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Capabilities 

James H. Laros III, Sandia National Laboratories [I] 

ABSTRACT: Systems like the Red Storm system at Sandia Laboratories provide grand 
challenges for developers of systems software. While many of the challenges associated 
with systems like Red Storm are experienced on other systems, like commodity clusters, 
the sheer magnitude of the system magnifies issues that may seem trivial on less complex 
systems. The value of taking an integrated approach to many of the challenges faced in 
system software development and implementation on a system like Red Storm is 
presented in this paper in the form of topical example implementations.  
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1. Introduction 
In this paper we will discuss two example 

implementations that leverage what we call the System 
Description Language (SDL) to extend some of the 
current capabilities of the Red Storm [II] system software. 
These implementations are distinct but complementary to 
the current system software. These example 
implementations are presented in an attempt to illustrate 
the benefits of approaching a problem, in this case 
systems management, using concepts like the SDL.  

We will first provide a brief discussion about the 
SDL in Section 2 (System Description Language). This 
section should provide sufficient background about the 
concepts of the SDL that are leveraged in the specific 
examples discussed in this paper.  Two examples of how 
these concepts can be applied are outlined in Section 3 
(Describing a Red Storm System in Software) and Section 
4 (Management of the DDN Subsystem). In Section 3 the 
discussion focuses on how a very complex system like the 
Red Storm XT3[III] system at Sandia Labs, can be 
described in software and stored in a database. The 
resulting database can form the basis of many and varied 
capabilities. In Section 4 we will build on the concepts 
described in Section 3 and add the expression of 
functional capabilities to the system description. This 
specific example will demonstrate interaction with the 
Data Direct Networks (DDN)[IV] controllers which form 
the basis for the storage system attached to Red Storm. 

Finally, conclusions and thoughts on future work are 
provided in Sections 5 and 6. 

The examples provided in this paper will hopefully 
provide a small look at what we feel is a huge opportunity 
to improve the way systems software is architected for 
platforms like Red Storm especially in the area of 
Reliability Availability and Serviceability (RAS) systems. 

2. System Description Language  
The SDL provides a foundation that can be leveraged 

to provide a wide range of utility. The SDL provides the 
capability to produce a database which stores information 
about software and hardware components, relationships 
between components, and functional capabilities of 
components. (In general, when we use the term 
component we imply either software or hardware 
component. From the perspective of the SDL there is little 
or no difference in how each is described.)  Relationships 
between components can be topological, for example, 
how components are physically connected to each other, 
or describe the path that components use to communicate 
with each other. Relationships can be straight forward or 
very complicated. The functionality of components can be 
leveraged to great advantage. In this area the SDL must 
understand a wide variety of the languages that 
components use to communicate.  

We believe that SDL concepts map nicely to object 
oriented concepts. In practice we have found that using an 
object oriented approach results in a useful and extensible 
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implementation. The specific implementations described 
in Sections 3 and 4 are implemented using the Perl [V] 
programming language. Perl supports most object 
oriented concepts and has proven to be useful for quickly 
implementing these concepts. We think it is likely that a 
higher level object oriented language like C++ is better 
suited to express some of the more abstract relationships 
that the SDL is conceptually capable of.  

Using object oriented terminology (with some 
liberty), components map to classes. For each component 
type in the system a class in the SDL will describe the 
component type to the level of detail desired. Class 
attributes can be used to define informational 
characteristics about a component type or relationships 
between component types. Notice we have used the term 
component type rather than simply component. A class is 
used to describe a type of component. Whether there are 1 
or 1000 components of the same type in the system we 
need only one class to describe that component type. For 
each component in the system we will instantiate an 
object of that component type (class) to specifically 
represent that component. For example, if there are 1000 
components of type A we would instantiate 1000 objects 
of class A to represent each individual component. It is 
important to note that attributes provide one way to 
differentiate between instantiated components.  

In the same way that information and relationships 
can be defined in classes, the functionality of a 
component can be encapsulated in a class. Adding class 
methods that implement specific functional capabilities of 
a component type allows objects instantiated based on the 
class to be capable of the desired functions.  

Inheritance is another important object oriented 
concept that we leverage when implementing the SDL. 
Many components share common characteristics in the 
form of information, relationships and functionality. 
Leveraging inheritance allows us to very naturally 
express this commonality while not restricting us from 
differentiating where necessary. We will provide 
examples of how we leverage inheritance in Sections 3 
and 4. 

Once the SDL contains the classes necessary to 
describe a system, objects are instantiated to represent the 
components in the system and stored in a database. In 
Section 3 we will provide a real world example of how 
we leverage these concepts in practice to represent 
component information and relationships of the Red 
Storm system at Sandia Labs. In Section 4 we will 
provide an example that demonstrates the implementation 
of functional capabilities in addition to the information 
and relationship characteristics demonstrated in Section 3. 

