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ABSTRACT
We report the computational advances that have enabled the first
micron-scale simulation of a Kelvin-Helmholtz (KH) instability us-
ing molecular dynamics (MD). The advances are in three key areas
for massively parallel computation such as on BlueGene/L (BG/L):
fault tolerance, application kernel optimization, and distribution
across the parallel architecture. In particular, we have developed
novel capabilities for handling hardware parity errors and improved
particle-based domain decomposition algorithms to minimize com-
munication overhead, achieve excellent scalability, and improve
overall application performance. We have also extended the ddcMD
code to handle commonly used Embedded Atom Method (EAM)
interatomic potentials efficiently. As a result we have conducted
a 2 billion atom KH simulation amounting to 2.8 CPU-millennia
of run time, including a single, continuous simulation run in ex-
cess of 1.5 CPU-millennia. The current optimized ddcMD code is
benchmarked at 54.3 TFlop/s with the EAM potential, with addi-
tional improvements ongoing. These improvements enabled us to
run the first MD simulation of a micron-scale system developing a
KH instability.

1. INTRODUCTION
With 131,072 CPUs, BlueGene/L (BG/L) at Lawrence Liver-

more National Laboratory is the first and so far the only supercom-
puter in the world to employ over 100,000 processors, holding first
place on the Top-500 list [38]. Achieving the highest levels of per-
formance using this large number of processors requires not only
a well optimized application kernel, but also truly scalable solu-
tions to issues such as communications overhead, load imbalance,
I/O, and redundant computation. Techniques that are perfectly ad-
equate for 1,000 or even 10,000 CPUs don’t always perform as
expected on 100,000 CPUs. However, scalability is only part of
the challenge of working on BG/L. With such a large number of
processors—at least 10 times more than almost every other cur-
rent supercomputer—hardware failures are a virtual certainty dur-
ing any substantial job. Without a well designed recovery strategy
hardware failures can substantially impact performance. This situ-
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ation is currently unique to BG/L, but it is sure to be encountered
with increasing regularity as chips with 10’s or even 100’s of cores
are used to build future supercomputers with millions of CPUs.

Traditionally, hardware errors have been handled either by the
hardware itself or the by operating system. However, a greater de-
gree of robustness and flexibility can be attained by allowing the
application to participate in the error correcting (handling) process.
The application, with its understanding of the details of the calcu-
lation, can evaluate the impact of the error and decide the most ef-
ficient strategy for recovery. This software capability opens the po-
tential for a new paradigm in supercomputer design. Relaxed hard-
ware reliability constraints made possible by application-assisted
error recovery open the door to designs using less intrinsically sta-
ble but higher performing or perhaps less expensive components
thus improving the price/performance ratio. To compare the effec-
tiveness of these error recovery techniques we discuss long-running
large-length-scale MD simulations [1] of hydrodynamic phenom-
ena (in particular the Kelvin-Helmholtz instability) with atomistic
resolution.

The Kelvin-Helmholtz (KH) instability [6, 2] arises at the inter-
face of fluids in shear flow, and results in the formation of waves
and vortices. Waves formed by KH instabilities are ubiquitous in
nature. Examples include waves on a windblown ocean or sand
dune, swirling cloud billows (see Fig. 1), and the vortices of the
Great Red Spot and other storms in Jupiter’s atmosphere. The KH
instability has been studied previously by a variety of means, but
never before using molecular dynamics with realistic atoms. The
growth of the instability in the linear regime has been studied ana-
lytically based on the Navier-Stokes equation [22]. Beyond linear

Figure 1: Clouds over Mount Shasta exhibiting a Kelvin-
Helmholtz instability [34].



analysis, the phenomenon has been studied numerically using tech-
niques including lattice Boltzmann [41], Smooth Particle Hydrody-
namics [19, 24], and Direct Simulation Monte Carlo [39] and other
hard-sphere particle techniques, as well as Navier-Stokes [37, 11,
28, 10, 9]. Hydrodynamic instabilities related to the KH instability
have been studied with MD such as the shedding of vortices from
cylinders in a flowing fluid [29], interface roughening in sandpiles
[3], and the Rayleigh-Taylor instability in which the mushrooming
of the plumes is related to the KH instability [20].

We simulated KH initiation and development at the interface be-
tween two molten metals in a sample of over 2 billion atoms via
molecular dynamics. The use of MD in our work has enabled sim-
ulation of fluids where all phenomena of interest—vortex develop-
ment, species interdiffusion, interface tension, and so on—are fully
consistent, arising from a single interatomic force law.

In order to achieve extended high performance on massively par-
allel computers one needs: superior processor utilization, efficient
distribution of tasks, and long-term stability without performance
cost. In the rest of the paper we address these needs with: an ef-
ficient implementation of a standard interatomic potential, a robust
particle-based domain decomposition strategy, and an implementa-
tion of application error management.

The paper is organized as follows: In section 2 we discuss the
creation of hardware-fault tolerant molecular dynamics; In sec-
tion 3 we describe kernel optimization strategies; In section 4 we
present performance results via scaling, benchmarks, and the early
stages of an ongoing simulation; In section 5 we discuss science
results obtained from a completed exploratory simulation1; Finally,
in section 6 we present our conclusion.

