

The Value of the Ares V Launch Vehicle for Planetary Science Missions

Thomas R. Spilker

Jet Propulsion Laboratory, California Institute of Technology

Ares V Solar System Science Workshop NASA Ames Conference Center August 16, 2008

Topics Addressed

- What makes the Ares V different from other launch vehicles?
- How do those differences benefit planetary science missions?
 What types of science investigations or operations might be enabled?
- What missions might be enabled?
- Limits of Ares V capability
- Implications for Ares V development
- Summary

- Its launch performance is far above that of any other current vehicle
 - Performance is summarized by curves of C_3 (= V_{∞}^2) vs payload capacity

JPL

What makes the Ares V Different? -- 2

In What Ways Does Increased Launch Capacity Benefit Planetary Science?

- 1) Ares V can propel much greater mass to a given C_3 (i.e., a given interplanetary trajectory)
 - At low-to-moderate C₃, ~5 times as much mass as a Delta IV-H; more at higher C_3
- For a given payload (spacecraft) mass, Ares V can propel that mass to a higher C₃
 - Reduces trip times, especially to the outer solar system or Mercury

How Would Greater Launch Mass Benefit Planetary Science?

- Allows launching large, complex systems, such as multi-element systems
- Allows greater science instrument mass and mass fraction
- Allows larger electrical power supplies (for some missions, this assumes that the requisite amount of ²³⁸Pu is available)
 - More power for science instruments
 - More power for telecom transmitters -> higher downlink data rates
 - Increased mass for larger high-gain antennas also increases data rates
- Allows greater post-launch delta-V
 - Expanded accessibility, access to multiple destinations, shorter pump-down tours
- Allows greater mass for shielding against environmental hazards
- Trade greater mass for lower-complexity engineering solutions
 - Ex: Replace a lengthy gravity-assist pump-down tour with propulsive deceleration

How Would Reduced Trip Times Benefit Planetary Science?

- Provide earlier return of science
- Reduce prohibitive mission durations to something manageable
 Keep total mission duration within component or subsystem lifetimes
- Provide greater flexibility for extended science missions
 - Particularly important for single-element missions to multiple destinations

How Would Greater Fairing Volume Benefit Planetary Science?

- Allow large flight system components
 - Large apertures (optical instruments, radio)
 - Aeroshells
- Simplifies packaging for large, complex systems
 - Could eliminate expensive and/or risky deployments
- Simplifies launch configuration of multi-element missions
 - Integrated launch configuration does not impact individual element configurations

JPL Example Mission Concepts: Large, Complex and/or Multi-Element Missions

- Just plain *BIG*
 - Long-lived surface elements at Venus or Mercury
 - Thermal environment yields inefficient cooling & electric power production
 - Landers & rovers
 - Mercury also benefits from large post-launch delta-V capability
 - Nuclear electric power & propulsion systems (yields very large post-launch Delta-V)
- Science constellations
 - Multiple simultaneous science measurements, a la Carl Sagan's "role of flagships"
 - Titan: orbiter + multiple aerobots (balloons, blimps, etc.) & landers
 - Titan & Enceladus: TandEM concept
 - Europa: orbiter + one or more soft landers
 - Venus constellation: orbiter + multiple balloons + multiple long-lived sfc elements
- Planetary networks emplaced with a single launch
 - Seismic & meteorological networks for interior and atmospheric science
 - GPS & communications constellations

Example Mission Concepts: Missions With High Post-Launch Delta-V

- Ice giant orbiters (with entry probes; satellite lander?) w/o aerocapture
 - Uranus & Neptune
- Orbiters + landers at satellites near gas giants
 - Io & Enceladus
- Single flight element orbiting multiple destinations
 - "Non-Fission Icy Moons Tour" (pre-JIMO study)
 - Two spacecraft, each orbiting two of Jupiter's Galilean moons
 - Each spacecraft >17 mT mass

PL

Example Mission Concepts: Sample Returns

Saving the best for last!

- Why sample return?
 - Brings to bear all the power of large Earth-based laboratory facilities
 - Detailed analyses not yet possible with automatic procedures & instruments
 - Absolute age dating and other difficult analyses
 - Extremely accurate isotopic analyses
 - Definitive mineralogic analyses
 - Samples returned by the Apollo Program demonstrated the effectiveness of this approach in unraveling the Moon's past
- Many sample return missions would use all 3 Ares V advantages
 - Multiple large flight elements require large launch masses and a large launch fairing
 - Reduced trip time enables some missions

Example Mission Concepts: Sample Returns

• Mars

- Thin atmosphere makes soft-landing heavy payloads difficult
 - Entry system *ballistic coefficient* (= M/C_DA) must not be too large
 - Must decelerate sufficiently to deploy parachutes before impact
 - For the large masses needed for sample return, need large A, and thus a large launch fairing
- J.F. Jordan & R. Mattingly will present an Ares V-based concept at the ARC workshop
- Venus
 - Ballistic coefficient issue not as serious, *but* ... more massive planet, much thicker atmosphere
 - High delta-V ascent-to-orbit vehicle must be balloon-lofted *massive*
 - High delta-V for return to Earth *massive*
 - NASA-commissioned Venus Flagship Mission study currently underway
 - M. Bullock discussion at the ARC workshop
- Mercury
 - Feasibility even with Ares V is uncertain

Example Mission Concepts: Sample Returns

- Outer Solar System
 - Europa
 - Gordon Woodcock (Gray Research, Huntsville AL) estimates launch mass of 12 mT for this mission
 - Titan
 - Launch mass similar to Europa SR: more delta-V, but less radiation shielding
 - Trip-time reduction is important
 - Enceladus
 - Large post-launch delta-V due to proximity of Enceladus to Saturn
 - Trip-time reduction is important
 - Comet cryogenic sample
 - To preserve amorphous ice & interstitial species, need storage at <130K
 - Large, power-hungry two-stage refrigeration system
 - Cryogenic phase-change material (LN₂?) for Earth re-entry & recovery
 - Trojan asteroids? Probably, but long-duration mission
 - Centaur objects? Uranian satellites?

- Orbiters at (or sample return from) distant small bodies: Pluto/Charon, trans-Neptunian objects
 - High speed needed to keep trip times reasonable
 - All that energy must be removed propulsively: extremely high delta-V
- Triton sample return
- Mercury sample return?
 - Combination of dealing with extreme thermal environment + high delta-V

Implications for Ares V Development

- What must Ares V designers consider to avoid precluding planetary mission launches?
 - Pre-launch flight system cleanliness, especially for planetary protection
 - Launch vehicle interface: mechanical, electrical, thermal
 - Launch environment: shock, vibration, acoustics
 - Pre-launch payload thermal control in launch configuration
 - Accommodation of planetary spacecraft configurations
 - Accommodation of an upper stage when needed
 - Interplanetary launch targeting capability
 - Handling of nuclear payloads: radioisotope power sources & heaters
 - Preparation of a comprehensive Payload Planner's Guide
- Requirements can be quantified via mission concept studies to determine:
 - Representative flight system designs
 - Key performance requirements
 - Design requirements related to payload accommodation
 - Cost estimates and cost trades for implementing planetary mission accommodation

- Ares V would revolutionize the way we accomplish solar system exploration
 - Shift to a better balance of field data acquisition and laboratory analysis
 - Greatly improve field data acquisition
 - Better instruments, better instrument complements
 - Larger data volumes returned
- Would require a new fiscal paradigm
- "Ares V Solar System Science" workshop should expand the known set of enabled missions

Questions?