Many of the concepts employed in the SDL were 
originally conceived of and implemented as part of the 
Cluster Integration Toolkit (CIT)[VI] project at Sandia 
Labs. A detailed discussion of CIT can be found in An 
Extensible, Portable, Scalable, Cluster Management 
Software Architecture[VII]. A more implementation 

focused view of these concepts can be found in The 
Cluster Integration Toolkit - An Extensible, Portable, 
Scalable Cluster Management Software Implementation 
[VIII]. The concepts that are described in these papers have 
evolved into what we have described as the SDL. A 
discussion of an architecture that will leverage some of 
the more expanded capabilities of the SDL concept can be 
found in A Software and Hardware Architecture for a 
Modular, Portable, Extensible Reliability Availability and 
Serviceability System[ IX].  

 

3. Describing a Red Storm System in 
Software 
By leveraging the concepts discussed in Section 2 we 

can describe systems of great complexity like the Red 
Storm system at Sandia Labs. Red Storm is a very large 
system comprised of many components. Some of the 
components that we choose to represent are; Nodes 
(referred to as AMD_single), L0’s1, L1’s and Seastars2. 
In the following sections we will describe the class 
structure used to describe these components, information 
about them and how relationships can be expressed in the 
classes. We will also describe how other concepts like 
grouping can be leveraged to establish relationships 
between instantiated objects. 

 
Figure 1 Red Storm Hardware Module  

(conceptual view) 

3.1. Class Hierarchy 
Figure 1 depicts a block diagram of some of the 

components on a Red Storm module. The lines drawn 
between the components represent relationships that will 
be established between the components. In this 
implementation each component type will have a 
corresponding class. The class name is comprised of a 

 
1 L0 and L1 in this paper refer to an embedded processor 
that serves as part of the Red Storm Reliability 
Availability and Serviceability system. 
2 Seastar is a high speed proprietary Network Interface 
Controller. 
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hierarchy of classes that combined provide the final 
expression of the class and later the objects instantiated 
from the class. The following is a list of the full Perl class 
names of the components we will discuss.  

 
Device::Node::Cray::AMD_single3

Device::Node::Cray::L0 
Device::Node::Cray::L1 
Device::Network::Cray::Seastar 
Device::SrvrMgmt::Cray::L0 
Device::SrvrMgmt::Cray::L1 
 
Notice that each class name begins with the class 

name Device. In this example we will be discussing 
hardware type components. Most if not all hardware 
components can be considered devices, therefore, the 
common base class for all of the components we list is the 
Device class. The second level class name (from the left) 
is Node, Network or SrvrMgmt. The significance of this 
class name is to structure the class hierarchy based on the 
general purpose that the device serves. You might also 
consider this a categorization of the type of device the 
component is. Notice that both the Network and 
SrvrMgmt class trees contain sub-classes L0 and L1. In 
this implementation the L0 and L1 devices serve two 
roles (or can be categorized as two different types of 
device). Both exist in the system as nodes but they also 
serve a server management purpose in the overall system. 
This is one example of the flexibility this concept enables 
the implementer. 

All classes in this device hierarchy contain a class 
type Cray. The primary purpose of this class is to 
encapsulate concepts that are potentially specific to this 
vendor’s devices. Finally the terminal class in each of the 
listed classes is most specific to the individual device it is 
describing. Note that, potentially, these classes can be 
over-ridden further by sub-classing; for instance to 
specify a more specific Seastar component or a particular 
version of Seastar. 
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Figure 2 Red Storm Component Class Hierarchy 
 

                                                 
3 Full or partial class names appear in bold text. 

3.2. Component Information and Relationships 
 

Figure 2 depicts both the inheritance path of the class 
hierarchy that will be used to represent the Red Storm 
system and attributes specific to terminal classes in the 
hierarchy. (Note: only a few of the many attributes are 
shown and will be discussed) The AMD_single class 
inherits from the Cray, Node and Device classes 
(traversing the class hierarchy from bottom to top). The 
AMD_single class represents a processor socket (or a 
node if you would rather, if the node is a single core 
socket node) on the Red Storm system. Figure 1 depicts a 
Red Storm compute module with four single core sockets. 
Notice the name selected for the class. While the current 
system has single core sockets it is likely that in the future 
this or other XT3 systems will contain dual core sockets 
(and before long, quad core). When this happens we can 
simply create a class to represent the dual core socket 
components called AMD_dual. This new class can 
potentially be based on the AMD_single class and can be 
designed to represent the differences between a single and 
dual core socket component. It is important to note that 
using the object oriented approach allows us great 
flexibility in how these classes are defined and how we 
construct an inheritance tree to express the system.  