2. HARDWARE-FAULT TOLERANT MD
Micron-scale MD simulation requires the massively-parallel ar-

chitecture of machines such as BG/L, as well as adaptable software
such as ddcMD that can exploit the novel architecture. BlueGene/L
is a massively-parallel scientific computing system developed by
IBM in partnership with the Advanced Simulation and Computing
program (ASC) of the US Department of Energy’s National Nu-
clear Security Agency (NNSA). BG/L’s high-density cellular de-
sign gives very high performance with low cost, power, and cooling
requirements. The 65,536-node (131,072-CPU) system at LLNL
is at this writing the fastest supercomputer in the world, having
achieved a performance of 280.6 TFlop/s on the Linpack bench-
mark in November, 2005.

Although system designers have spent considerable effort to max-
imize mean time between failures (MTBF), the large number pro-
cessors on BG/L greatly increases the likelihood of unrecoverable
hardware errors. Error rates that would be unnoticeable in serial
computing can become crippling problems. A component that pro-
duces errors at the rate of once every 2 or 3 years on a typical desk-
top machine will cause a failure on average every 10 minutes on
BG/L.

Many techniques to improve or address hardware fault tolerance
have been described and/or implemented. For example the well
known SETI@HOME project [33] uses a job farming/redundant
calculation model to detect and correct faults. Other redundant cal-
culation schemes employ multiple threads on different cores [13],
compiler inserted redundant instructions [30, 31], and even systems
with multiple redundant processors and data buses [40] just to list
a few. Checkpoint or log based rollback schemes [7] offer an al-

1This simulation was performed with a simpler version of the EAM
potentials that contained less physics than the EAM potentials im-
plemented currently.

ternative to redundancy. Although these techniques all attempt to
mitigate errors at the hardware or system software level, some ap-
plications can also be made fault tolerant through the selection of
an appropriate underlying algorithm [8].

The primary hardware failure mode on BG/L has been transient
parity errors on the L1 cache line. Although most components of
the BG/L memory subsystem can correct single bit parity errors
and detect double bit errors, the L1 cache can only detect single bit
errors and is unable to correct them. When running on full BG/L,
L1 parity errors occur on average every 8 hours, or approximately
once every CPU century. Without assistance from the application,
the Compute Node Kernel (CNK) can only terminate the job and
force a reboot of the machine. At the system level where one cor-
rupted bit is equally important as any other, there is no other viable
strategy that can guarantee the fidelity of a calculation.

Recovery from a termination is expensive: 1/4 hour to reboot
the machine, 1/4 hour to restart the application from the last check-
point, and on average perhaps 1 hour (half the checkpoint interval)
to redo calculations since the last checkpoint. Hence 1.5 out of ev-
ery 8 hours, or nearly 20% of (wall-clock) time is spent in error
recovery. Applications with longer checkpoint intervals will suf-
fer even greater losses. More frequent checkpoints could reduce
the recovery time, but the time spent writing could easily offset the
advantage.

Since supercomputing applications often require days of run time
the error recovery time represents a significant reduction in the
overall computational efficiency. In evaluating the overall perfor-
mance of an application the time spent recovering from errors must
be factored in. Computer time is not budgeted in Flop/s but in wall
clock or CPU hours—time spent either down or repeating calcula-
tions lost to a crash increases the project budget.

2.1 Parity Error Recovery Methods
BG/L provides two methods to mitigate the impact of L1 par-

ity errors. The first option is to write through the L1 data cache
directly to lower levels of the memory subsystem. Using write-
through mode eliminates the possibility for unrecoverable parity
errors (data can always be reloaded from main memory in the case
of an error) but at the cost of degraded performance. The second
option transfers control to an application-supplied interrupt handler
whenever the CNK detects an unrecoverable parity error, thus al-
lowing the application to assist in the error recovery process. By
exploiting detailed knowledge of the application state and/or mem-
ory usage, the application can use this handler to implement highly
efficient recovery strategies that would otherwise be impossible.

Activating write-through mode is very effective at eliminating
parity errors. One of the jobs that generated the data reported
in Section 5 ran without interruption for more than 4 days and
logged 12 recovered parity errors. This run represents over 1.5 CPU
millennia without an unrecoverable error. Unfortunately, the in-
crease in stability comes with a performance cost. The cost of
write-through mode is application dependent with performance de-
creases typically in the range of 20–50%. For ddcMD the per-
formance degradation caused by activating writethrough mode is
20%—roughly the same cost as ignoring errors. Applications with
short checkpoint intervals and high write-through penalties will ac-
tually observe a performance decrease. Clearly write-through mode
provides fault tolerance, but the associated performance penalty
provides motivation to seek other solutions.

To test the effectiveness of application-assisted error recovery
we have implemented a “rally and recover” error handler that uses
fast checkpointing to recover from a parity error. In this strategy a
backup copy of the positions and velocities of the atoms is made in



memory every few time steps. The overhead to keep such a copy is
small: only a few Mbytes per processor. When a parity error occurs
the handler sets an application level flag and instructs the task on
which the error occurred to continue calculating even though data
have been corrupted. At designated rally points all tasks check the
error flag—if the flag is set the current results are discarded and all
tasks back up in time by restoring the previously saved positions
and velocities. This scheme differs from prior checkpoint based er-
ror recovery systems in that the process of checking and communi-
cating error status, as well as saving/restoring checkpoints is under
the control of the application rather than the system. This avoids
the complications inherent in writing generic recovery code and
leverages application specifics to minimize memory requirements
and simplify the code needed to check error states and recover from
checkpoints.

