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SUMMARY

When the goal is a spatial model of an environmental variable, both spatial

autocorrelation and correlations with other environmental variables can be useful

predictors.  In this paper, we describe a common-sense approach for modeling spatial

patterns.  Spatial-statistical models typically have a deterministic and a random part, and

the problem has always been deciding how to define the partition between the two parts. 

Here, we provide a practical set of constraints that partitions the spatial model in a useful

way.  The deterministic component explains large-scale spatial patterns.  This "grand"

spatial pattern is inferred from environmental predictor variables that are available

everywhere in the spatial region of interest (e.g., remotely-sensed data).  The random

component supplements this large-scale pattern with small-scale, local deviations from the

grand pattern that are obtained by kriging.  We define some "common-sense" expectations

for the spatial autocorrelation structure and use these as constraints to help us build a

multivariate model of spatial pattern.  This approach developed out of the need for a

spatial model to predict the acid neutralizing capacity (ANC) of unsampled lakes in upstate

New York.  We used the model to produce regional estimates of lake chemistry for all

unsampled lakes based on acid deposition, lake elevation, and geologic region,

supplemented by a local correction obtained by kriging the ANC residuals measured in

neighboring lakes.
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1. INTRODUCTION

Spatial patterns and relationships among species and environmental variables that

vary together in the natural landscape have always been a key focus of ecological research.

 Multivariate techniques such as multiple linear regression have traditionally been used to

describe relationships between the available predictor variables and the environmental

variable of interest (Pauly, 1980 is one of many, many examples).  Unfortunately, these

models remove the spatial context of the environmental data.  More recently, geostatistical

models have been borrowed from the field of geology and applied to environmental

problems (e.g., Burrough, 1983).  These models are also sub-optimal in that the

interactions between multiple environmental variables and/or species are neglected.  In

this paper, we show how geostatistical tools can be used to improve a multiple linear

regression model by taking the spatial autocorrelation between sample locations into

account and by providing guidance in variable selection.

The geostatistical interpolation technique, kriging, was originally developed by the

mining industry to guide exploration for ore deposits (Journel and Huijbregts 1979).  In

mining applications, kriging is used to predict the spatial distribution of a regionalized

variable (RV), most often the ore grade of a mineral.  The principle motivation for kriging

in geology is that all attributes of the geology are costly to sample, and so one must make

do with fewer samples.  This is true for the main RV of interest as well as for its potential

predictors.  As a result, geologists have traditionally modeled spatial patterns in their RVs

as a function of spatial location (a polynomial surface is fitted to spatial coordinates to
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represent average ore grade), rather than as a function of more "meaningful" or causal

geologic predictor variables.

While many of the problems facing environmental science are similar to mining

problems, most problems are different enough to warrant some modifications to the

standard geostatistical tool kit.  Geostatistical tools have been borrowed for environmental

studies because of the recognition that many environmental properties are autocorrelated 

in space (LaJaunie 1973; Robertson 1987; Legendre and Troussellier 1988; Legendre et al.

1989).  This means, simply, that locations that are close together are more similar than

those that are far apart.   The spatial characterization of toxic waste concentrations in soils

(Meyers and Bryan 1984; Simpson 1984) is an example of an environmental application

that has a direct parallel in mining.  Generally, there are differences between the problems

of mining and geology and those of environmental science and ecology.  In contrast to

geologists, environmental scientists often have some level of relevant and spatially

extensive surface information (e.g., on land use, elevation, and climate) available to aid in

predicting large-scale spatial patterns.

Another distinction is that environmental landscapes change on shorter time scales

than do geologic formations.  In many instances these temporal changes that are of interest

(Fedorov 1989; e.g., the recent interest in landscape responses to global climatic change). 

Because natural landscapes are relatively dynamic, spatial models capable of predicting

future landscapes based on environmental relationships described in the past are most

useful.  Models based on environmental predictors of spatial pattern are more robust to

temporal changes than models based simply on geographic location.  To illustrate this,
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suppose that smallmouth bass adults prefer nesting sites protected from high velocity and

the potential effects of flooding.   A model based on location will be fine for describing

patterns in nest density as long as the flow stays the same as it was at the time

measurements were taken.  However, a model that predicts the spatial pattern in

smallmouth nests by using easily-measured variables such as stream bed elevation and in-

stream cover that correlate with velocity, should capture the spatial features of the

population even if the velocity field shifts in response to changing stream flow.