An example of an informational attribute is the nid4 
(node id) attribute defined in the AMD_single class 
(Figure 2). This attribute is used to store information 
about a specific object that is instantiated based on this 
class. (Other attributes can exist to specify information 
specific to an entire class that is shared by all objects 
instantiated from the class.) An important piece of 
information about a processor on a Red Storm system 
from the run-time perspective is the nid number. This 
number is used, for example, for allocating the processors 
that will be assigned to an application.   

The AMD_single class also specifies an attribute L0. 
This attribute contains the name of an instantiated object 
of type Device::Node::Cray::L0 representing the 
relationship between the L0 processor on the module and 
the processor socket. In fact the same L0 object will be 
specified in every object of type AMD_single that is on 
the same physical module (board). Figure 1 depicts this 
relationship. Notice that each AMD_single component is 
connected to the L0 component by a red line. This line 
depicts the relationship that is established between these 
objects based on the attribute definition in each of the 
instantiated AMD_single objects.  

The final attribute depicted in Figure 2 associated 
with the AMD_single class is the SS (Seastar) attribute. 
This attribute enables an object that is instantiated based 
on the AMD_single class to know which Seastar 
component it is associated with. Figure 1 depicts four 
Seastar components on a Red Storm compute module. 

 
4 Attribute names will appear in italics. 

Class: Device 
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Class: Cray Class: Cray 

Class: AMD_single 
Attribute: L0 
Attribute: nid 
Attribute: SS  
 



Each AMD_single component has a dedicated Seastar 
component. This relationship can be established by 
defining the SS attribute of an AMD_single object to the 
specific Seastar object that provides its network interface. 
Figure 1 depicts the relationship this attribute establishes 
with black lines between each of the AMD_single 
components and a Seastar component. 
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The Seastar class also contains a nid attribute. This 
attribute definition depicts another way to represent 
information while also representing a relationship 
between instantiated objects. Notice that in Figure 1 the 
AMD_single component whose nid attribute is set to one 
is related to the Seastar component whose nid attribute is 
set to one. The black lines represent the relationships 
formed as described previously by defining the SS 
attribute. This relationship can also be inferred by the 
common attribute definition in each object. This concept 
can be leveraged as necessary to form many simple or 
complex types of relationships.  

The Seastar class, like the AMD_single class, 
contains an L0 attribute. This attribute serves the same 
purpose in the Seastar class as it does in the 
AMD_single class. Notice that this is an example of 
forming a many to one relationship. On a Red Storm 
module the L0 is an important management component. 
Specifying which L0 is responsible for the management 
of components is a valuable piece of information that can 
be leveraged for many purposes, such as a RAS [IX] 
system. 

The management hierarchy is defined further by the 
attributes specified in the L0 and L1 classes. The Red 
Storm management system is hierarchical in topology. In 
brief, each Red Storm module has an L0 (as shown in 
Figure 1). Each Red Storm cabinet contains one L1. The 
L0’s on each of the 24 modules in a Red Storm cabinet 
communicate with the L1 in the cabinet. In turn the L1’s 
in each Red Storm cabinet communicate with the System 
Management Workstation (SMW) at the top of the RAS 
hierarchy. The L1 attribute in the L0 class defines the 
relationship between the L0 and L1, and the SMW 
attribute in the L1 class defines the relationship between 
the L1 and the SMW. Forward and backward 
relationships in a topology can be established using these 
same concepts. 

By choosing attributes that represent information and 
relationships that are meaningful for a particular system, a 
system description can be generated and stored in a 
persistent manner that can be leveraged to provide great 
utility.  
 

 
 

Figure 3 Red Storm Component Collections and 
Objects 

 
3.3. The Red Storm Database 
We have discussed how we use the SDL to describe 

components of the Red Storm system (based on classes), 
information about these components and relationships 
between components. In producing the Red Storm 
database we have another opportunity to express 
relationships between components (instantiated objects). 
Using the Red Storm naming convention we can leverage 
a concept we refer to as collections, or groups, to 
represent the physical topology of the system. (Other 
topological relationships, like network topologies, that 
exist in a system can be established using these concepts 
or in combination with other concepts previously 
discussed) Figure 3 depicts a portion of the physical 
topology of a Red Storm system. Each block in the 
diagram represents a more granular level of the physical 
topology. At the top (left in Figure 3) is the entire Red 
Storm system. In the database, the system is represented 
by a collection called equipment. This name is only 
meaningful in the sense that it was chosen to generically 
represent any system we wish to describe. We have total 
flexibility in naming collections and could have chosen to 
name the collection redstorm for example. Note that the 
collection name equipment is in red in Figure 3. Each 
name in red represents a collection in the database. The 
boxes in yellow represent objects instantiated based on 
the classes that we discussed previously.  