For ddcMD there is a 3% performance penalty when application-
assisted recovery is enabled. This penalty is almost completely due
to overhead added by the processor’s load pipeline to enable proper
error recovery. The cost of the checkpoint operations is negligible.
In runs with our error handler enabled the time to recover from a
parity error was reduced to the time needed to recompute a small
number of time steps (typically a second or less), enabling ddcMD
to run continuously at peak performance over long periods. Hence,
when the application takes some responsibility for hardware fault
recovery it is possible to achieve improved performance in addi-
tion to fault tolerance. With ddcMD, we see a 17% improvement
(or speedup of 1.2) compared to either no error handling or write-
through mode. Paradoxically, the code has achieved a higher over-
all level of performance by allowing the hardware to make mis-
takes.

Figure 2 shows the speedup that can be obtained from application-
assisted error recovery compared to having the application crash
and restart as a function of the crash penalty time (reboot + restart
+ 1/2 checkpoint interval). Note that a factor of two speedup is
a practical limit. Applications with a crash penalty that exceeds
50% of the mean time between failures can limit crash losses using
write-though mode. The curve for MTBF=8 represents BG/L. As
processor count increases the MTBF will decrease if the failure rate
remains the same. The other curves show that benefits of fast er-
ror recovery are increased for future machines with shorter failure
times due to larger processor counts.

As machines larger than BG/L are constructed it will become
even more important for applications to be able to assist the hard-
ware in dealing with errors. Robust fault tolerance at the applica-
tion level offers improved efficiencies in both run time and mem-
ory usage than solutions at the OS or hardware levels. Application
level fault tolerance is also easier and more cost-effective to achieve
than the construction of no-fault computers. Many codes already
contain infrastructure to detect and recover from errors common
to numerical simulation such as convergence failures or failures
to satisfy error tolerances. Such code can be adapted to serve as
hardware fault interrupt handlers. We feel that the ability to run
processors in an “unsafe” mode will greatly enhance the effective
reliability and overall performance of scientific codes, and pave the
way for more aggressive computer design in the next generation of
massively-parallel computers.

3. OPTIMIZATION FOR BLUEGENE/L
We have previously reported [35, 36] performance in excess of

100 TFlop/s using ddcMD and the interatomic force law known
as Model Generalized Pseudopotential Theory (MGPT) [26]. Al-
though the functional form of MGPT is derived from quantum me-
chanics through a series of approximations that retains much of the
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Figure 2: Speedup obtained from application-assisted parity
error recovery as a function of crash penalty time for three val-
ues of mean time between failures (MTBF): 2, 4, and 8 hours.

many-body character, it is implemented as a purely classical many-
body interatomic potential [25]. Even as an approximation, MGPT
requires on the order of a million floating point operations per par-
ticle, making it an extraordinarily expensive potential to compute.
Given this computational burden, much effort was devoted to op-
timizing our implementation of the MGPT potential function. Be-
sides a highly tuned compute kernel, a rather complex neighbor
table algorithm was implemented. The neighbor algorithm tracked
multiple cutoffs and was designed to avoid at all costs the eval-
uation of redundant force and/or energy terms, as well as terms
that would evaluate to zero. By reducing the number of redundant
calculations performed we decreased the “performance” of the ma-
chine as measured by Flop/s but increased the performance as mea-
sured by the most important metric: overall time to solution.

With the less expensive EAM potential we found that is no longer
optimal to avoid all redundant calculation and communication. The
cost to determine and communicate parts of the calculation that
are unneeded exceeds the cost of the small number of extra en-
ergy and force calculations. Our neighbor list and communication
algorithms are now configurable according to the computational
demands of the potential to yield the fastest time to solution. As
shown in Table 1 even with some redundant calculation allowed,
ddcMD still updates atom positions at 3 times the rate of SPaSM
for potentials of comparable complexity and cutoff range.

The trade-off between extra calculation and update rate is not al-
ways so favorable. Referring again to Table 1 consider the 16 mil-
lion atom LAMMPS and the 17 million atom MDGRAPE simula-
tions. Both runs are simulating biological systems of roughly the
same size using similar potentials. The most computationally de-
manding part of these simulations is the evaluation of the Coulomb
field. MDGRAPE’s approach is simply to choose a large cutoff
and neglect the contribution of the long-range part of the Coulomb
field. LAMMPS on the other hand uses the more efficient and
accurate particle-particle-particle mesh method (PPPM) based on
Ewald method and FFTs. The PPPM method retains the long-range
part of the Coulomb field and does it with good computational ef-



