
Published in Proc. SC 2002

 0-7695-1524-X/02 $17.00 (c) 2002 IEEE

Revised November 2002

Scalable Analysis Techniques for
Microprocessor Performance Counter Metrics

Dong H. Ahn Jeffrey S. Vetter

Lawrence Livermore National Laboratory

Livermore, CA, USA 94551
{ahn1,vetter3}@llnl.gov

Contemporary microprocessors provide a rich set of integrated performance counters
that allow application developers and system architects alike the opportunity to gather
important information about workload behaviors. Current techniques for analyzing
data produced from these counters use raw counts, ratios, and visualization techniques
help users make decisions about their application performance. While these techniques
are appropriate for analyzing data from one process, they do not scale easily to new
levels demanded by contemporary computing systems. Very simply, this paper
addresses these concerns by evaluating several multivariate statistical techniques on
these datasets. We find that several techniques, such as statistical clustering, can
automatically extract important features from the data. These derived results can, in
turn, be fed directly back to an application developer, or used as input to a more
comprehensive performance analysis environment, such as a visualization or an expert
system.

1 Introduction
Contemporary microprocessors provide a rich set of integrated

performance counters that allow application developers and system
architects alike the opportunity to gather important information about
workload behaviors. These counters can capture instruction, memory,
and operating system behaviors. Current techniques for analyzing the
data produced from these counters use raw counts, ratios, and
visualization techniques to help users make decisions about their
application source code.

While these techniques are appropriate for analyzing data from one
process, they do not scale easily to new levels demanded by
contemporary computing systems. Indeed, the amount of data
generated by these experiments is on the order of tens of thousands of
data points. Furthermore, if users execute multiple experiments, then
we add yet another dimension to this already complex picture. This
flood of multidimensional data can swamp efforts to glean important
ideas from these counters.

With the trend toward larger systems, users will have no choice but
to rely on automated performance analysis tools to sort through these
massive data sets, recognize important features, identify parts of the
application that are underutilizing the platform, and prescribe possible
solutions. Figure 1 shows the major components of such a system. At
step !, the performance instrumentation captures and sorts the data

 - 2 -

at runtime or offline. Although users can examine the raw data
immediately with a visualization tool like VGV [7] or Paraver [4],
feature extraction tools and rule-based recommender systems [10, 16]
can support the visualization process. For example, at step ", a
decision tree algorithm could identify those messages that are
performing abnormally [19] and identify them in the visualization with
a special glyph or color.

Very simply, this paper addresses these concerns by evaluating
several multivariate statistical techniques on these datasets. We find
that techniques such as statistical clustering offer promise for
automatically extracting important features from this performance
counter data. These derived results can, in turn, be fed directly back to
an application developer, or used as input to a more comprehensive
performance analysis environment, such as a visualization [7] or an
expert system [10].

Figure 1: Components of a comprehensive performance analysis environment.

2 Microprocessor Hardware Performance Counters
Modern microprocessors include integrated hardware support for

non-intrusive monitoring of a variety of processor and memory system
events. Commonly referred to as hardware counters [3, 14], this
capability is very useful to both computer architects [2] and
applications developers [23]. Detailed software instrumentation can
introduce perturbation into an application and the measurement
process itself. On the other hand, simulation can become impractical
for large, complex applications. These counters fill a gap that lies
between detailed microprocessor simulation and software
instrumentation because they have relatively low perturbation and can
provide insightful information about processor and memory-system

Rule-Based
Recommender
System

Decision Trees

Expert System

Feature
Extraction/
Data
Reduction

Clustering

F-rat io

Factor Analysis

Visualization

Task Local
Data

Application
Performance

Data
①

⑤

②

③

④

Rule-Based
Recommender
System

Decision Trees

Expert System

Feature
Extraction/
Data
Reduction

Clustering

F-rat io

Factor Analysis

Visualization

Task Local
Data

Application
Performance

Data
①

⑤

②

③

④

 - 3 -

behavior [20, 22]. Even though this information is statistical in nature,
it does provide a window into certain behaviors that are realistically
impossible to harvest otherwise. For instance, on IBM's POWER3
microprocessor, these events include various counts of instructions,
cache activity, branch predictions, memory coherence operations, and
functional unit utilization.