The Red Storm system (equipment) is made up of 
many cabinets. Figure 3 represents a single cabinet of the 
Red Storm system labeled c0-0. This name represents the 
physical position of the cabinet in the Red Storm system 
(c or cabinet in x position 0, y position 0). Note that all of 
the names have an x and y coordinate in their name. 
These names were chosen by Cray but the SDL can 
accommodate any naming scheme that is chosen. To view 
this grouping on an actual system, commands are 
provided to display collections or objects in the database. 
Since equipment is a collection in the database we can use 
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the collection_mgr command to view what is contained in 
the equipment collection. 

 
# collection_mgr equipment 
c0-0 
c0-1 
c0-2 

. 

. 
 
The collection_mgr command will list every object 

and collection that is in the specified collection which in 
this case would be every cabinet in the Red Storm system. 
(For space considerations we have truncated the actual 
output.) Note that the equipment collection contains, 
among others, a collection named c0-0 or cabinet located 
in x position 0 and y position 0. If we execute the 
collection_mgr command on this collection we will see 
what it contains. 

 
# collection_mgr c0-0 
c0-0c0 
c0-0c1 
c0-0c2 
l1_x0y0 
l1_x0y0-mgt 

 
Notice that the cabinet c0-0 contains three cage 

names, c0-0c0, c0-0c1 and c0-0c2, representing the three 
cages in a Red Storm cabinet. These are also collections 
as depicted in Figure 3. There are two actual objects in 
the cabinet collection, l1_x0y0 and l1_x0y0-mgt. Both 
objects represent the same physical device in the cabinet. 
Recall from our previous discussion that we have the 
flexibility to describe different purposes for the same 
device. If we examine these two objects more closely we 
will see what the differences between the objects are: 
 
# device_mgr l1_x0y0 
name => l1_x0y0 
interface => 0 
 nic => 0 
 name => eth0 
 address => 10.1.100.100 
 net_mask => 255.255.0.0 
 boot_if => 1 
 hostname => l1_x0y0 
 is_primary => 1   
role => RAS 
vmname => Management 
x_pos => 0 
y_pos => 0 
isa => Device::Node::Cray::L1 

 
# device_mgr l1_x0y0-mgt 
name => l1_x0y0-mgt 
interface => 0 
 nic => 0 
 name => eth0 
 address => 10.1.100.100 
 net_mask => 255.255.0.0 
 boot_if => 1 
 hostname => l1_x0y0-mgt 
 is_primary => 1   
role => RAS 
vmname => Management 
x_pos => 0 
y_pos => 0 
isa => Device::SrvrMgmt::Cray::L1 

 
Note that there are many attributes defined in each 

object that we have not discussed. Some will be 
mentioned later but some are beyond the scope of this 
paper. Suffice it to say that each attribute serves a purpose 
in describing the object that is intended to be leveraged 
by the user for some reason.  

If we examine the output from the two device_mgr 
commands we notice more similarities than differences. 
Recall that both of these objects represent the same 
physical device. The class name for each object is 
different. Additionally, each object requires a unique 
name to be stored in the database (reflected by the name 
attribute). The isa attribute of the object shows the full 
class name of each object. The l1_x0y0 object is of type 
Device::Node::Cray::L1 while the l1_x0y0-mgt object 
is of type Device::SrvrMgmt::Cray::L1. Even though 
we see little difference in the information defined for each 
object, the class types could encapsulate different 
functional capabilities that are not shown in this output. 
In this sense the objects, while representing the same 
device, could function very differently from each other 
and express different capabilities.  

We can continue to drill further down into the 
hierarchy of collections using the collection_mgr 
command on the cage names displayed from exploding 
the cabinet collection. In this example we will expand the 
cage 0 collection, c0-0c0, which is contained in the 
cabinet c0-0 collection. 
 
# collection_mgr c0-0c0 
c0-0c0b0 
c0-0c0b1 
c0-0c0b2 
c0-0c0b3 
c0-0c0b4 
c0-0c0b5 
c0-0c0b6 
c0-0c0b7 

 
From this output we can see that cage 0 of cabinet 0 

contains eight boards number from 0-7, which represent 
the eight boards in a Red Storm cage. These board 
designations are also collections intended to provide a 
more granular grouping of components just like the 



previous collections. We can again drill further down into 
this hierarchy of collections. 