# Atoms Atom- Atoms in
Code Machine Cores Potential Cutoff (Å) Updates/sec Flop/s/atom cutoff TFlop/s
LAMMPS[4] BG/L 65536 LJ 4.0e10 6.86e9 6.28e2 55 4.3
SPaSM[21] BG/L 131072 LJ 3.2e11 5.85 11.24e9 2.42e3 71 27.2
SPaSM[21] BG/L 131072 LJ 3.2e11 11.69 2.50e9 1.92e4 565 48.1
SPaSM[12] BG/L 65536 EAM 6.4e10 4.68 1.65e9 a) 36 a)
ddcMD BG/L 131072 EAM 2.0e09 4.50 10.12e9 5.37e3 31 54.4
ddcMD[36] BG/L 131072 MGPT-U 5.2e08 7.24 1.18e8 9.09e5 77 107.6
MDGRAPE[27] MDGRAPE-3 2304 AMBER 1.4e07 30.00 4.03e7 1.37e6 11,414 55.0
MDGRAPE[14] MDGRAPE-3 4300 AMBER 1.7e07 44.50 4.14e7 b)4.47e6 37,252 185.0
LAMMPS[4] Red Storm 512 CHARMM 1.6e07 c) 1.20e7 a) c) a)
LAMMPS[4] Red Storm 10000 CHARMM 3.2e08 c) 2.19e8 a) c) a)

Table 1: A collection of large scale MD simulations comparing performance measures. Note a) No Flop information is provided in
the reference. Note b) Neither update rates or Flops per atom provide in the reference. Flops per atom was inferred from the Flops
per atoms for the 1.4 × 107 atom MDGRAPE run by scaling with (44.5/30.0)3. This number and Flop rate were used to infer the
update rate. Note c) LAMMPS has no cutoff for the Coulomb field. The short range part of the interaction is cutoff at 10Å.

ficiency. Despite the enormous advantage in peak Flop/s (850 vs.
41 TFlop/s), the MDGRAPE code does not attain a substantially
more rapid time to solution than LAMMPS because of the ineffi-
cient treatment of the Coulomb interactions.

3.1 Kernel Optimization
Rather than utilize MGPT in the current study of KH instability,

we employ the widely used EAM potentials for metals [5]. These
potentials can be characterized as arising from the addition of a
multi-body “embedding energy” term to a standard pair potential
interaction:

E =
X

i

ei + F (ρi)

where ei =
1

2

X
j 6=i

φ(rij) and ρi =
X
j 6=i

f(rij)

(1)

The distance between atoms is given by rij , and the functions f , F
and φ depend on the type of atoms interacting and their nonlinear
forms are specified in the definition of the potential. This potential
is computationally inexpensive compared to MGPT, needing only
a few thousand floating point operations per particle per evaluation.

There are numerous opportunities to optimize the performance
of EAM potentials within ddcMD. In this section we will discuss
a few of the most important steps that we have taken as well as
further opportunities for performance enhancement that exist.

On the BG/L architecture there are three main issues (other than
communication) to consider when optimizing compute-intensive
codes such as ddcMD and other molecular dynamics implemen-
tations. First, as on all architectures, there is the issue of blocking
and cache level. Lower levels of cache can feed the processor with
greater bandwidth and with less latency. Second, as is the case on
many modern architectures, there is the issue of SIMD code gener-
ation. BlueGene/L has a two-way SIMD ISA and a commensurate
possibility of a two-fold speed-up for scientific codes. Third, there
is the issue of high-precision estimates of operations such as recip-
rocal and square root. Properly scheduled, these instructions can
greatly speed up routines that are dependent upon the calculation
of these functions, which are common in molecular dynamics al-
gorithms.

Three routines of interest for optimization were identified: loca-
tor that finds pairs of interacting atoms, enden that computes the
2-body energy and density, and forstress that evaluates the forces

and stress tensor on the interacting atoms.
The locator routine locates all of the atom pairs that are within

a prescribed cutoff distance from one another (including periodic
boundary conditions). The indices of these atoms are placed in a
vectorized list for processing by the other routines. Here, there are
three impediments to optimization that had to be overcome. The
first is that the atoms are not so local so as to fall into the L1 cache,
therefore the routine is currently somewhat bandwidth restricted.
The second is that our primary goal in designing the software was
to make it portable and easily to debug, therefore the objects used
did not always lend themselves to SIMDization, and we were hes-
itant to use assembly language programming unless performance
was simply unacceptable without that level of optimization. Fi-
nally, most of our tests for proximity will result in a failure (i.e.
most candidate atom pairs are not within the cutoff distance)—
many tests are performed and very little action is taken when a test
is positive. This high miss rate leads to the evaluation of the branch
being a possible bottleneck.

Without rewriting the surrounding framework, the best course
of action here was to turn up the compiler optimization level and
to unroll the evaluation loop by a factor of two. Since the evalu-
ation is not currently SIMDized and the data are not coming from
the L1 cache, this change alone largely put the bottleneck back on
the memory subsystem. This change led to a speedup of almost
exactly two times while further levels of unrolling did not help per-
formance. Future optimizations are likely to include changing the
structures used so that the SIMD nature of the machine can be bet-
ter exploited and, potentially, interleaving data structures.

The issues involved in the enden and forstress routines are largely
the same, so they will be discussed together here and the differences
delineated below. Both enden and forstress use the list of interact-
ing particles constructed by locator and both apply (different) func-
tions to the particles of interest, where the function is dictated by
both the routine and the types of the particles under consideration.

