurman, S. W., Mclilrath, ' 1 '. 1'., and V. M. Pollmeier, "Short-Arc Orbit Determination Using Coherent X-Band Ranging Data," l'aper AAS-92-109, AAS/AIAA Spaceflight Mechanics Meeting, Colorado Springs, Colorado, 24-261 iebruary 1992.
2. Hamilton, T. W., and W. G. Mclboumc, "Information Content of a Single Pass of Doppler Data from a Distant Spacecraft," JP' Space Programs Summary .?7-.?9, Vol. 1//, MarchApril 1966, pp.18-23.
3. Anderson, J. D., "The Introduction of Range Data into the Data Compression Schernc," JPL Space Programs Summary 37-43,Vol./I/, November-IDecember 1966, pp. 18-24.
4. Kinman, P. W,, "Doppler Tracking of Planetary S pacecraft," IEEETransactions on Microwave Theory and Techniques, Vol. 40, No. 6, pp. 1199-1 2.01, Junc 1992.

AIPPENDIX

Planctary approach trajectories are typically described in aiming plane coordinates, often referred to as "l~-plane" coordinates (SCC lig. A-1). The coordinate system is defined by three orthogonal unit vectors, $\underline{S}, \underline{\underline{T}}$, and $\underline{\underline{R}}$ with the systemorigintaken to be the center of the target planct. The S vector is parallel to the spacecraft's approach asymptote (parallel 10 [tic V_{∞} vector) while \underline{T} is orthogonat to S and lies in the ecliptic plane. Iinally, \underline{K} completesanorthogonal triad with S and \underline{T}

Iig. A-1 Aiming l'lane Coordinate System Definition

The aim point for a planetary encounter is defined by the miss vector, \boldsymbol{B}, which lies in the\& $\underline{\boldsymbol{K}}$ plane, and specifics where the point of closest approach would be if the spacecraft's flight path were not deflected by the gravity of the target body. The time from encounter (point of closest approach) is characterized by the linearized time-of-flight (1 'TOF), which speci fits what the time of flight to encounter would be if the magnitude of the miss vector were zero. Orbit determination errors arc characterized by a one-sigma or three-sigma II-plane dispersion cllipse, also shown in Fig. A-1, and the one-sigma or three-sigmauncertainty in ITOF. in Fig. A-1, SMIA and SMAA denote the semi-mil~or and semi-major axes of the dispersion ellipse, respectively.

[^0]: ${ }^{1}$ Member Technical Staff, Navigation Systems Section, Jet Propulsion laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA911 09; Member A AS
 ${ }^{2}$ Tcchnical Manager, Navigation Systems Section, JetPıopulsion I aboratory; Member A AS
 $J_{\text {Data }}$ weights quoted here are one-way equivalent data weights. The actual precision of the two way observable is roughly twice the quoted data weight.

[^1]: ${ }^{4}$ This is a differential delay observation converted 10 units of length. This data weight corresponds to an angular position of 75 nanoradians on the. Goldstone-Madrid base.line and 50 nanoradiansont the Goldstone-Canterrabaseline.

[^2]: ${ }^{5}$ Geocentric angular error al the end of the data are

[^3]: ${ }^{6}$ This was a 40° attitude change. associated with an attempt to deploy the High Gain Antema. The effect of ibis atlitude change is not separable from the maneuver just prior.