In this paper, we demonstrate a spatial analysis approach that predicts the spatial

distribution of environmental data by combining an estimate of the large-scale pattern

obtained from multivariate relationships among environmental variables and local

deviations from this pattern estimated by kriging.  Because the predicted spatial pattern is

supplemented by local deviations obtained by kriging, we refer to our program for model

development as "PATTERN+".  We will begin by providing a brief statistical background

and defining notation used in the paper.  This is followed by a review of variations of

kriging in the geostatistics literature that are related to our method.  In the last half of the

paper, we describe the use of PATTERN+ to predict lake ANC for lakes throughout the

Adirondack region of upstate New York.

2. METHODS

2.1 Statistical background and definitions

The general form of a spatial statistical model for the regionalized variable Z at

location x is:
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,Z(x) = M(x) + (x)e (1)

where M(x) is a function giving the mean at x.  The residuals (ε) are second-order

stationary.  Second-order stationarity of ε asserts that the values of ε(x) are realizations

from distribution(s) with a common mean and variance that is independent of location x. 

This implies (1) that the expected value of the residuals is zero, E[ε] = 0 and (2) that the

covariance function for ε describing the covariance between values at two locations xi and

xj that are separated by distance h = |xi-xj| is a function only of the distance between

locations (and not absolute position x).  If M(x) is known, then the true errors ε(x) = Z(x) -

M(x) are known to satisfy the first condition of stationarity, and if the second condition is

also met, we can proceed with kriging the ε(x).

In practice, neither M(x) or ε(x) is known and we have to estimate M(x) by M*(x),

forming estimated residuals  R* = Z(x) - M*(x) which are used in kriging.  This is known as

residual kriging.  For a review of approaches to kriging nonstationary data, including

residual kriging, see Jernigan (1986).  The model for Z given in Equation (1) views the

observed landscape as one possible realization of many alternative landscapes that might

have been generated from the underlying statistical process.  The "true" process is not

identifiable from a single observed landscape.  Thus, there is no single spatial-statistical

model that is correct (see Myers 1989).  Because statistics cannot tell us "the correct

model," it seems reasonable to choose a model that meets the pragmatic goals of

environmental research.  In many cases this translates into predicting values of a RV at

unsampled locations on the basis of relevant and accessible auxiliary information.
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The semivariogram links the covariance between values of an RV at two locations

to the distance separating them.  The semivariance increases as the covariance decreases,

with a maximum value at the sill.  The sill (Figure 1) represents the average variation of

two locations far enough apart to be statistically independent.

Figure 1 The semivariogram models the average squared difference between pairs of
points as a function of the distance between them.  Three parameters (nugget. sill.
and range) are shown.

The semivariogram function is expressed as γ(h) = C(0) - C(h), where C(0) is the

sill, C(h) is the covariance between values of the RV at the two locations, and h is the

distance between the two locations.  The minimum distance between locations at which
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independence occurs is the range.  The nugget represents the variation between locations in

very close proximity.  If there is a nugget effect, the semivariogram function is greater than

zero even at very short distances but γ(0) is defined to be zero.

The empirical semivariogram is constructed as follows:  First, the squared

differences between all possible pairs of locations in the data are calculated.  The pairs of

locations are then grouped into distance classes, (e.g., 0–10 km).  Next, calculate the

average of the squared differences of all pairs for each distance class.  Each average

(divided by two — hence the term semivariance) is plotted against its distance class. 

Empirical semivariograms can be constructed separately for pairs of samples oriented in

different directions (e.g., N-S or E-W).  If the semivariograms differ when constructed in

this fashion, the RV is said to be anisotropic; if not, it is isotropic.

The empirical semivariogram is used to determine the appropriate parametric

semivariogram model and to estimate its parameters.  One can then use this parametric

semivariogram model, rearranged as C(h) = C(0) - γ(h), to estimate the covariance

between any two locations, whether they are part of the original sample or not, if the

distance between them is known.  A variance-covariance (VC) matrix can be built for all

locations of interest.  Covariances between all pairs of locations are on the off-diagonal,

variances on the diagonal.

