SCE Microturbine Generator Testing Program

Stephanie L. Hamilton, SCE

DOE Peer Review of Microturbine & Industrial Gas Turbine Programs March 13, 2002 Fairfax, VA

An EDISON INTERNATIONALS4 Company

SCE Microturbine Generator (MTG) Testing Program

Goal & Objectives:

Goal: determine the performance, reliability, operability, availability, maintainability, and overall characteristics of commercially available MTGs.

Objectives: compare MTGs' actual performance to performance specifications and industry/other standards, such as emissions.

Accomplishments:

- \$3.0 million program in progress since 1996
- 12 MTGs tested or in test
- Two to four more MTGs expected for testing
- Completed machine performance tests on 8 MTGs
- Completed initial electrical behavior testing
- Over 44,000 hours of testing
- Implemented "live" browser enabling technology

DOE Program Manager: Debbie Haught **SCE Program Manager:** Stephanie Hamilton

SCE's MTG Program

Goal & Objectives:

Goal: determine the performance, reliability, operability, availability, maintainability, and overall characteristics of commercially available MTGs. **Objectives:** compare MTGs' actual performance to performance specifications and industry/other standards, such as emissions.

Collaborations: DOE, CERTS, EPRI, CEC, CERA, UCI, Connected Energy, GE, SNL, ORNL, MTG mfgrs.

Accomplishments:

- \$3.0+ million program in progress since 1996; results have driven improvements to MTGs and program builds public awareness
- 12 MTGs tested or in test; two to four more MTGs expected for testing
- Over 48,000 hours of testing
- Completed machine performance tests on eight MTGs
- Completed initial electrical behavior testing
- Numerous site tours, presentations, papers

SCE MTG Test Bed at University of California at Irvine (UCI)

- 4 test bays
- 400 amp 480 volt service
- 100 psig natural gas with ability to blend for lower Btu testing
- Cogen heat dissipation ability
- 80 kW load banks for stand alone and "micro grid" testing
- Electronic data acquisition and instrumentation for gas & electric
- Veteran two-person testing crew
- Standardized testing procedures
- Ability to do specialized/custom
 testing
 southern California

Desirable Attributes vs. Test Parameters

ATTRIBUTES

- Heat rate 12,000 to 16,000
 BTU/kWh
- Good Part Load Performance
- Emissions < 9 ppm</p>
- Power Quality < IEEE 519</p>
- Noise < 70 dBa</p>
- Endurance = 40,000 hours
- Installation = Easy & Cheap

- TEST PARAMETERS
 - Overall unit efficiency
 - Net Power Output
 - Emissions
 - Power Quality
 - Noise
 - Endurance
 - Ease of Installation
 - Operability
 - Maintainability

Data Acquisition System

Parameter

- Electrical Energy Produced
- Fuel Consumed (Gas Flow)
- Fuel Temperature
- Gas Pressure
- Water Flow
- Boiler Air Temperature Inlet and Outlet
- Water Temperature Inlet
 and Outlet
- Power Quality Snapshots
- Ambient Temperature
- Relative Humidity
- Barometric Pressure

Measuring Instrument

- 3-phase electrical meter with pulse output module
- Gas flow meter
- Resistance Thermal Detector (RTD)
- Pressure transducer
- Water flow meter
- Thermocouple
- RTD
- BMI 7100 and BMI 8010 power quality meters
- Temperature Probe
- Solid State IC
- Barometric pressure transducer

Testing Schedule & Status: 03/01/02

Capstone "B" 30 kW	Jan-97	958	Completed
Capstone "B" 30 kW	Jan-97	967	Completed
Capstone 10 Pack	Apr-97	26	Completed
Capstone "C" 30 kW	May-97	3,794	Completed
Capstone "C" 30 kW	Jul-97	2,079	Completed
Bowman 35 kW	Feb-99	100	Completed
Bowman 60 kW	Jun-99	60	Completed
Capstone HP 30 kW	Apr-99	18,881	Operating
Parallon 75 kW	Jun-00	5,806	Completed
Capstone LP 30 kW	Aug-00	12,341	Operating
Bowman 80 kW	Jun-01	3,424	Operating
Total		48,436	