Several tools and microprocessors have extended this functionality
beyond simple event counting. Intel's Itanium processors [9] have
features that allow monitoring based on an instruction address range,
a specific instruction opcode, a data address range, and/or the privilege
level. In addition, the Itanium supplies event address registers that
record the instruction and data addresses of data cache misses for
loads, the instruction and data addresses of data TLB misses, and the
instruction addresses of instruction TLB and cache misses.

As another example, DEC implemented a useful strategy for
hardware counters: instruction sampling within the microprocessor.
Using this approach, a performance-monitoring tool, such as ProfileMe
[5] or DCPI [1], could randomly elect to measure performance
characteristics of individual instructions as they flowed through the
processor pipeline. The tool could, then, gather this information over
the execution of an application and attribute performance problems to
certain instructions statistically.

2.1 Counting Hardware Events
Our approach to using hardware counters rests on bracketing

targeted code regions with directives that program the counters to
capture events of interest, start and stop the counters, and read and
store the counter values. Users can insert these directives several ways
including by hand, or with a compiler, a binary editor, or dynamic
instrumentation. Hardware counters do require the appropriate
operating system and library support to accredit counts appropriately
to the proper processes and threads.

call f_start_section(1,0,ierr)
call hydxy(ddd, ddd1, ithread)
call deltat(" Finished X sweep",2)
call f_end_section(rank, 1,0,ierr)
BARRIER
call flag_clear
BARRIER
call f_start_section(2,0,ierr)
call hydyz(ddd1, ddd, ithread)
call deltat(" Finished Y sweep",2)
call f_end_section(rank, 2,0,ierr)
BARRIER
call flag_clear

Table 1: Sample code segment from function runhyd3 of sPPM.

Table 1 shows a code segment from sPPM [17] that has been
instrumented with high level library routines written on top of MPX
[15] and PAPI [3] in order to capture eight hardware counter values:
total processor cycles, total instructions, cycles stalled waiting for

 - 4 -

memory accesses, floating point divide instructions, L1 cache misses,
floating point instructions, load instructions, and store instructions.

As Table 2 illustrates, every execution of this sequential code
segment will generate one instance of counter values for each MPI
task. Therefore, applications that execute this code segment millions of
times will generate millions of instances of counter values. Table 1
shows the raw counter value table that is generated from the code
segment in Figure 1 using two MPI tasks. The G column lists the
instrumentation identifiers that represent different regions of the code.
The S column lists instances of these regions. Clearly, in real
experiments, this data management problem can become intractable!

Counter value

G:
 In

st
ru

m
en

ta
tio

n
ID

P:
 M

PI
 T

as
k

S:
 In

st
an

ce

1 2 3 4 5 6 7 8
1 1 1 8305760504 7795651387 2265349817 14689488 72993923 3744267304 2123235784 1253921843
1 1 2 8233114700 7587713598 2257442295 8987587 72816919 3612932116 2100752913 1260163691
1 2 1 8197360363 7701750765 2233070347 14695959 73425197 3736956914 2075722824 1237231534
1 2 2 8135138668 7593760051 2207456335 9172755 73699055 3590374684 2060311042 1230463969
2 1 1 8326329304 7559198564 2401195595 14583869 72382972 3717326869 2078653081 1233604083
2 1 2 8291791110 7421248463 2334628952 8509892 72074918 3540521698 2060023498 1230670879
2 2 1 8405106757 7645055689 2415396992 14655896 72785214 3708798229 2104739801 1248538508
2 2 2 8381061956 7523753702 2377276028 8606055 72608329 3553288776 2084495857 1256915516

Table 2: Counter values from code segment.

In this situation, the sheer volume of information quickly eclipses
useful characteristics of the performance data. Simple questions are
difficult to answer: which counters appear to be providing similar
information; are the same counters for each task performing similarly;
which counters account for most of the variation across all the tasks in
the application; which tasks cause this variation?

Certainly, simple statistics, such as the minimum, maximum, and
the average help here, but since these statistics apply to only one
counter at a time, they reveal neither relationships among multiple
counter values nor relationships across multiple instances or tasks.