2.2 Iterative residual kriging with an external drift

The PATTERN+ model includes both a deterministic component and a random

component of the regionalized variable Z, as in Equation (1).  The deterministic



7

component, which represents changes in the mean of Z in space, is usually referred to as

"drift" in geostatistics.  Instead, we use the term "explained spatial pattern" (or "pattern")

to emphasize the relationship with traditional approaches to modeling spatial organization

in ecology and to avoid confusion with time-series terminology.  There is not enough

information contained in one observed landscape to uniquely identify both a deterministic

pattern component and a random component.  To estimate one component it is necessary to

assume that the other is known.  This induces a bias in the resulting parameter estimates

that can be reduced by using an iterative procedure and can be eliminated completely by

using separate subsets of data for the estimation of each component.  Rather than assume

one model or the other to be known, we iterate between the estimation of semivariogram

and pattern model parameters (Neuman and Jacobson 1984).  In contrast to Neuman and

Jacobsen, we develop the pattern model using relevant environmental variables rather than

spatial coordinates.  Similar "drift" models have been described by Delhomme (1978),

Stein (1984), Ahmed and DeMarsily (1987), and VerHoef (1993).

The PATTERN+ procedure is outlined in Figure 2.  The first phase selects

candidate explanatory variables that might be incorporated into an external pattern function

F(Y).  These variables are screened using a stepwise procedure that considers both the

predictive capability and pattern characteristics of the candidate variables.  The residuals

are used to construct directional semivariograms to verify that large-scale spatial pattern in

the mean has been removed.  If not, additional explanatory variables are added to the

pattern model.  The second phase of the procedure is a refinement step in which the
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coefficients of the pattern model and the semivariogram parameters of the residuals are

adjusted in turn until convergence is reached for both.

Figure 2 Diagram of the spatial modeling procedure used to develop a pattern model
of lake ANC and to characterize the spatial autocorrelation in the residuals.

In addition to modeling differences in mean Z, the variances within different

subregions or non-spatially defined sub-populations can be equalized at each step of the

analysis (Jager and Overton 1993).  This can help to meet the homogeneity of variances
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assumption required by the multivariate pattern model without data transformation and also

allows pooled estimation of the semivariogram parameters from scaled residuals.

2.3 Guidelines for modeling environmental pattern

We identified three key features or constraints for developing an environmental

pattern model that are not usually imposed on a non-spatial multiple regression model:  (1)

there is some spatial variation in the mean (pattern), (2) this pattern is spatially smooth

relative to the RV itself, and (3) the removal of a proposed pattern model leaves residuals

that appear to be pattern-free (according to criteria listed later).

According to the first part of this definition, spatial patterns explained by

environmental predictors can be linear in space (e.g., environmental gradients), they can

have some other functional form, or they may be discontinuous in space.  The important

distinction is that average behavior of the RV appears to depend on location in a way that

is predictable based on the spatial distribution of environmental features.  Important spatial

distinctions may exist that are not necessarily monotonic or even continuous.  For instance,

abrupt changes in geology, elevation, or land use suggest that different patches are best

modeled as originating from processes with different means.  As an illustration, consider

the density of spruce-budworm infestation on trees as an RV of interest.  The expected

(mean) density is likely to be higher in patches of coniferous forest dominated by spruce

trees than it is in patches of forest dominated by hardwoods.  In this case, the categorical

variable land use influences the mean pattern, but the relationship with space is not one

that can be described as a simple function of spatial coordinates, particular if the goal is a

generally-applicable model that can be applied in different regions.
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According to our second criterion, we expect the mean to vary relatively slowly, if

not continuously, in space, relegating higher frequency fluctuations to the stochastic portion

ε of the spatial model Equation (1).  Referring back to the spruce budworm example, the

mean should represent intermediate- and large-scale spatial variation in budworm

densities but should not reflect microhabitat features such as locations of individual spruce

trees.

Our last criterion is to ensure that removal of a proposed pattern function results in

residuals with a semivariogram that appears to be pattern-free.  Geostatistical analysis can

be used to guide the predictor selection process by paying attention to the semivariograms

of the main variable, candidate predictor variables, and the residuals of each proposed

model.  For example, if anisotropy is evident in the semivariogram of the RV (a difference

between the empirical semivariance curves for pairs of locations oriented in different

directions), then candidate environmental predictors with the same directional anisotropy

can most likely help in explaining the pattern portion of the RV.  Pattern-free errors meet

the stationarity assumptions of geostatistics.