Capstone 30 kW Description

- ✤ Model 330 rated output: 30 kW at ISO
- ✤ 480 VAC, 3-phase, 60 Hz
- Recuperated single stage radial flow compressor and turbine on a single shaft, integrated with generator
- Equipped with a low NOx combustor
- Not equipped with a waste heat recovery boiler
- Fourth generation unit
- One unit only capable of grid connect
- One unit capable of stand alone and grid connect operation

Capstone 28 kW Results

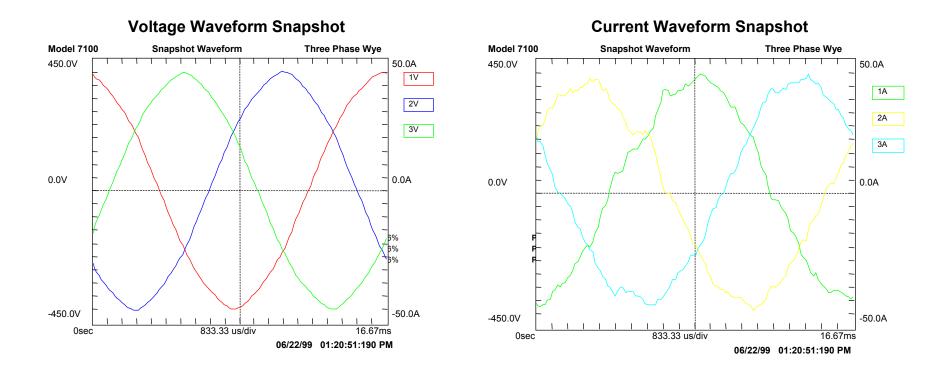
- Several overspeed trips were resulting from flame control algorithm; Capstone remotely downloaded revised control system software; no overspeed trips since software revised
- ✤ Reliable operation following resolution of overspeed
- Comparing manufacturer's efficiency and heat rate claims with test results converted to a common basis, resulted in testing results consistent with claims as shown below
 @ 70°F, about sea level, and LHV:

(tested)		(claimed)	
Efficiency	23.7% ± 0.45%	$24.5\% \pm 0.5\%$	
Heat rate	14,415 BTU/kWh	13,931 BTU/kWh	

Capstone 28 kW Results

- Total Harmonic Distortion (THD) requirements specified by IEEE 519 were met:
 - Voltage THD: 1.6% measured average < 5% IEEE 519
 - Current THD: 5.87% measured average < 8% IEEE 519
- Noise measurement taken at 2m due to site conditions, e.g. obstructions and site compressor noise. Noise measured 70 dBA @ 2m, consistent with manufacturer's claim, 65 dBA, 10m.
- > Emissions test results met SCAQMD requirements:

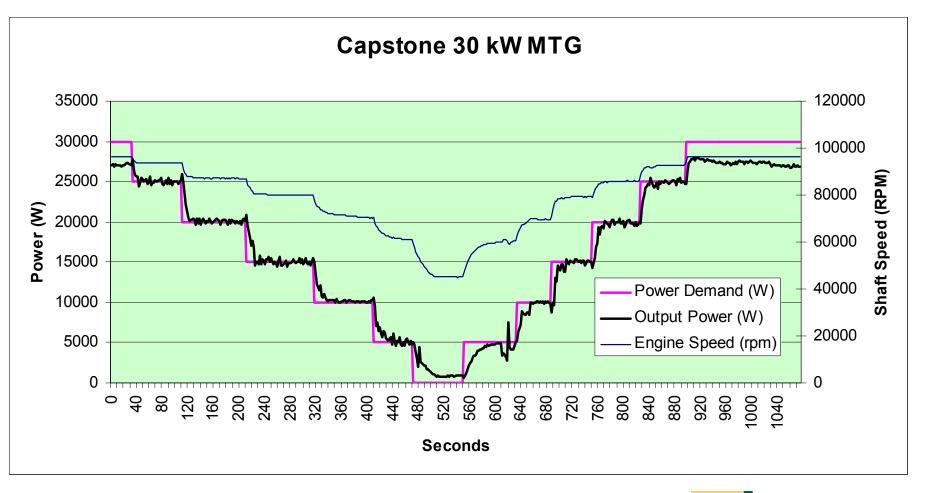
Manufacturer Claim	SCAQMD Standard (Rule 1303)	Test Results
NOx: < 9ppm (0.023 lb/hr)	NOx: 0.2 lb/hr	0.0031 lb/hr
No Claim	CO: 11.0 lb/hr	0.11 lb/hr