3 Multivariate Statistical Techniques for Performance
Data

As we illustrated in Section 2, each instrumentation point within
an application can generate a vast number of hardware counter values.
Multiple experiments can aggravate this issue even further. To analyze
this data, we turn to multivariate statistical techniques to help focus
the user's attention on the important metrics and the distribution of
those metrics across parallel tasks.

 - 5 -

3.1 Performance Metric Spaces
For further analysis, we model these values as points in a

multidimensional space. To make this notion more formal, consider a
set of k dynamic performance metrics, hardware counters in our case,
measured on a set of P parallel tasks, on a set of g instrumentation
regions, and on s samples. Abstractly, one can then view these events
as defining a collection of these points that describe parallel system
characteristics. Following [21], if Ri denotes the range of metric k, we
call the Cartesian product

M = R1 × R2 × ... × Rk

a performance metric space. Thus, the ordered k-tuples

 (v1 ∈ R1; v2 ∈ R2; ... ; vk ∈ Rk) (1)

are points in M. It is important to note that this definition of the metric
space does not include the dimensions of instrumentation identifier,
parallel task identifier, or measurement instance. Furthermore, this
model assumes that this higher-dimension data can be down-sampled
into this space as appropriate. For instance, we collect all the points for
one instrumentation region across all tasks and across all
measurements and then project it into this metric space. This situation
would generate k × P × s points. While this trivial example illustrates
our formalization, we expect to use our techniques on much larger
systems where k > 10, g > 10, P >> 10, and s >> 10.

The goal of our analysis technique is now apparent; we must reduce
this massive number of measurement points and the dimensionality of
the metric space to a comprehendible scale. Traditional multivariate
statistical techniques warrant investigation as vehicles for
understanding this data. In fact, projection pursuit [21] and clustering
[18] have been applied to understanding real-time performance data;
this previous work strongly suggests that such techniques will be
useful for managing hardware counter data. These multivariate
statistical techniques allow users to draw inferences from observations
with multiple variables (dimensions) and they include dimension
reduction and classification.

3.2 Data Preparation
Raw data as generated by reading the hardware counters directly

can provide useful information; however, in the context of performance
analysis, derived metrics are equally important. For example, the raw
metric for number of cycles supplies a useful estimate of how long a
code region executed; however, the derived metric of number of
instructions divided by the number of cycles (IPC or instructions per
cycle) can directly emphasize how well code regions are utilizing
system resources. On the other hand, raw metrics are necessary to help
gauge the overall importance of code regions per se. For instance, the

 - 6 -

IPC of a code region that accounts for only minuscule numbers of cycles
during the application execution is irrelevant.

3.3 Cluster Analysis and F-ratio
Cluster analysis is a rudimentary, exploratory technique that is

helpful in understanding the complex nature of multivariate
relationships [11, 12]. It provides a familiar means for assessing
dimensionality, detecting outliers, and suggesting attractive
hypotheses about relationships between the data. Cluster analysis
makes no assumptions about the number of clusters or the cluster
structure. It relies only on a metric that calculates the similarities or
distances between data points. There have been a wide variety of
clustering algorithms proposed. Major differences are whether
particular methods simply partition data points into a given number of
groups or build more complicated cluster (or data point) hierarchies.

In the context of hardware counter data, we propose both
hierarchical and non-hierarchical methods will help users identify
equivalence classes of data points and an ‘important’ subset of entire
performance metrics that make high contribution to the existence of
those classes.

 We will demonstrate how hierarchical algorithms give users
insights about overall cluster structure of a data set by means of
dendrogram, while nonhierarchical methods, such as the k-means
algorithm, provide an efficient method to explain the importance of
each metric on a cluster configuration by using F-ratio of each metric
(Section 4.4).

F-ratio is a technique for univariate analysis of variance that is
defined as

iablityClusterVarWithin
iablityClusterVarBetween

−
− . Apparently, metrics that vary greatly

among different clusters and remain the same in the same cluster
yields higher F-ratio. K-means and F-ratio can also be employed when
the decision on number of clusters is not obvious. This situation
happens often when users do not have reasonable prior knowledge
about target application’s behavior. K-means and F-ratio provide a
means by which a system can automatically partition data points into a
number of clusters as to maximize the between-cluster variability
relative to the within-cluster variability.