Taken to its logical extreme, these guidelines suggest that the ideal spatial model

will have "white" residuals (no spatial autocorrelation).  In practice, we believe that the

complexity and the non-decomposability of scales of influence on an ecological RV will

usually leave some amount of unexplained local spatial autocorrelation that is most

conveniently treated in a statistical manner.
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3. A CASE STUDY:  LAKE CHEMISTRY IN THE ADIRONDACK REGION

Data from the U.S. Environmental Protection Agency Eastern Lake Survey data for

upstate New York (Linthurst et al. 1986) were used to demonstrate the PATTERN+

approach for lake acid neutralizing capacity (ANC) expressed in µeq/L.  Our goals were to

obtain (1) a model for the mean of lake ANC as a function of environmental predictors and

(2) a model of the spatial autocorrelation structure of the residuals after removing the

spatially varying mean.  The final estimate of lake ANC for any unsampled lake will be the

sum of two estimates:  (1) the local mean (based on values of environmental predictors at

the lake) and (2) the residual (based on local residuals measured at neighboring sample

lakes).

3.1 Protocols for the Adirondack Lake case study

In the spatial analysis of Adirondack lakes, several environmental variables were

considered as candidates for the pattern model.  The variables that we considered as

potential influences on mean lake ANC were:  (1) lake elevation (m), (2) pH of

precipitation, (3) precipitation (cm per year), and (4) watershed slope (%).  Interactions

among these four variables were also considered.  Local values of these variables are

available in digitized form for each of the lakes in the lake population of interest, and each

variable is expected, based on previous studies (e.g., Hunsaker et al. 1987), to have an

influence on lake ANC.  The spatial distribution of the RV lake ANC and two candidate

pattern variables, precipitation pH and lake elevation, are shown in Figures 3 through 5. 

Three types of information were included in the selection of pattern variables:  (1) the
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predictive capability of the candidate variables was assessed using stepwise regression

analysis, (2) pattern effects of the candidates were compared with those exhibited by lake

ANC based on directional semivariogram analysis, and (3) scaled-residual

semivariograms were assessed after each step of the stepwise regression analysis for

removal of pattern effects.
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Figure 3 Map of upstate New York showing the acid neutralizing capacity (ANC) of
sampled lakes.  The outlined regions represent areas of low, medium, and high a priori
ANC based on geology.
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Figure 4 Map of upstate New York showing the elevation of sampled lakes.  The
outlined regions represent areas of low, medium, and high a priori ANC based on
geology.
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Figure 5 Map of upstate New York showing the pH of precipitation input to sampled
lakes.  The outlined regions represent areas of low, medium, and high a priori ANC
based on geology.
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As a part of the stepwise ordinary least squares (OLS) analysis, three

subpopulations — the three ANC subregions described by Omernick and Powers (1983)

and Landers et al. (1988) — were treated as qualitative indicator variables (Figures 3

through 5).  These three categories were selected based on geology and other information

that was available prior to sampling of the lakes. The general pattern is one of concentric

rings:  the inner Adirondack region representing the low-ANC subregion, surrounded by

medium-ANC subregions, surrounded by a high-ANC subregion in the outer ring.  This

example problem involves both categorical and continuous influences on the spatial pattern

of mean ANC.

From the total of 155 sampled lakes, 113 lakes were included in the OLS analysis. 

 We removed two outliers from the regression analysis based on extreme values of ANC. 

The remaining 153 lakes were divided into four random subsets of approximately the same

size.  Three of these (subsets 1-3) were used in estimating the parameters of the pattern

model, and three (2-4) were used in the estimation of semivariogram parameters.  Ideally,

we could have used completely different subsets in each step of the estimation procedure,

but given the limitations of sample size, we decided to allow one-half of the sample lakes

to be included in both steps.  We strongly recommend that separate subsets of data be used

to develop the two component models, and the PATTERN+ program allows the user to

specify a dummy variable that splits the data.  This provision ensures that the estimates

from the two components are independent and do not induce bias in one-another.

Our assumption in defining a pattern function is that it produces residuals that share

a common underlying distribution or, at least, come from distributions sharing a common
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mean and variance.  In some cases, removing the mean from each subpopulation leaves

residuals that differ widely in their variability, one subpopulation showing little variability

and another showing a wider range of values.  In this case, it may be possible to fit a

"pseudostationary" semivariogram model to encompass both groups by allowing each

group to have a different sill (variance) and fitting a semivariogram to data after

standardizing (Journel and Huijbregts 1979).  In this case study, we used the transformation

Z = log10(ANC + 150), suggested by Hunsaker et al. (1987), to equalize variances.   An

alternative approach that we recommend uses untransformed ANC and scales the residuals

to avoid heteroscedascicity (Jager and Overton 1993).