The functions φ(rij) and f(rij) and their derivatives in the EAM
potential [23] are given analytically by a combination of exponen-
tials and non-integral powers, however, for these calculations we
replace these representations by 32 term polynomial expansions
that recovers the original form in the domain of interest. The eval-
uations of φ(rij) and f(rij) (and derivatives) in polynomial form
are nicely vectorizable (and SIMDizable) and run at very nearly
the peak rate of the machine. In fact, the bandwidth demand is
such that the polynomial evaluation can run at very nearly 100%



of the architecture’s theoretical limit once it is properly unrolled
and scheduled. In order to optimize these routines, the most crucial
issue was getting the system to produce the desired SIMD instruc-
tions. This was done through the use of so called “built-ins,” or
“intrinsics,” that generate the desired (assembly) code without plac-
ing the burden of details such as register allocation and instruction
scheduling on the programmer. For the computation of polynomial
functions this approach worked admirably. However, the routines
themselves run at approximately 40% the peak rate of the machine
due to a number of now-understood issues that we are attempting
to mitigate.

One such issue is directly related to the use of intrinsics, rather
than hand-coded assembly instructions. While intrinsics are more
readable than assembly instructions and considerably easier to in-
termix with standard C code, they can lead to scheduling and in-
struction selection shortfalls that a programmer who understands
the architecture might not make. For example, the intrinsics fail
to inform the compiler that one piece of data is in the L1 cache
(and, therefore, does not need to be prefetched) while another is
likely to be in main memory and therefore could greatly benefit
from prefetching. Instead, everything is scheduled as if it resides
in the L1 cache. Further, the load-and-update instruction, which
would likely prove beneficial to the performance of this loop is not
used in the generated code.

Anther impediment to performance is both architectural and al-
gorithmic in nature. The current construction of the interaction list
produces some atoms with a small neighbor count. Because the
register use-to-use time is at least five cycles in the BG/L architec-
ture, we have to have at least 5 interaction evaluations evaluated
in the same loop in order for the system to proceed at near peak.
More simply said, the evaluation of a single, non-interleaved, par-
ticle interaction will take as long as five interleaved reactions. We
are currently pursuing strategies to optimize the organization of the
neighbor list.

As was mentioned above, forstress has additional code for com-
puting the stress tensor. Currently, this is not SIMDizable, but we
are considering a slight restructuring of the code and storage meth-
ods that should facilitate SIMDization on these, admittedly small,
sections of the algorithm.

3.2 Particle-Based Domain Decomposition
We retain the innovative domain decomposition algorithm im-

plemented in ddcMD [36], which was central to the outstanding
performance achieved by the code using the expensive MGPT po-
tentials. Our particle-based decomposition strategy allows the pro-
cessors to calculate potential terms between atoms on arbitrarily
separated domains. Domains do not need to be adjacent, they can
be arbitrarily shaped and may even overlap. A domain is defined
only by the position of its center and the collection of particles that
it “owns.” This flexibility has a number of advantages. The typical
strategy used within ddcMD is initially to assign each particle to the
closest domain center, creating a set of domains that approximates a
Voronoi tessellation. The choice of the domain centers will control
the shape of this tessellation and hence the surface to volume ratio
for the domain. It is this ratio for a given decomposition and choice
of potential that set the balance of communication to computation.
The commonly-used rectilinear domain decomposition employed
by many parallel codes is clearly not optimal from this perspective.
The best surface to volume ratio in a homogeneous system can be
achieved if domain centers form a bcc, fcc, or hcp lattice, which are
common high density packing arrangements of atomic crystals.

Even though the best surface to volume ratio would optimize
communication cost, load imbalances that may arise (e.g., due to a

non-uniform spatial distribution of particles around voids or cracks)
requires more flexibility. The domain centers in ddcMD are not
required to form a lattice—the application is free to choose any
set of domain centers. The flexible domain strategy of ddcMD al-
lows for the migration of the particles between domains by shifting
the domain centers. As any change in their positions affects both
load balance and the overall ratio of computation to communica-
tion, shifting domain centers is a convenient way to optimize the
overall efficiency of the simulation. Given the appropriate metric
(such as overall time spent in MPI barriers) the domains could be
shifted “on-the-fly” in order to maximize efficiency. Currently the
domaining is steered dynamically by the user, but it could be im-
plemented automatically within ddcMD.

4. PERFORMANCE
In a perfect world all computing hardware would provide an ac-

curate count of floating point operations and evaluation of perfor-
mance. However, gathering such information on BG/L using hard-
ware alone is difficult for two reasons: First, not all floating point
operations (Flops) are counted, and second, of those operation that
can be counted it is not possible to count them all simultaneously.

The 440D architecture of BG/L offers a rich set of floating point
operations to manage the two floating point units on the core. There
are two broad classes of fp instructions, SISD and SIMD. SISD
operations only use the first floating point unit (fp0). The second
float point unit (fp1) cannot be accessed independently of fp0 and
requires the use of the SIMD instructions. The hardware floating
point counter can count four different types of events, but only one
at a time. The first type of event is SISD add and subtract (type
0); the second is SISD multiply and divide (type 1); the third is
the so-called fused multiply-add and its variants (type 2). These
first three event types cover almost all the SISD fp instructions.
The fourth and final type of event is the SIMD fused multiply-add
operation and its variants. Other SIMD floating point operations
are not counted, including all of the non-fused SIMD operation; for
example, simple adds and multiplies, as well as float point negation
(multiply by −1.0) are not counted.