3.4 Factor Analysis
Factor analysis is a multivariate technique that describes the

covariance relationships among many variables in terms of a few
underlying quantity, factors. In the context of hardware counter space,
we propose it will reduce the dimensionality of our performance metric
space, M = [R1 × R2 × ... × Rk], by assembling highly correlated metrics
in a peer group while separating uncorrelated ones into the other
groups. (e.g. [cba RRR ,,], x[dR]x…x [kji RRR ,]). This grouping can

 - 7 -

guide users to choose a right set of metrics for refining their code
optimization efforts.

In the factor analysis model, our metrics space M can be rewritten
as

ppmpppp

m

m

FmlFlFlR

FmlFlFlR
FmlFlFlR

ευ

ευ
ευ

++++=−

++++=−
++++=−

K

M

K

K

2211

2222212122

1121211111

Where Fi is the ith common factor, Rj jth metrics, vk mean of Rj, and
coefficient lji is the loading of Rj on the factor Fi. As this notation
suggests, grouping R’s that have higher loadings for a particular F will
yield a group whose R’s are highly correlated.

In contrast to cluster analysis, factor analysis reduces the data
space from the standpoint of variables. (standpoint of performance
metrics) Thus, combining both analyses supplies a powerful means in
reducing the dimension of metrics as well as the dimension of
processing element, quickly turning the data space into a manageable
state. We will demonstrate how we combine factor analysis with cluster
analysis and how it mines important performance features of an
instrumented code region as a result of data reduction.

3.5 Principal Component Analysis (PCA)
Principal component analysis (PCA) [11] explains the variance-

covariance organization of a set of variables using a few linear
combinations of these variables. The primary goals of PCA are data
reduction and interpretation. Intuitively, PCA attempts to find a
subset of the original variables that accounts for almost as much
variability as all of the original variables. This subset can then replace
the original variables, and thereby achieve a data reduction.

4 Evaluation
We empirically evaluated our techniques with three applications.

As Table 1 illustrates, we first instrument the application and collect
hardware counter data on the target platform. We then clean, merge,
and prepare this data for statistical analysis. Next, we apply several
statistical techniques to the prepared data.

4.1 Instrumentation and Data Collection
We manually instrument our target applications with source code

annotations. Each instrumentation point identifies a code region to
capture hardware counter metrics as Table 1 illustrates. Hence, each
application has g instrumented code regions as defined in Section 3.1.

 - 8 -

For these experiments, we assume that each region captures the same
set of k hardware metrics.

In this framework, our tool can either write the each sample to a
tracefile during execution or accumulate the samples for each region
and write the accumulated metrics to a file at termination. In the
former context, tracefiles would grow at a rate proportional to k × g × s
for each parallel task. We implemented both modes, but still, we use
the latter technique, which generates only k × g measurement points
for each parallel task, to prevent an explosion of data and
measurement overhead. Our statistical techniques remain valid for
accumulated data; however, this selection has the drawback that
accumulated measurements can hide certain performance phenomena.

At termination of the application experiment, each parallel task P
generates a local file. Our prototype merges these P local files into one
global file, containing all accumulated measurements for an
application, and having size proportional to k × g × P. With all these
raw metrics for one application now in one file, we can easily apply our
statistical techniques to this file with a filter. This filter also
manipulates the raw metrics for data cleaning and generating useful
derived metrics as described in Section 3.2.

4.2 Platform
We ran our tests on two IBM SP systems, located at Lawrence

Livermore National Laboratory. The first machine is composed of
sixteen 222 MHz IBM Power3 8-way SMP nodes, totaling 128 CPUs.
Each processor has three integer units, two floating-point units, and
two load/store units. At the time of our tests, the batch partition had 15
nodes and the operating system was AIX 4.3.3. Each SMP node
contains 4GB main memory for a total of 64 GB system memory. A
Colony SPSwitch--a proprietary IBM interconnect--connects the nodes.