 
# collection_mgr c0-0c0b0 
c0-0c0s0n0 
c0-0c0s0n1 
c0-0c0s0n2 
c0-0c0s0n3 
c0-0c0s0s0 
c0-0c0s0s1 
c0-0c0s0s2 
c0-0c0s0s3 
c0-0c0s0 
c0-0c0s0-mgt 

 
As shown in Figure 3 all of the entries in a board 

collection are actual devices. The c0-0c0s0 and c0-0c0s0-
mgt objects represent the L0 on board c0-0c0b0. The 
reason for the two objects representing the same physical 
device is equivalent to the example given for the L1 
device at the cabinet level. In addition to the L0 object 
there are four node objects and four Seastar objects 
defined for each compute module in the system. These are 
each represented by an object in the database. The 
following device_mgr command shows some of the 
attributes that are associated with node 0 on this board. 

 
# device_mgr c0-0c0s0n0 
name => c0-0c0s0n0 
l0 => c0-0c0s0 
power => c0-0c0s0-mgt 
power_port => 0 
cage => 0 
slot => 0 
x_pos => 0 
y_pos => 0 
nid => 0 
role => compute 
vmname => catamount 
leader => c0-0c0s0 
SS => c0-0c0s0s0 
isa => Device::Node::Cray::AMD_single 

  
 
As mentioned previously there are many more 

attributes defined for this object than we will be able to 
describe. Notice however some of the attributes that we 
mentioned previously define relationships between 
objects. This node object specifies which L0 it is related 
to on the module. In addition, it specifies the Seastar 
object that it will use for communication. We can see 
what class the object is specified by the isa attribute and 
what node id is assigned by the nid attribute. Many of the 
other attributes are likely self explanatory including the 
role attribute that specifies that this node is a compute 
node. Other valid roles could include IO, or RAS as we 
saw previously when we expanded an L1 type object. An 
example of a more software related attribute is the 
vmname attribute. In this case vmname is set to catamount 
specifying that this compute node is running the 
catamount kernel. The vmname attribute for an IO node 
could be set to Linux since the Linux kernel is typically 

used on the IO partition. We could even include the 
vmname attribute in the class definition for L0’s and L1’s 
and set the object attribute to embedded_linux or even 
more specifically the type of embedded Linux that is 
used. There is virtually no limit to the information or 
relationships that this methodology can represent.  

Hopefully, it is obvious by this point that many 
benefits can be realized by storing this wealth of 
information and relationships between components in a 
system. Some simple examples are generating host tables 
or converting between node names and node id’s (nid). 
These are simple examples and generating a complex 
database like the one we have discussed seems to be a bit 
drastic simply to generate host files. But consider the 
challenges and amount of information necessary for a 
RAS system. Now consider how much of the same 
information a scheduling system needs. If we consider the 
sheer number of configuration files and separate 
definitions of information and complex relationships that 
exist in the software necessary to run a system like Red 
Storm the task of establishing a central storage of system 
information like we have described becomes trivial in 
comparison. We hope that using concepts like the SDL 
described in this paper to generate a central repository of 
information will become a cornerstone of future RAS 
systems and provide benefit to other system software 
components like schedulers and runtime systems. 

 

4. Management of the DDN Subsystem  
In this section we will discuss a targeted 

implementation of the concepts outlined in previous 
sections for the purpose of managing the DDN subsystem 
which provides the storage for the Red Storm system. In 
this implementation we will not only leverage the 
informational and relational aspects that the SDL can 
express but also implement the functional capabilities of 
the DDN controllers. In this section we will build on the 
concepts presented in previous sections and focus on the 
implementation of functional capabilities.  
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Figure 4 DDN Component Collections and Objects 
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4.1. The SDL and Class Hierarchy for the DDN 
subsystem 

The DDN subsystem, like the Red Storm system 
itself, can physically be viewed in a hierarchical manner. 
Figure 4 represents the hierarchy that we have 
implemented (from left to right) to represent the physical 
configuration of the DDN subsystem. Each box in the 
diagram depicts a collection or object. White boxes are 
collections with the collection name in red. Yellow boxes 
are objects that represent hardware components. As with 
the previous Red Storm system example, the top (left 
most) collection which in this case represents the DDN 
subsystem is called equipment. The equipment collection 
itself contains collections representing each of the 
cabinets in the DDN subsystem. Figure 4 depicts the 
cabinet collection DDN-1. Each cabinet collection in this 
implementation contains four DDN controllers. Figure 4 
depicts the four DDN controller objects in yellow that are 
contained in the DDN-1 cabinet collection. 
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Figure 5 DDN Component Class Hierarchy 
  

Figure 5 outlines the portion of the class hierarchy 
that we implemented to represent the DDN subsystem. 
We have applied the same principles discussed in 
previous sections such as the use of attributes to express 
information about components and relationships between 
components. In this implementation we will add the use 
of methods to express the functional capabilities of the 
DDN controllers. Our decision process of where to place 
methods in the class hierarchy is basically the same as the 
decision of where to place attributes. Our goals are to 
maximize code sharing and leverage inheritance as much 
as possible. It is important to note that these decisions are 
important but we are not permanently locked into our first 
instincts. The object oriented concepts used in the SDL 
allow us great flexibility to relocate the capabilities that 
are implemented into new or existing classes as the 
system, or how we view the system, evolves. 