The inability to count all floating point operations can result
in an underestimation of performance, especially for highly opti-
mized code that exploits the second floating point unit (fp1). Such
is the case for the kernels used to evaluate the EAM potential in
ddcMD. These kernels have a significant number of fused and non-
fused SIMD operations. It is possible to count instructions in a
basic block of the kernel by looking at the assembler listings. With
knowledge of the iteration count for these blocks, an estimate for
the missing Flops can be made. Fortunately, for the floating point
intensive kernels of the EAM potential the ratio between counted
and non-counted SIMD instruction is fixed for each kernel, and that
ratio can be found by examining the assembler listing. Simple scal-
ing of the hardware SIMD fp count (event type 3) determines this
correction. Overall, we find that a few percent of the Flops are not
counted by the hardware counters

Since each task has only one counter it can count only one type
of event at a time. To count all events on all tasks for a given cal-
culation the calculation would need to be run four times, (once for
each fp event/group) and the total floating point count accumulated
at the end. Although this strategy may be feasible for small bench-
mark runs it is impractical for large science runs. Another approach
is to statistically sample the various events by having different tasks
count different events. If we divide the four events types between
four equally sized sets of tasks, then in principle a statistical mea-
sure of the Flop count can be made. This approach is accurate
when each task has the same computational profile, however, for



0 50 100
# CPUs (thousands)

0

5

10

15

20

Sp
ee

du
p

Figure 3: Strong scaling results for ddcMD on BlueGene/L. The
red line represents perfect scaling.
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Figure 4: Weak scaling results for ddcMD on BlueGene/L. The
red line represents perfect scaling.

our runs this is not the case. On benchmark runs we see that the
sampling approach underestimates the Flop count by a few percent
when compared to a count made using four separated runs.

4.1 Scaling Benchmarks
All the benchmarks run were run on a thin slab of Cu atoms

with 3d periodic boundary conditions. The geometry of the box
was 23.5Å × 1.41s × s, where s = 3663.24, 5180.86, 7326.47,
10361.73, 14652.95, 20723.45, 29305.89 Å, for 2k, 4k, 8k, 16k,
64k, and 128k tasks respectively (k=1024). The performance data
were collected using the sampling procedure previously described.

The rows at 134 × 106 and 536 × 106 atom represent strong
scaling studies. Down to about 8000 atoms per task the strong scal-
ing is very good (see Fig. 3), in fact, it shows super linear scaling.
The falloff in performance for 128k tasks is to be expected given

# Atoms Number of Tasks (k=1024)
(×106) 2k 4k 8k 16k 32k 64k 128k

33.6 0.8 21.1
67.0 1.9 30.8
134 0.7 1.6 3.7 7.6 14.3 26.1 38.9
268 7.6 45.6
536 3.0 7.5 15.0 29.8 52.0

1073 30.1 52.5
2146 54.3

Table 2: Performance (TFlop/s) for different system sizes and
task count.

the small number of particles per task. The atom counts per task
in these cases are 1022 and 2044 respectively for the 134 × 106

and 536 × 106 atom runs. The falloff at a small number of tasks
(large number of particles per task) is likely due to increase in cache
misses caused by the increased memory footprint.

The complete diagonal of Table 2 represents a weak-scaling study
(see also Fig. 4). The data show almost perfect scaling with the ex-
ception of the 2k and 128k points. The falloff at large number of
tasks is in general to be expected, however, the observed drop in
Flop rate at 128k tasks is somewhat larger than anticipated. The
falloff at 2k is surprising and we are currently investigating.

ddcMD demonstrates exemplary scaling across the entire ma-
chine. We achieve our highest performance of 54.3 TFlop/s using
131,072 processors on a 2146× 106 sample.

4.2 Science Run Performance
In this section we discuss the performance of the current opti-

mization of ddcMD during the initial stages of a simulation mod-
eling the formation and growth of Kelvin-Helmholtz instabilities.
The simulation contains an equal number of Cu and Al atoms for
a total of 2.03 billion atoms. In order to achieve the length scales
needed for growth of this particular hydrodynamic instability we
employ a quasi-2D simulation geometry: 2 nm × 5 µm × 2.5 µm.
Initially, the system consists of molten Cu and Al separated by an
planar interface perpendicular to the z-axis at 1.093 µm. Periodic
boundary conditions are used in the x- and y-directions with a 1D
confining potential in the z-direction. As of press time, this run has
completed the first 150,000 out of a million expected total steps
with more extensive science runs to be conducted in the fall.

Because Cu and Al have different number densities the multi-
species problem has a spatially inhomogeneous computational load;
therefore, particular attention must be paid to load-leveling to fully
optimize the simulation. A spatially uniform domain decompo-
sition would suffer a severe load imbalance since the Cu domains
would contain more atoms than the Al domains. We have addressed
this imbalance by choosing a non-uniform domain decomposition
that partitions space based on local pair density (closely related to
atomic number density). In practice the optimized non-uniform de-
composition achieved a 28% performance increase compared to a
uniform domain decomposition.