3.2 Detecting the presence of a spatial pattern

Although there is no true test for deciding whether the underlying process that gave

rise to the landscape had a significant spatial pattern (Myers 1989), several indications

have been offered for detecting spatial pattern (referred to as "drift" in geostatistics

literature; see Starks and Fang 1982).  All of these rely on information provided by the

empirical semivariogram, which is based on a single realization of the RV.  One indication

that there is a spatial gradient in the mean is given when the empirical semivariogram does

not level off to a constant sill value but continues to climb above the variance (estimated

by the sample variance).  Geostatisticians are quick to point out that there is no requirement

for semivariogram models to have a sill.  While this is true in theory, we are not interested

in providing the model with the greatest possible amount of flexibility.  Instead we have a

subjective problem of modeling a real spatial process in nature with more degrees of

freedom than we know what to do with.  Why not welcome the constraint that the residual
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semivariances reach an independently estimated sill?  We propose that the apparent

absence of a finite sill, or even a sill much higher than the sample variance, provides us

with a concrete guideline or constraint for model development.  The absence of a finite sill

implies large negative correlations between locations that are far apart.  VerHoef (1993)

points out that negative spatial dependence appears to be rare in nature.  Common sense

suggests that small negative correlations might occur at random, but it defies logic to

expect the strength of the correlation to increase ad infinitum.

A second clue pointing toward expainable spatial pattern is the presence of a

parabolic shape in the empirical semivariogram.  We know that a monotonic linear or

higher order spatial gradient causes a parabolic shape.  We assume here that the converse

holds and use a parabolic shape to indicate the presence of a gradient.  If there is a

monotonic pattern in the mean, then the pattern must have a direction.  This will cause the

appearance of anisotropy among empirical semivariograms constructed separately for

pairs of points oriented in different directions.  Those pairs of points oriented in the

direction of fastest change will diverge in the values of the RV, causing the experimental

semivariogram to rise above the theoretical sill.  At the same time, pairs perpendicular to

this direction will have values that are similar to each other, causing the experimental

semivariogram to remain low.  These features are mainly related to spatial patterns that are

gradient-like (i.e., monotonic in space over relatively large distances in the region of

interest).

Empirical semivariograms were produced for the Adirondack lakes.  Comparison

of the directional semivariograms (separate analysis for pairs of lakes oriented in different
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directions) clearly suggests the presence of a linear gradient.  We hypothesize that spatial

patterns in lake ANC cause (1) a parabolic shape of the semivariogram and (2) anisotropy,

with larger semivariances in the direction of the pattern.

3.3 Iterative residual refinement (Phase II)

We initiated the iterative residual procedure using the final pattern model provided

by the screening process.  Our first step was to fit a semivariogram model to the residuals

of the final pattern model.  The general form of the semivariogram is given in Equation (2).

 Function d(h) varies from one to zero as distance (h) runs from 0 to the range.  The shape

of the function d(h) depends on the particular model form chosen.

( ) =  + ( )(1 ( ))h n s n d hg − − (2)

We compared three commonly used semivariogram models:  the exponential,

spherical, and circular model.  Three semivariogram parameters— the nugget (n), the sill

(s), and the range (r)— were estimated for each model.  Iteratively reweighted nonlinear

least squares was used to estimate parameters n, s, and r.  The algorithm used for nonlinear

least squares is a modification of the Levenberg-Marquardt algorithm.  The weights used in

this algorithm (Cressie 1985) are related to the variance of the semivariogram estimator

for each distance class.  The weights emphasize shorter distance classes and those

supported by more pairs of points.  The function in Equation (3) was minimized for all

distance classes by nonlinear least squares.

( )
1
2 2

ex
N(h)  (h) - (h;n,s,r)(h;n,s,r) g gg (3)
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Here, γex(h) is the empirical semivariance calculated from sample pairs in distance

class h and γ(h;n,s,r) is the semivariance predicted by the parametric model for distance

class h.  The model, d(h) in Equation (2), resulting in the smallest least-squares error

between the fitted model and empirical semivariogram values was chosen.  N(h) is the

number of sample pairs in distance class h.  The selected semivariogram model and its

parameter values were then used to construct a VC matrix for the residuals.

In the second step, the pattern model was refitted using generalized least squares

and the estimated VC matrix to account for spatial autocorrelation among the residuals. 