 

4.2. The DDN Command Line Interface 
The DDN controllers provide a Command Line 

Interface (CLI) to the user. Typically the CLI is accessed 
by the user via a Telnet session. Once the user is logged 

into a DDN controller they have access to a large number 
of capabilities. For the purposes of the paper we will 
categorize the DDN CLI commands into two categories, 
1st and 2nd level commands. By our definition a 1st level 
command is the execution of a DDN CLI command 
without any associated parameters. A 2nd level command 
is defined as the use of a 1st level command with 
additional parameters. For example the DDN CLI 
provides a command named “disk”. By our definition the 
use of this command by itself is categorized as a 1st level 
command. If the “disk” command is used with the 
optional parameter list, the command “disk list” would be 
categorized as a 2nd level command (by our definition). 
The consistency of the DDN CLI allowed us to abstract 
nearly all of the DDN CLI with a single method named 
ddn_cli located in the DDN class (see Figure 5). The 
methods implemented in the SDL can be loosely thought 
of as device drivers. The methods are intended to 
implement the capabilities of the component (in the case 
of a hardware component). It should be noted that these 
methods can only implement what a component is 
capable of. This does not mean, however, that we cannot 
develop methods that combine capabilities of a 
component in creative ways to allow new capabilities. As 
long as the new capabilities are built on top of basic 
functionality there are no limitations (See Section 4.4 
Custom Commands). 

 

4.3. Our Command Line Interface 
We first implement methods in the appropriate 

classes to provide basic component functionality. To 
make use of this functionality a user interface must be 
provided that will accept input from the user and execute 
the appropriate methods to accomplish the desired task. 
We will briefly describe the user interface that we have 
developed in the form of a series of commands that 
represent the 1st and 2nd level DDN CLI.  

The 1st level DDN CLI commands in our 
implementation are executed with a command named 
ddn. As with all of the commands we will describe adding 
the flag –help will result in a description of the available 
capabilities of the command. The ddn command abstracts 
the 1st level DDN CLI commands using the following 
command syntax. 

 
# ddn <flag> <component or collection> 

 
The flag is simply the 1st level DDN CLI command 

proceeded by two dashes (--). For example if you want to 
execute the “faults” command you would use the flag  
–faults. The component or collection portion of the 
command allows the user to specify a single component 
(object) which in this implementation would be a single 
DDN controller, or a collection of components. Note that 
the user may also provide a list comprised of multiple 

Class: Device 

Class: Storage 

Class: Controller Class: Disk 

Class: DDN 
Method: ddn_cli  

Class:  
S2A_8500  

Class:  
S2A_8500_5_12  

Class: SEAGATE  

Class:  
ST373207FC  

Class:  
ST373307FC 
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components and or collections. The following examples 
may help illustrate this concept. 

 
# ddn –faults BLK-C1-U-1 

 
This command would execute the “faults” command 

on the DDN controller BLK-C1-U-1 and display the 
output as if the user went through the process of logging 
into this controller and executing the “faults” command. 

 
# ddn –faults DDN-1 

 
This command would execute the “faults” command 

on each of the DDN controllers in the collection DDN-1 
(BLK-C1-U-1, BLK-C1-U-2, BLK-C1-L-1, BLK-C1-L-2 
from Figure 4) and display the output (Note that this is 
done in parallel, see Section 4.5). This applies to every 1st 
level DDN CLI command that is implemented. 

The 2nd level DDN CLI commands are executed by 
combining the prefix ddn_ with the 1st level DDN CLI 
command, followed by a flag that indicates additional 
parameters to be used with the command. The additional 
parameters conform to the DDN CLI format. Examples 
will provide a better description of this. Suppose the user 
wants to execute the DDN CLI command “disk list” on 
controller BLK-C1-U-1. The user would execute the 
following command. 