During the 150,000 time steps of the science run completed to
date we successfully caught and recovered from two parity errors.
An additional four parity errors were caught during testing and
two were recovered successfully. One recovery failure occurred
because the parity error corrupted data such that one of ddcMD’s
internal consistency checks failed and caused a program exit. To
avoid such failures in the future we will modify the consistency
checks to check the parity flag and attempt recovery when it is
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Figure 5: Evolution of Kelvin-Helmholtz instability modeled using molecular dynamics. The color indicates the local density, with
red the density of copper and blue the density of Al∗ (see text). The fluid flows to the right at the top, and to the left at the bottom of
each panel. The frames to the right enlarge the outlined rectangular region in the corresponding panel to the left.

set. The cause of the remaining recovery failure is not understood
at present. From this limited statistical sample, we estimate that
application-assisted error recovery extends the mean time between
failures from 8 to at least 48 hours. Future improvements are pos-
sible as we enhance our recovery strategy.

We measure the performance of ddcMD using the hardware coun-
ters provided by the kernel to sample the four classes of floating
point operations in a single run, as described above. The counters
tallied the following events over a 27,000 step segment: 2.698 ×
1016 type 0, 1.348×1016 type 1, 3.007×1016 type 2 and 4.704×
1016 type 3 events in 5407 seconds. Using the appropriate weights
for each type, we calculate a total of 2.887 × 1017 floating point
operations, for an aggregate performance of 53.4 TFlop/s. As men-
tioned above the counters do not count all the floating point op-
erations; an analysis of the assembly listing reveals for every 62
events counted by the type 3 counter we miss one floating point
operation of weight one and three of weight two. Applying this
correction (type 3 count × 7/62) we calculate our performance to
be 54.4 TFlop/s. This simulation is ongoing, and we anticipate pre-
senting results at SC07 that will highlight improved science, stabil-
ity, and performance.

5. SIMULATION RESULTS
The science results presented in the this section are from an ex-

ploratory study of the feasibility of simulating the onset and growth

of KH instabilities on the micron scale with atomic resolution. These
simulations were successful to this end and have provided a wealth
of physical science insight. Although the floating point perfor-
mance was modest, the computational length of the simulations
(2.8 CPU millennia) is unparalleled.

The Kelvin-Helmholtz (KH) instability produces wave patterns
at the interface between two fluid layers that are experiencing shear
flow. Although the development of the KH instability and the tran-
sition from smooth to turbulent flow have been extensively studied,
the trend towards smaller and smaller length scales in both exper-
iments and continuum modeling raises questions concerning the
applicability of the hydrodynamic approximation as atomic lengths
are approached.

The understanding of how matter transitions from an effectively
continuous medium at macroscopic length scales to a discrete atom-
istic medium at the nanoscale is the subject of vigorous academic
investigation. Many scientists are pursuing the fundamental ques-
tion of how far down in size continuum laws apply [32]. This
question is not just the subject of arcane academic debate: applica-
tions such as the National Ignition Facility are producing gradients
on extremely short time and spatial scales while nanotechnologists
are studying flow through carbon nanotubes and other systems in
which the fluids are but a few atoms thick [16]. Can these phenom-
ena be understood using continuum analysis? What would be the
signature that these fluids are discrete? No one has a good answer.



Figure 6: This y-t diagram shows the time evolution of the mass distribution in y, colored such that red indicates a high mass (more
copper) and the blue a lower mass (more aluminum). This roughly corresponds to the location of the interface as shown in Fig. 5,
with red (blue) indicating a higher (lower) interface. The large swaths of red and yellow indicate large Kelvin-Helmholtz waves,
whereas the smaller streaks of yellow at a lower angle indicate material such as in the ligaments being swept from the KH waves.
The increase in structure size with time is quite evident as the short wavelength modes at earlier times (bottom of figure) evolve into
longer wavelength modes.

In continuum hydrodynamics simulations the macroscopic prop-
erties of matter such as pressure, temperature, and flow fields are
defined as the collective properties of a sufficiently large ensemble
of atoms. Continuum equations such as the Navier-Stokes equation
are derived from conservation laws assuming that field gradients
are small and that material properties change slowly compared to
atomic length and time scales. Although the Navier-Stokes equa-
tion provides a very powerful description of the continuum limit it
is predicated on an asymptotic analysis. If the gradients become too
large, there is no way to fix Navier-Stokes by adding higher order
terms in the gradients to construct a convergent series—the math
does not work that way. The situation is even more complicated in
fluids due to their chaotic nature.

In contrast to hydrodynamics, molecular dynamics (MD) utilizes
no direct continuum-level input. Instead of a continuum constitu-
tive law, MD is based on an interatomic force law. Properties such
as the equation of state (density as a function of temperature and
pressure), transport coefficients such as the diffusivity and the vis-
cosity, and interfacial properties such as the surface tension arise
naturally from these underlying atomic forces. Additionally, with
a suitable time step MD is unconditionally stable, as the system
is evolved using an explicit time integrator. MD is fully resolved

by nature—there is no mesh size to adjust, and no gradient is too
steep. Inter-diffusion at interfaces is physical, not a numerical ar-
tifact. Numerically, MD simulation is the gold standard. Unlike a
hydrodynamic simulation, where the challenge is to add sufficient
degrees of freedom to obtain a converged result, the challenge for
MD has always been to overcome the constraints on system size
and simulation length imposed by computational resources.

