perability and Emissions from edium Duty F. e. Operating Wit GTL Fuel and Catalyzed OPEs

Ralph A. Cherrillo Shell Global Solutions (US) Inc 10th DEER Conference, San Diego CA August 30, 2004

Project Participants

- DOE's National Renewable Energy Laboratory
- South Coast Air Quality Management District
- International Truck and Engine Corporation
- Johnson Matthey
- Shell Global Solutions (US) Inc
- West Virginia University
- Yosemite Waters

Project Objective

- To evaluate the emission performance and operability of GTL fuel and DPFs in a vehicle fleet compared to conventional diesel fuel
 - Chassis emission collection with WVU Mobile Lab
 - Evaluate impact of technology on fleet operations

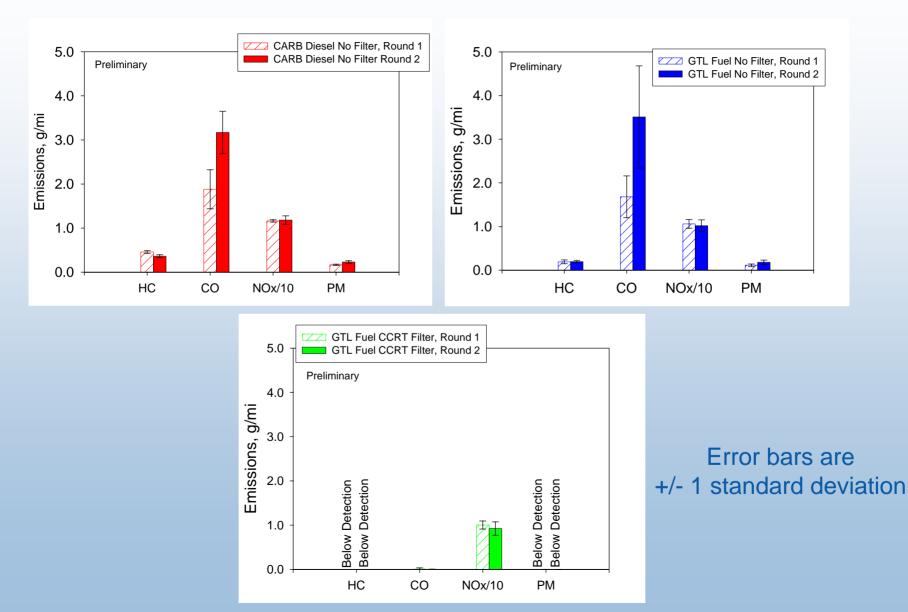
Vehicle Specifications

- Located in Fullerton, CA (metro LA)
- International engines DT466
 - -2001 MY, 195 hp, 520 ft-lb peak torque
- 3 control vehicles and 3 test vehicles

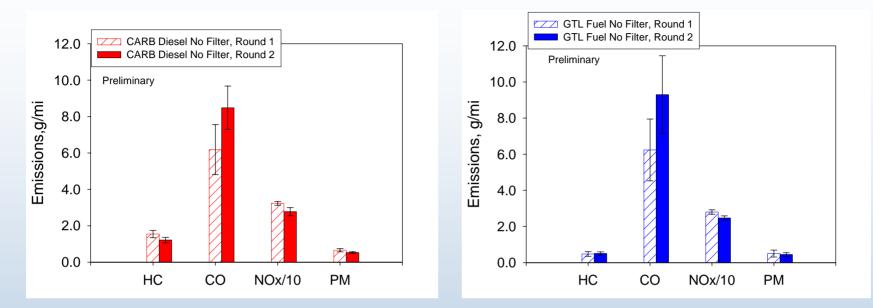
Fuel Properties

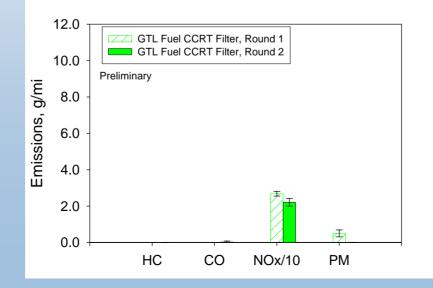
Property	ASTM	GTL fuel	CARB	
	Method		spec diesel	
Density, g/ml	D4052	0.7850	0.8308	
Cloud Point, °C	D2500	-3	-18	
Sulfur, ppm	D5453	0.3	222.9	
Cetane Number	D613	76	53.7	
Total Aromatics, mass%	D5186	1.4	18.2	
C/H ratio		2.13	1.89	
HFRR Lubricity, mm	D6079	0.395	0.360	
LHV, BTU/lb	D240	18,856	18,431	

Emission Control Devices


- Johnson Matthey CCRT[™] technology
 CCRT (Catalyzed CRT) is a DOC + CSF
 - EPA Verified Technology
- Effective operation at measured exhaust temperatures ~210°C
- Filters accumulated about 20,000 miles during project

Chassis Emission Tests


- Two rounds of testing on WVU Mobile
 Dyno CSHVR and NYCB cycles
- 3 vehicles tested with CARB diesel, engine out
- 3 vehicles tested with GTL fuel, engine out and with CCRT filters



Emission Test Results, CSHVR Cycle

Emission Test Results, NYCB Cycle

Error bars are +/- 1 standard deviation

Percent Emission Reductions, CSHVR Cycle

Compared to CARB Fuel Baseline

	Round	CO	NO _x	HC	PM
GTL Fuel, No Filter	1	10.6%	8.8%	58.0%	38.8%
	2	-10.8%	13.7%	46.2%	21.1%
GTL Fuel, With CCRT Filter	1	>99%	13.8%	>99%	>99%
	2	>99%	22.0%	>99%	>99%

Statistically significant emission reduction

→ Statistical significance has not been performed on Round 2 data

Percent Emission Reductions, NYCB Cycle Compared to CARB Fuel Baseline

	Round	CO	NO _x	HC	PM
GTL Fuel, No Filter	1	-0.81%	13.4%	69.0%	23.5%
	2	-9.6%	11.1%	58.1%	15.9%
GTL Fuel, With CCRT Filter	1	>99%	17.1%	>99%	97.0%
	2	>99%	20.5%	>99%	98.8%

Statistically significant emission reduction

→ Statistical significance has not been performed on Round 2 data

Calculated NO₂ Emissions

- NO₂ emissions measured by difference with tandem NO_x analyzers
- With the GTL fuel and CCRT filters, NO_x is ~50% NO₂
- Increases in NO₂ are statistically significant compared to CARB diesel without a filter

Fuel Economy Over Chassis Testing

- Fuel economy was not a function of fuel type or presence of filter during chassis testing
- Decrease in fuel economy observed by fleet during demonstration (still to be quantified)
 - Probably due to energy content of fuel

Conclusions

- After ~16 months with GTL fuel and CCRT filters, operability was similar
 - No increase in seal problems, fuel line leaks, etc.
- GTL fuel and CCRT filters enabled emission reductions in HC, CO, NO_x, and PM

Acknowledgment

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Office of FreedomCAR and Vehicle Technologies Fuels Technology Subprogam

South Coast Air Quality Management District