 
# ddn_disk –list BLK-C1-U-1 

 
In this command the 1st level DDN CLI command 

“disk” is prepended by ddn_ to form the ddn_disk 
command. The DDN CLI command “disk” has various 
parameters that can be supplied along with the “disk” 
command (list is one of them). The resulting command 
ddn_disk –list will effectively execute the DDN CLI 
command “disk list” on controller BLK-C1-U-1. This 
approach was taken in an attempt to make the interface 
we present familiar to users of the DDN CLI. Note that 
users do not have to know every DDN CLI command 
available. Executing the command ddn –help will display 
a list of the 1st level DDN CLI commands that have been 
implemented. The user can then construct the 2nd level 
command by simply prepending ddn_ and adding the  
–help flag to view the available options for that 2nd level 
command. 

It should be noted that all commands that we have 
discussed and will discuss are actually implemented in a 
single executable. The commands ddn, ddn_disk and 
every other 2nd level command interface are actually links 
to the ddn_cli command (not meant to be called natively). 
This command acts much like the popular BusyBox [X] in 
that how it executes is dependent on what command it is 
called by.  

 

4.4. Custom Commands 
Once we implemented the basic capabilities of the 

DDN CLI we used these capabilities as building blocks to 
create additional commands based on user requirements. 
This is probably best illustrated with a simple example. 
The DDN CLI “faults” command when executed on a 
DDN controller will output about seven lines for a 
controller without faults and quite a few more if the 
controller has faults. Suppose you are only interested in a 
response if the controller has an error. By building on the 
basic DDN “faults” command a method can be 
constructed to examine the output and only notify the user 
if a fault is detected. The following command will return 
the controller name if it determines that there is a fault 
present. If no fault is detected nothing is returned. 

 
# ddn –check_faults BLK-C1-U-1 

 
Another value of a command like this is that it can be 

combined with other commands. Since the command 
listed will only return the controller name of a controller 
that has a fault we can pipe the output of this command 
into a subsequent command. 

 
# ddn –check_faults DDN-1 | xargs ddn –faults 
 

This command will query all of the controllers in the 
DDN-1 collection and return only those controllers that 
show a fault. By piping the output into the second ddn 
command we will display details about the fault for only 
the controller that had a fault. It is hopefully not a 
common situation that a controller displays faults. By 
using this command we have the ability to execute a 
single command that scans all of the controllers in the 
system for faults and displays details for any controller 
that is in a faulted state. By using a simple abstraction of 
a basic capability we can now check the health of a large 
number of controllers with a single command where 
previously we would be required to log into each 
controller to accomplish the same task. Note that all 
custom commands are currently implemented using the 
ddn command combined with a custom command flag 
such as –check_faults.  

More complex capabilities can be implemented in 
much the same way. Each DDN controller has attached 
storage or disks. As you can see in Figure 5 we have 
included classes to represent disks in the DDN class 
hierarchy. For a large system like the DDN subsystem on 
Red Storm it would be very tedious and error prone to 
account for every disk during the database creation 
process. Since each DDN controller knows what disks are 
attached to it, this information can be discovered and 
entered into the database automatically rather than using a 
more manual process. This is accomplished with a custom 
method that leverages the “disk list” DDN CLI command. 
The “disk list” command returns a wealth of information 
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about each disk that is attached to a DDN controller. We 
can simply develop a method that parses this output and 
instantiates an object to represent each disk component 
attached to that controller. By using this method for each 
controller in the DDN subsystem our database will 
contain an object representing every disk component in 
the system. The following command is the user interface 
to this capability. 
 
# ddn –populate_disks <controller or component> 

 
This command will populate the database with the 

disks that are attached to the controller specified. Note 
that if a collection of controllers is specified the process 
will be accomplished for every disk on every controller in 
the collection. By extension, every disk in the entire 
system can be discovered using a single command by 
listing a collection that contains every controller in the 
system. 

While we have only discussed two examples of what 
can be accomplished we hope it is evident that any 
capability the end user desires can be implemented as 
long as it is based on the native functionality provided by 
the DDN controller.  

 

4.5. Applying Parallelism 
The benefits of the concepts presented in this paper 

become much more evident when dealing with large 
numbers of components. In the Red Storm example we 
hope to have demonstrated value in producing a central 
storage of information about the huge number of 
components in that system that can be leveraged for many 
purposes. In the DDN example we additionally 
implemented functional interaction with components. To 
be effective for large numbers of components we must 
apply parallelism. Consider the process of executing a 
single DDN CLI command without using any of the 
capabilities that we are providing. A user must telnet to a 
DDN controller, log in with a user name and password, 
execute the command and view the results. While this 
might be adequate for a system with a single or very few 
controllers it can quickly become very time-consuming 
for a large installation. So far we have shown that we can 
save the user the time it takes to log into the controller by 
automating the process as in the previous example of 
checking to see if a device has any faults. 