The second system is composed of 68 IBM RS/6000 NightHawk-2
16-way SMP nodes using 375 MHz IBM 64-bit POWER3-II CPUs. The
system has a peak performance rating of 1.6 TeraOps, 1088 GB of
global memory, and 20.6 TB of global disk. At the time of our tests, the
batch partition had 63 nodes and the operating system was AIX 5.1. A
Colony SPSwitch2--a proprietary IBM interconnect--connects the
nodes.

4.3 Applications
We evaluate our proposed techniques on three scalable

applications. Each application has different computational and
communication characteristics [20, 22]. SPPM, for example, has large
blocks of floating point computation with infrequent, large messages,
while Sweep3D has frequent, small messages with smaller blocks of
computation.

 - 9 -

sPPM [17] solves a 3-D gas dynamics problem on a uniform
Cartesian mesh, using a simplified version of the Piecewise Parabolic
Method. The algorithm makes use of a split scheme of X, Y, and Z
Lagrangian and remap steps, which are computed as three separate
sweeps through the mesh per timestep. Message passing provides
updates to ghost cells from neighboring domains three times per
timestep. OpenMP provides thread-level parallelism within MPI tasks.

Sweep3D [8, 13] is a solver for the 3-D, time-independent, particle
transport equation on an orthogonal mesh and it uses a
multidimensional wavefront algorithm for "discrete ordinates"
deterministic particle transport simulation. Sweep3D benefits from
multiple wavefronts in multiple dimensions, which are partitioned and
pipelined on a distributed memory system. The three dimensional
space is decomposed onto a two-dimensional orthogonal mesh, where
each processor is assigned one columnar domain. Sweep3D exchanges
messages between processors as wavefronts propagate diagonally
across this 3-D space in eight directions.

UMT is a 3D, deterministic, multigroup, photon transport code for
unstructured meshes. The algorithm solves the first-order form of the
steady-state Boltzmann transport equation. The equation's energy
dependence is modeled using multiple photon energy groups. The
angular dependence is modeled using a collocation of discrete
directions. The spatial variable is modeled with an upstream corner
balance finite volume differencing technique. The solution proceeds by
tracking through the mesh in the direction of each ordinate. For each
ordinate direction all energy groups are transported, accumulating the
desired solution on each zone in the mesh. The code works on
unstructured meshes, which it generates at run-time using a two-
dimensional unstructured mesh and extruding it in the third
dimension a user-specified amount.

4.4 Scatterplot/Correlation Matrix
A scatterplot matrix is a convenient mechanism to display the

variance relationships among the multiple dimensions of counter
metrics. The scatterplot matrix contains all the pairwise scatter plots
of the variables on a single plot in a matrix format. Therefore, if there
are k variables, the scatterplot matrix will have k rows and k columns
and the ith row and jth column of this matrix is a plot of variable i versus
variable j.

 - 10 -

fma

1.7 e+11 2.0 e+11 6.0 e+11 7.0 e+11 7.0 e+10 8.5 e+10

1.
4

e+
11

1.
7

e+
11 fpu0

fpu1

1.
6

e+
11

6.
0

e+
11 inst

ld

1.
4

e+
11

7.
0

e+
10 st

1.4 e+11 1.7 e+11 1.6 e+11 1.9 e+11 1.4 e+11 1.7 e+11 4.0 e+08 1.0 e+09

4.
0

e+
08tlb.miss

Table 3: Scatterplot matrix for UMT on 288 tasks with raw data from 7 counters.

Consider the presentation in Table 3 for UMT on 288 tasks. This
figure quickly illustrates the relationships between each of the seven
counter data points for all 288 tasks. Noticeably, six counters (fma,
fpu0, fpu1, inst, ld, st) are highly correlated as Table 4 confirms with
values greater than 0.99.