This produced new estimates of the regression coefficients in the pattern model.  After

several iterations, convergence was achieved for both the pattern model coefficients and

the semivariogram parameters.  Although we are minimizing the potential bias in these

estimates through our use of an iterative procedure, we made an effort to reduce the

possibility of bias even further by using different subsets of lakes in each step.  We were

unable to afford dividing the lakes into two completely different subsets because we

needed to maintain adequate sample sizes for both.  As a compromise, we divided the

sample lakes into four random groups and used three in each step, leaving us with an

overlap of one-half of the lakes used in both.

4. RESULTS

4.1 Screening candidate environmental variables (Phase I)

The results of our stepwise OLS procedure in Table I are given for the final model

for all three subregions combined.  Elevation (ELEV), the pH of precipitation (pH), the
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subregion indicator variable (S3) identifying lakes in the high-ANC subregion, and a

pH*S3 interaction term were included in the final model.  The latter term was needed to

allow for a different slope for pH in the high-ANC subregion.  The final OLS model

explained 73% of the variation in log10(ANC + 150).  The multivariate pattern model for

low- and medium-ANC subregions is given by Equation (4).  The model for high-ANC

subregions is given by Equation (5).

log10(ANC + 150) = 8.59  0.0012 ELEV + 2.67 pH− − (4)

log10(ANC + 150) =  6.17  0.0012 ELEV  0.72 pH− − (5)

Table 1.  Ordinary least squares results for the final model obtained by a stepwise

procedure:  E[Z] = β0 +  β1  Elev + β2 pH + β3  S3 + β4 pH*S3.

Source Degrees of

freedom

Sum of squares Mean square

error

Statistics

Model 4 6.9840 1.7460 F  = 71.65

Error 108 2.6318 0.0241 P  < 0.0001

Total 112 9.6158 R2 = 0.73

Characteristics of the directional semivariograms for lake ANC (Figure 6) suggest

that a kriging model that assumes stationary spatial autocorrelation will not perform as

well as a model that incorporates the deterministic spatial pattern.  Each point has as its y-

axis value  half of the average squared difference between pairs of lakes separated by the
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distance shown on the x-axis and oriented in the direction indicated by the legend.   The

semivariance of pairs of lakes oriented in the E to W and NE to SW (157.5°,0.0°,22.5°)

directions has a parabolic shape near the origin and continues to rise beyond the theoretical

sill.  In contrast, the semivariogram constructed from lakes oriented in the N to S direction

remains well-below the sill.  These features give a fairly clear indication of an E to W

gradient in mean lake ANC.  The anisotropy caused by the gradient influences a wide angle

(between about -45° and 22.5°).
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Figure 6 Directional experimental semivariograms for the regionalized variable of
interest. log10(ANC + 150).  Symbols identify the orientation between pairs of lakes
(East = 0°°).  The horizontal line identifies the theoretical sill (overall variance).

Compare the directional semivariograms of lake ANC (Figure 6) with the

directional semivariograms of candidate predictor variables lake elevation (Figure 7a) and

precipitation pH (Figure 7b).  Among the candidate pattern variables, precipitation pH
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shows the most clear-cut pattern effects.  Note that for the gradient direction, the

semivariogram has a parabolic shape and continues to rise above the theoretical sill,

whereas there is almost no variation in the 112.5° direction.  There is a clear ordering of

directions, with a peak in the sill index at 22.5° and a trough at 112.5°.  The amount of

precipitation showed similar patterns to the pH of precipitation.  Elevation shows gradient

features in the E-W direction (0°), but without a parabolic shape.
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Figure 7 Directional experimental semivariograms for two candidate variables used to
predict spatial pattern in lake ANC:  (a) lake elevation and (b) precipitation pH. 
Symbols identify the orientation between pairs of lakes (East = 0°°).  The horizontal
line identifies the theoretical sill (overall variance).

The results of evaluating the directional semivariograms are summarized in a

diagram of a sill index (defined as the maximum value attained by the semivariogram for

each direction) plotted against direction (Figure 8).  In this case, a sinusoidal curve
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emerges with a 90° period, where the gradient direction (the direction of fastest change in

ANC) is indicated by the peak of the sill index.

Figure 8 Sinusoidal pattern of anisotropy shown by the empirical sill (scaled maximum
semivariance) as a function of the orientation between lakes.  Curves are shown for
lake log10(ANC + 150) and two pattern variables:  precipitation pH and lake
elevation.

In this case study, fitting a pattern model removed most of the spatial

autocorrelation structure in the data.  This can be seen by comparing the empirical

semivariogram for the residuals from the final GLS residuals (after iterative residual

analysis; Figure 9a) with the original semivariogram for lake ANC (prior to the removal of

explainable pattern in the mean; Figure 9b).
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Figure 9 Omnidirectional experimental semivariogram for log10(ANC + 150) (right
axis) and for residuals from the pattern model developed by ordinary and generalized
least squares (left axis) following the iterative residual kriging procedure.