Grid Impact Testing

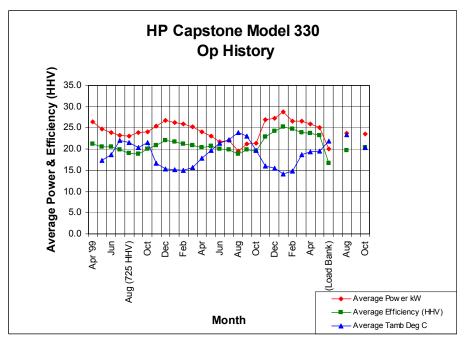
- Uncovers problems potentially hindering grid interconnection of DG
- Testing needed to determine:
 - Power quality
 - Protection/ anti-islanding issues
 - Interconnection standards/rules
 - Dynamic behavior so simulation models can be built

Capstone Voltage & Current Waveforms



Dynamic Testing

- Tests to observe the behavior of MTGs when interconnected with the utility grid
- Tests conducted at the SCE test bed
- Power ramping tests in both grid-connected and stand-alone modes (slow dynamics)
- SCE working with ORNL, SNL and GE to define additional testing to obtain data for fast dynamic models
- Data helps build models to simulate operation of the MTGs in a distribution system



Capstone Grid Connect Tests

"New" Capstone 30 kW from "Old" Capstone 28 kW

- DPC [digital power controller] was upgraded Oct 2000 – this MTG became a different machine:
 - Higher net power output by 2 kW max, just over 7%.
 - Increased machine efficiency
- Two DPCs have been replaced on this machine due to failure. In both cases, failure was due to too high power supply voltage 16+ vs. nominal is 13.8 VDC. Capstone reports no other similar failures.

Honeywell 75 kW Description

- ✤ Parallon[™] 75 kW at ISO
- 275 AC with Honeywell transformer option added to boost to 480 VAC, 3phase, 60 Hz at site
- Recuperated single stage radial flow compressor and turbine on a single shaft, integrated with generator
- Not equipped with a heat recovery boiler – option is available
- Grid parallel or stand-alone operation
- Internal gas compressor

Bowman 80 kW CHP Description

- Bowman 80 kW at ISO
- ✤ 480 VAC, 3-phase, 60 Hz
- Recuperated single stage radial flow compressor and turbine on a single shaft, integrated with generator
- Integrated heat recovery boiler
- In grid parallel operation
- Will test stand-alone operation

Summary of Testing Results: 3/07/02

- 1997 Testing of Capstone units (Beta, Charlie pre-commercial)
 - Did not meet manufacturer's expectations
 - First & second generation units
 - Began testing "next generation" in 1999
- 1998 No MTGs commercially available to purchase and test
- 1999 Testing of Bowman units (pre-commercial)
 - Did not meet manufacturer's expectations
 - First generation units;
 - Began testing "next generation" in 2001
- 1999 Testing of High Pressure Capstone unit
 - Met manufacturer's claims
 - Fourth generation unit
 - Began testing "next generation" in 2000

Summary of Testing Results: 03/07/02 (continued)

- 2000
 - Capstone high pressure unit's DPC upgraded and replaced resulting in higher power output and increased efficiency
 - Began testing low pressure Capstone and Honeywell
- 2001
 - Initial results for Capstone both LP and upgraded HP
 - Honeywell results
 - Performed electrical characterization on Capstones and Honeywell
 - Began testing Bowman
 - Elliot returned to UCI test site and testing to resume
- 2002
 - Begin testing of Ingersoll-Rand (I-R)
 - Seek other MTGS, such as Capstone 60 kW, Turbec 100 kW CHP
 - Test "new models" from Bowman & I-R
 - Finalize results for Capstones and Bowman

