

2007 Int Conf Frontiers of Characterization and Metrology for Nanoelectronics March 29, 2007

Metrology and Characterization for Extending Silicon CMOS

Toshihiko Kanayama MIRAI-Advanced Semiconductor Research Center, AIST, Japan

- Requirements for measurement/characterization technology
- Characterization/metrology for local probing of material structures and properties
 - Physical dimensions (CD & LER)
 - Local strain in Si
 - Dopant / potential distributions
- Conclusion

Metrology and Characterization with High-spatial Resolution

4/20

High-Precision CD Metrology by AFM

Strain distribution

NBD (NanoBeam electron Diffraction)

Confocal/ probe-excited UV Raman microscope

IRAI Stress distribution in STI structures by confocal microscope

Analysis using polarization dependence of Raman scattering

Raman scattering excited by metal-particle-topped AFM-probe

method	sensitivity	Spatial resolution	feature
Probe excited Raman scattering	0.05 cm ⁻¹ (~ 0.005%)	~ 50-100 nm	Non-destructive
UV Raman scattering	0.05 cm ⁻¹ (~ 0.005%)	~ 130 nm	Non-destructive Non-contact
CBED (Convergent beam electron diffraction)	d/d= 0.02%	~ 20 nm	High precision
NBD (Nano-beam electron diffraction)	d/d = 0.1%	~ 10 nm	High spatial resolution

Spatial resolution for 2D/3D dopant profile better than 2.8 nm by 2007 (ITRS 2005)

STM observation on atomically flat and hydrogenated surface

Nishizawa, J. Vac. Sci. Technol. B24 (2006) 365

Simultaneous measurement of potential and dopant atom

IRAI

15/20

A IRAI Quantitative potential profiling by *I-V* measurements

M. Nishizawa et al, to be published in APL 2007

Resonant Tunneling Measurement of Local Potential

method	principle	Spatial resolution
STM	Surface potential/ Dopant detection	atomic ~1 nm
SCM (Scanning Capacitance Microscope)	Capacitance (C-V)	~ 10 ~ 20 nm
SSRM (Scanning Spreading Resistance Microscope)	Spreading resistance	~ 5 ~ 10 nm
Kelvin Force Microscope	Surface potential	~ 100 nm
Electron holography	Internal potential	~ 1 nm
TEM Z - contrast	Dopant atom contrast	~ 1 nm

For further extension of CMOS evolution

- To implement new booster technologies and to minimize variation, characterization and metrology of local properties and structures are needed.
 - e.g., CD & LER, Local strain in Si, Dopant distributions
- Various methods must be comprehensively used;
 - Optical, SEM/TEM, Scanning probe

in conjunction with Simulations (TCAD),

because no single method can give complete information in nm regions.

Colleagues in MIRAI project

- T. Tada and V.V. Porochii for UV Raman measurements
- L. Bolotov and M. Nishizawa for STM measurements
- K. Usuda for Nano-beam diffraction
- S. Gonda for CD-AFM
- N. Hirashita, T. Numata, T. Tezuka, N. Sugiyama and S. Takagi and many other members of the MIRAI project for providing STI and strained SOI structures

Sample preparation

- N. Hattori of Renesas Technology for strained STI structures
- H. Fukutome of Fujitsu Laboratory Ltd. for the *p-n* junction samples.

The MIRAI Project is sponsored by NEDO, Japan.