4.2 Iterative residual refinement (Phase II)

The iterative procedure converged to give stable values for both the pattern model

coefficients and the semivariogram parameters.  The semivariogram model with the

smallest total (weighted) deviation from the empirical semivariogram of the residuals

follows the exponential model with nugget = 0.0116, sill = 0.0248, and range = 19.63 km. 

The form of this model is given by Equation (6).  The fit of this model to the empirical

semivariogram of the GLS residuals is shown in Figure 10.
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( )( )( ) 1 exp -h(h;n,s,r) = n + s - n    ,      0 < h < rrg − (6)

The refined coefficients obtained for the pattern model by GLS are similar to those

obtained initially by OLS.  The mean square error is higher (0.0298), and as a result, the r2

(0.67) is somewhat reduced because an estimate of spatial autocorrelation among lakes is

incorporated (Table 2).  This is expected because the OLS model assumes that lakes are

not spatially correlated, thus underestimating the true residual variance.  The influence of

rainfall pH is slightly increased for all subregions, with compensations in the intercept.
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Table 2.  Generalized least squares results for the final model obtained by the iterative

residual kriging procedure.

Source Degrees of

freedom

Sum of squares Mean square error Statistics

Model 4 6.3950 1.5987 F  = 53.61

Error 108 3.2208 0.0298 P  < 0.0001

Total 112 9.6158 R2 = 0.67

Figure 10 Comparison of the final exponential model fit to the final generalized least-
squares residuals.

The GLS pattern model for lakes belonging to the low- and medium-ANC

subregions and for lakes in the high-ANC subregion are given by Equation (7) and
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Equation (8), respectively.  The values predicted for each lake represent our estimates of

the mean (M*) at each lake location and collectively describe the large-scale spatial

pattern that we were able to explain using these environmental predictors.

log10(ANC + 150) = -9.08 - 0.0012 ELEV + 2.78 pH (7)

log10(ANC + 150) =  6.77 - 0.0012 ELEV - 0.85 pH (8)

4.3 Estimates of total lake ANC

Our final estimates of lake ANC were made for the population of lakes that appear

on 1:250,000-scale maps of upstate New York (Figure 11).  This total ANC estimate (Z*)

is the sum of the pattern model estimate of mean ANC (M*) and the estimate for the

residual (R*) obtained by kriging interpolation. The transformation that we used to convert

back from log units to ANC units (µeq/L) predicts the median for lake ANC at each site.
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Figure 11 Map of total ANC estimates for the 1:250,000-scale population of lakes in
upstate New York State.
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Figure 12 Map of total errors for ANC estimates at sampled lakes.

Total errors (Z* - Z) were calculated for the sample lakes from Equation (1), based

on estimated log10(ANC + 150), (Z* = M* + R*), and measured log10(ANC + 150), (Z = M

+ R), where M represents the true mean and R represents true residual error, both

unknown.  The total error shown in Figure 12 for sampled lakes includes both the mean

prediction error (M - M*) and the kriging error (R* - R) estimated by cross-validation. 

These errors have units of log10(µeq/L).  The expression for the total estimation variance is
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given by Equation (9).  The first term describes the variance in predicting the mean, the

second term describes the kriging variance, and the third term represents the covariance

between the two parts of the estimator.  The variance of predicting the mean is greater for

more extreme values of the predictor variables but also depends on how correlated those

variables are.  The kriging variance depends on the data configuration (the proximity of

sample locations to the lake of interest) and is bounded above by the mean square error. 

The highest errors would therefore be expected in predicting lakes that occur at extreme

elevations at one end or the other of the E to NE gradient in precipitation pH and far from

any sampled lakes.  Note that the total variance can be reduced, through the covariance, by

sampling densely at the extremes of the predictor variables.