Future testing -- Elliott 80 kW

- Elliott 80 kW at ISO
- ✤ 480 VAC, 3-phase, 60 Hz
- Recuperated single stage radial flow compressor and turbine on a single shaft, integrated with generator
- Not equipped with a heat recovery boiler – option is available
- Grid parallel or stand-alone operation

Future testing -- Ingersoll-Rand 70 kW

- ✤ Ingersoll-Rand 70 kW at ISO
- ✤ 480 VAC, 3-phase, 60 Hz
- ✤ A dual shaft recuperated MTG:
 - A radial flow compressor and gasifier turbine on one shaft
 - A radial flow power turbine on the other shaft
 - The power turbine drives the reduction gear and induction generator for grid parallel-only operation
- Heat recovery boiler option available
- Internal gas compressor

Future Testing - Capstone 60 kW Description

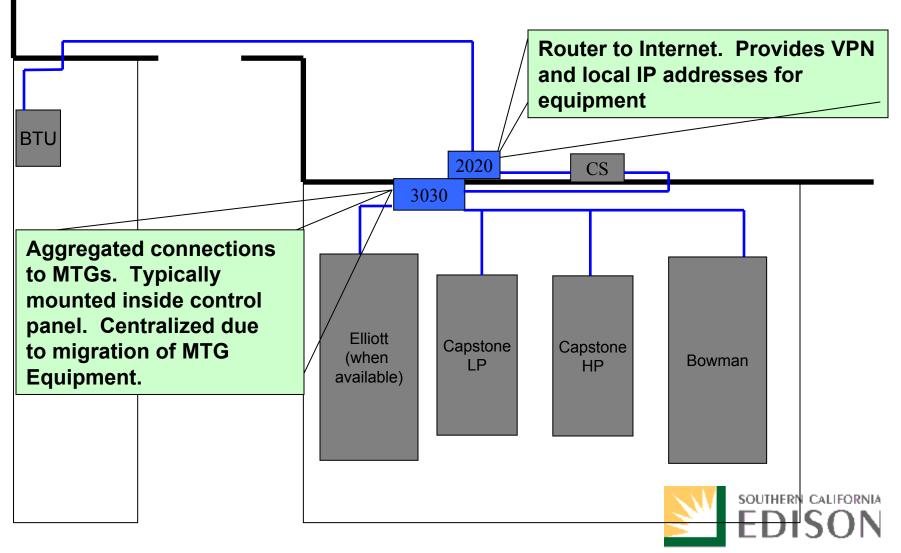
- Capstone 60 kW at ISO
- ✤ 480 VAC, 3-phase, 60 Hz
- Recuperated single stage radial flow compressor and turbine on a single shaft, integrated with generator
- Not equipped with a heat recovery boiler – option is available
- Grid parallel or stand-alone operation

Selected Quotes regarding program, tours, presentations

"This is really cool!" Hugh Anderson, Investment Banker, Banc of America Securities

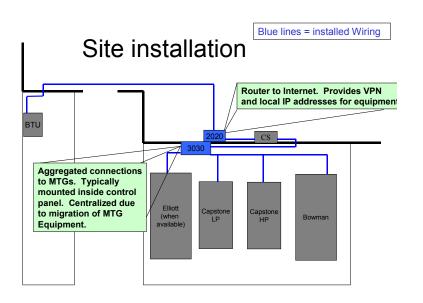
"No one else is even close!" Don Baker, TVA manager

- "Far exceeded our expectations!" Chris Hunter, Johnson & Johnson, worldwide strategic engineering manager
- "Edison's contributions to these technological advances is commendable," Karen Johanson, ISO BOD
- "Your discussion of most recent results was of great interest to participants," Gil Rodgers & Steve Taub, Directors, CERA Distributed Energy Summit



ENABLING DISTRIBUTED UTILITIES

Blue lines = installed Wiring


Site installation

An EDISON INTERNATIONALSA Company

"3030" box at SCE MTG Test Bed

Questions?