 
# ddn –faults BLK-C1-U-1 

 
By providing this interface we save the user a bit of 

trouble and a few seconds of time depending on how fast 
they can type. Recall that the user has the option of 
specifying a collection of controllers on the command 
line. If the collection only contains a few controllers and 
the command executes fairly quickly this may still not 
present an issue. But what if, for example, one of the 

controllers in the list is unavailable and the timeout time 
for the action that the user required is 30 seconds. If we 
are executing this process in a serial manner we have just 
added 30 seconds to the total execution time. Again for a 
few controllers this might not be a problem. What if your 
installation has a very large number of controllers? Even 
if it only takes five seconds for each operation if your 
installation has 88 controllers (like the Red Storm system) 
the command would take 440 seconds or over seven 
minutes. While this is probably faster than a user can log 
into each of 88 controllers and perform the same task it is 
in our opinion unacceptable. To remedy this we can 
simply apply some parallelism to the user interface so that 
the required command is executed on each controller in 
the specified collection at the same time. More about 
performance will be reported in Section 4.6. 

4.6. Some Examples of the Resulting Capabilities 
The DDN subsystem that supports the unclassified 

side of the Red Storm system is comprised of 22 cabinets 
each with four controllers (88 controllers total). Perhaps 
the best display of some of the capabilities this 
implementation provides is to show some timing 
examples from our production system. To add some 
perspective to these results we measured, with reasonable 
accuracy, the time required to telnet into a controller, 
execute the command “disk status” and log out. The total 
time for this operation was just over six seconds. Your 
results may vary. In contrast here is the result of using our 
command to accomplish the same operation. 

 
# time ddn_disk –status BLK-C1-U-1 
real    0m1.315s 
user    0m0.190s 
sys     0m0.000s 

 
While this is relatively a very significant difference 

the real benefit comes, as mentioned previously, when 
dealing with large numbers of components. On the 
production system we have added a collection called 
all_controllers that contains the name of every controller 
in the system. In the following example we will use the  
–check_connection option of the ddn command which 
logs into the specified controller(s) verifies that it has 
reached the correct destination and logs out. The first 
command will time this operation for a single controller. 
The second command will time the operation for all 88 
controllers in the system using the all_controllers 
collection. 

 
# time ddn –check_connection BLK-C1-U-1 
real    0m1.290s 
user    0m0.190s 
sys     0m0.010s 
 
# time ddn –check_connection all_controllers 
real    0m2.420s 
user    0m0.910s 
sys     0m0.430s 
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As you can see from these results we can perform 
this operation on all 88 controllers in the system in less 
time than it takes to log into a single controller manually.  

One of the typical operations that administrators at 
our site accomplish is executing the DDN CLI “stats” 
command. This command produces a moderate amount of 
output. The following two commands time how long it 
takes to execute the “stats” command on a single 
controller followed by all 88 controllers. 

 
# time ddn –stats BLK-C1-U-1 
real    0m1.291s 
user    0m0.190s 
sys     0m0.010s 
 
# time ddn –stats all_controllers 
real    0m5.447s 
user    0m1.130s 
sys     0m0.590s 

 
Even using a command that produces significant 

output, the time to execute a command on all of the 
controllers in the system is very small. We should note 
that when a command is executed on multiple 
components the output for that component is prepended 
by the controller name. This allows us to redirect large 
amounts of output to a file and quickly find the controller 
in question while viewing the file with an editor or using 
your favorite UNIX utility to extract the information you 
desire. We should also note that the times listed are 
including the time to return and display all output from 
the commands. Each command was executed multiple 
times to verify that the results were consistent and 
reproducible. 

5. Conclusion 
We hope that the examples provided in this paper 

provide enough information for the reader to imagine 
other uses for these concepts. The implementations 
described originated as proof of concept exercises but 
quickly proved to be useful on a production system.  All 
of the software used in these examples is freely 
available[VI]. Please contact the author for further 
information. 

6. Future Work 
One of the values of expressing information as we 

have described is that it can be abstracted in different 
ways to serve the many varying needs of the end user. 
The DDN example abstracted the administrative interface 
to the DDN controllers. This interface was targeted at 
system administrators responsible for the task of 
managing the DDN subsystem itself. Much of the same 
information could be leveraged to provide important 
configuration information to someone interested in 
supporting Lustre[XI]. Relationship information, like 
which nodes are connected to which DDN controller or 

what disks are combined to form a file-system, could be 
extremely valuable. By combining the information 
described in the examples into a single database all of the 
necessary information could be stored and retrieved in 
numerous creative ways. We are in the process of 
providing an abstraction of this combined information for 
the I/O team at Sandia Labs. 

Many of the concepts discussed in this paper are part 
of an ongoing research project at Sandia Labs 
investigating RAS software architectures. 
Implementations such as these provide valuable proof of 
concept exercises.  
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