( ) ( ) ( ) ( )( )[ ]22 2 * ** * *E - Z  = E - M  + E - R  + 2 E - M - RR RZ M M               (9)

5. DISCUSSION

5.1 Screening candidate environmental variables (Phase I)

Elevation was by far the most important predictor of lake ANC of those available

to us.  The negative relationship between elevation and water chemistry is discussed

elsewhere (e.g., Hunsaker et al. 1987; Whitehead et al. 1989; Jager et al. 1990).  The

relationship between lake log10(ANC + 150) and elevation appears to be remarkably

constant across the three ANC subregions, suggesting that the relationship is linear over a

wide range of elevations.  The stepwise procedure selected identical models for the low-

and medium-ANC subregions, indicating that the relationships between lake ANC and both

elevation and the pH of precipitation are similar, even if the values fall in different ranges
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of the scale.  For the high-ANC subregion, there was a different intercept and the

relationship with pH of precipitation became negative, although the slope was not

significantly different from zero.  The pattern model suggests that for lakes in the low- and

medium-ANC subregions, a lower pH of rainfall will lower lake ANC, as expected in a

titration model.  However, the positive association between the pH of rainfall and lake

ANC apparently decreases for highly buffered watersheds represented in the high ANC

subregion.  This is consistent with the theory that these watersheds can still respond to

acidic inputs by exporting base cations.

The two candidate variables offer an interesting contrast in pattern.  The spatial

characteristics of elevation and rainfall pH are quite different.  Elevation is much more

fine-grained than rainfall pH (compare Figures 4 and 5).  The pH of precipitation was

obtained from large-scale maps (Wampler and Olsen 1987; Olsen and Slavich 1986) and

has the appearance of a plane tilted downward in the E to NE direction.  Figure 7 shows

that both variables exhibit anisotropy and other pattern influences in the directional

semivariograms.  The pattern of precipitation pH is consistent with that expected in the

presence of a strong spatial gradient over the region.  This is not surprising because (1)

such a gradient is known to exist, radiating northeast from the industrial regions in the

midwest and (2) small-scale fluctuations have been lost because the data originated from

meteorological monitoring data collected and interpolated over a large region.  Although

there is patchiness in elevation over the region in upstate New York considered here (e.g.,

the high-peaks region of the Adirondacks), the pattern of anisotropy probably reflects the
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local orientation of mountain ranges in the N to S direction, causing smaller average

elevational differences between lakes oriented in that direction (see Figure 4).

Comparing the candidate predictors with the variogram for ANC in Figure 6, there

are similarities with both elevation and precipitation pH, all of which show directional

pattern effects.  The ANC semivariogram shows a murkier gradient pattern than

precipitation pH, similar to the weak pattern in elevation.  The gradient direction could be

anywhere between -45 and 22.5°, indicating a broader, less-unidirectional gradient effect. 

In this respect, lake ANC is intermediate between the sharp peak in precipitation pH and

the broad plateau in elevation (Figure 8).

The fact that the residual semivariograms show a decrease in the sill as more

variation is explained by the deterministic pattern model.  There is also a transition from

semivariograms with apparent pattern effects to semivariograms that look more convex and

reach a distinct sill (Figure 9).  This suggests that most of the large-scale gradient effects in

spatial pattern have been accounted for by the model, leaving only small local correlations

among lake residuals to be estimated by kriging interpolation.

5.2 Iterative residual refinement (Phase II)

The PATTERN+ model developed here demonstrates the ability to borrow from

the field of geostatistics in the development of a predictive model for spatially extensive

environmental fields.  In this example, the environmental field of interest is lake ANC.  The

pattern model alone is of some interest.  Using this procedure avoids the assumption that no

spatial autocorrelation exists among lakes and leads to different estimates of the regression
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parameters.  By itself, the pattern model can give very good predictive capability if the

mean square error is small enough.  In other cases, strong predictive pattern variables may

not be available to explain spatial changes in the mean.  If the residuals from such a weak

pattern model are large and show considerable spatial autocorrelation, the local kriging

estimates can represent an important contribution to the PATTERN+ predictions.

5.3 Future developments

This case study suggested three improvements to the procedure that we used.  First,

it is preferable to use predictor variables in the pattern model that are measured with

greater precision than the environmental variable of interest -- in our case the deposition

data were based on data from a fairly coarse monitoring grid.  VerHoef et al. (1993)

describe an interesting alternative to the semivariogram that is invariant to aggregation that

might prove relevant.  Second, it is advisable to put effort into separate estimation of

variances and scaling of subpopulations that differ greatly in variance and that can be

identified a priori.  When transformation of the variables is the alternative, back-

transformation creates more statistical problems than it solves.   Finally, simulation studies

are needed to evaluation the ideal partitioning of data for use in parameter estimation for

both components of the PATTERN+ model.  In particular, we would like to know how

much data overlap can be tolerated without causing undue bias in the estimated parameters.
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