We have used the ddcMD code to simulate the development of
the Kelvin-Helmholtz instability at an interface between two differ-
ent kinds of molten metal flowing in opposite directions, as shown
in Fig. 5. The initial atomic configuration was constructed in a sim-
ulation box 2 nm × 5 µm × 2.9 µm in size containing two types
of atoms with a total of 2×109 atoms (1 billion of each type). Pe-
riodic boundary conditions were used in the x- and y-directions;
i.e., the thin direction into the page and the horizontal flow direc-
tion in Fig. 5. The third dimension, z, was not periodic: a static
potential based on the atomic pair potential was used to confine the
atoms. The use of the confining potential permitted the system to
have a single interface between the two kinds of fluid, gaining a
factor of two in computational efficiency over a 2-interface fully
periodic system. The initial velocity of each atom was selected at
random from a Boltzmann thermal distribution to give a temper-
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Figure 7: Kelvin-Helmholtz length scales as a function of time.
Three relevant length scales of the KH development are plot-
ted, one of which is plotted in two ways. The mass and velocity
thicknesses are plotted as a function of time (as defined in the
text), indicating the vertical thickness of the interface as plotted
in the snapshots in Fig. 5. Also the dominant length scale along
the interface is plotted in two ways: first, the line segments indi-
cate the size of the dominant wavelength in the Fourier trans-
form of the mass profile in y; second, the solid curve repre-
sents the weighted average of the sizes of the 10 largest peaks in
the Fourier transform of the mass function, providing a more
smooth representation of the lateral size growth. After an ini-
tial diffusive regime, followed by a transient regime, the system
enters into a self-similar growth regime in which the aspect ra-
tio of the vortex structures remains constant.

ature of ∼2000K in the local rest frame of its fluid, and the two
fluids were given an initial relative velocity of 2000 m/s. This step-
function initial velocity profile sets up a strong shear layer at the
flat interface between the two metals, which is known to be unsta-
ble against the growth of small perturbations.

The atoms were chosen to simulate molten copper and aluminum.
Both interact with forces derived from a classical EAM potential.
A common EAM potential for copper was used to simulate the in-
teratomic forces for both types of metals [18, 17], and the masses
of the two kinds of atoms were taken to be mCu=63.546 AMU and
mCu/3, to give a fluid density approximating that of aluminum2. We
refer to the two fluids as Cu and Al∗.

Newton’s equations (F = ma) based on the EAM force law
were integrated in time using an explicit symplectic time integrator
with a time step of 2 × 10−15 s. The system was evolved for over
680,000 time steps, giving a simulated period of over 1.3 nanosec-
onds. The volume and the number of atoms were held constant. No
thermostat or velocistat was used; the flow velocity was maintained
by inertia, remaining at ∼2000 m/s throughout the simulation.

The effect of the KH instability on the interface is quite pro-
nounced, as shown in Fig. 5. Initially, atomic-level inter-diffusion

2In our ongoing simulation we employ a more realistic Cu-Al alloy
potential[23]

leads to a broadening of the interface. This inter-diffusion layer
maintains a flat interface on the average, but atomic-level thermal
fluctuations perturb the interface and trigger the growth of wave
structures. These structures grow in amplitude and eventually crest
to form micron-scale vortices. As the KH instability grows verti-
cally, the characteristic wavelength of the waves and vortices grows
in the direction of the flow as well. Initially short wavelength
modes grow, but ultimately the larger structures grow at the expense
of the small ones. This ripening may be seen in Fig. 6, in which the
evolution of the interface height with time is plotted. A similar plot
has been used to analyze shock-accelerated interfaces [15]. The
initial short wavelength structure evolves into the much larger vor-
tex structures as evident from the broad bands, with fine structure
arising from the ligaments and other material transport processes in
the vortices. We have analyzed the growth effects quantitatively by
calculating the interface width, both in terms of the material pro-
file and the velocity profile. In particular, generalizations of the
momentum thickness formula were used,

Tu = 6

Z
u− u0

u1 − u0

u1 − u

u1 − u0
dz, (2)

where u(z) is the profile of a function averaged over x and y, with
far field values u0 and u1. We have also calculated the principal
feature size of the interface both as the size associated with the
dominant peak in the Fourier transform of the mass function m(y),
and as the weighted average of the sizes associated with the 10
largest peaks. These quantities are plotted in Fig. 7. Early in time,
the interface grows in a regime associated with momentum diffu-
sion, in which the interface widths (both the velocity and density
thicknesses) grow as the square root of time. The interface devel-
opment then passes through a transient regime until at late times
self-similar growth appears to set in, where the interface widths
and the dominant structure sizes grow with the same power-law
exponent so that the aspect ratio of the vortices is maintained at ap-
proximately two to one. The spectrum of fluctuations that initiates
this growth is at the atomistic level, but the momentum diffusion
and vortex regimes are characteristic of continuum hydrodynamic
behavior. These simulations have therefore spanned physics at the
atomic level to continuum hydrodynamic length scales.

6. CONCLUSIONS
These simulations have opened the door to many possibilities for

studying the various physical processes associated with the Kelvin-
Helmholtz instability at length scales spanning atomic to contin-
uum hydrodynamic levels. The ddcMD code, with its particle-
based domain decomposition and highly refined kernel, has pro-
vided the performance needed to make efficient use of BG/L. With
the trapping of hardware errors demonstrated here we show that
stability on modern massively parallel machines can be extended
to unprecedented levels without a significant loss of performance.

This work was performed under the auspices of the U.S. Depart-
ment of Energy by the University of California, Lawrence Liver-
more National Laboratory under contract No. W-7405-Eng-48.
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