 fma fpu0 fpu1 inst ld st tlb.miss
fma 1.0000000 0.9986839 0.9985139 0.9997846 0.9997262 0.9992478 0.3598753

fpu0 0.9986839 1.0000000 0.9946780 0.9987720 0.9987540 0.9984938 0.3576571
fpu1 0.9985139 0.9946780 1.0000000 0.9984684 0.9984306 0.9980825 0.3621886
inst 0.9997846 0.9987720 0.9984684 1.0000000 0.9999964 0.9998370 0.3612941

ld 0.9997262 0.9987540 0.9984306 0.9999964 1.0000000 0.9998803 0.3614241
st 0.9992478 0.9984938 0.9980825 0.9998370 0.9998803 1.0000000 0.3625394

tlb.miss 0.3598753 0.3576571 0.3621886 0.3612941 0.3614241 0.3625394 1.0000000
 fma: PM_EXEC_FMA, fpu0: PM_FXU0_PROD_RESULT, fpu1: PM_FXU0_PROD_RESULT
 inst: PM_INST_CMPL, ld: PM_LD_CMPL, st: PM_ST_CMPL, tlb.miss: PM_TLB_MISS (AppendixA)

Table 4: Correlation matrix for UMT on 288 tasks with raw data from 7 counters.

Using this result, we can quickly prune counters from our set of
measurements because we can select one of the six counters (fma, fpu0,
fpu1, inst, ld, st) as a representative and use that counter as a predictor
for the others. Any task with a higher value for one of these six implies
a higher value for the other five. The tlb.miss counter, on the other hand,
is only slightly positively correlated with these other six counters.

Naturally, this result assists users in determining which counters
are redundant. Since many microprocessors have only a limited
number of counters on which to count many events, users must choose
events to count wisely. This straightforward analysis helps with this
decision.

 - 11 -

4.5 Cluster Analysis

4.5.1 Agglomerative Hierarchical Method (AHM)

This method gives users insights about overall cluster structure
that exist in a data space by constructing dendrograms. Figure 2 shows
the dendrogram for one instrumented section of an sPPM experiment
with 16 MPI tasks and 16 OpenMP threads per task. Since sPPM
exploits parallelism with message passing for inter-node
communication and OpenMP within shared memory for thread level
parallelism, it is expected to have at least two natural clusters when
using the raw counter data. Agglomerative Hierarchical Method clearly
identifies in Figure 2 the existence of two classes; one housing all 240
slave threads and the other cluster containing the 16 master threads.
As expected, the distance between two natural clusters is much larger
than a distance between any other pairs of clusters (or tasks).

Figure 2: Dendrogram for a section of sPPM using 23 raw counter metrics
(task numbers elided).

Figure 3 illustrates the dendrogram of the same section of sPPM
using some derived metrics. The configuration does not change much
from Figure 2, suggesting that the hardware counter performance
counters show that these tasks are performing similarly and any
changes to code for either the master thread or the slave thread will
propagate to its peers. (Statistical techniques with raw metrics alone
would not provide this perspective immediately.) That is, the
optimizations to one of the representatives in this group will most
likely propagate to its peers in the same cluster. Derived metrics that
are used in the experiment include instructions per cycle (IPC), TLB
misses per cycle, and floating point instructions per cycle. We use
derived metrics with the same scale in producing such a dedrogram to
avoid bias that can be incurred when scales of selected metrics are
different.

 - 12 -

Figure 3: Dendrogram for a section of sPPM using derived metrics (task
numbers elided).

4.5.2 k-means clustering and F-ratio

While AHM gives a general idea about cluster structure, it is not
entirely convenient to compare clusters and compute the importance of
an individual metrics that yield the particular cluster configuration.
Using k-means clustering and F-ratio, we order metrics for the same
section on sPPM by their F-ratios(

iablityClusterVarWithin
iablityClusterVarBetween

−
−) and display

seven metrics with highest F-ratios out of 23 metrics in Table 5.
(Appendix A lists entire performance metrics used in experiments)

Metrics Description F-ratio
PM_FXU2_PROD_RESULT FXU 2 instructions 607415
PM_ST_CMPL Stores completed 65.1062
PM_FXU0_PROD_RESULT FXU 0 instructions 38.2457
PM_FXU1_PROD_RESULT FXU 1 instructions 16.3252
PM_0INST_CMPL No Instructions completed 13.1642
PM_ST_DISP Stores dispatched 12.3751
PM_LD_DISP Loads dispatched 12.3165

Table 5: Metrics ordered by F-ratio size for a section of sPPM.

Table 5 suggests that major differences between master-thread
cluster and slave-thread cluster stem from hardware events that are
related to integer instructions, system idling, and load/store behaviors.

On further investigation of F-ratio results, we find that the hybrid
MPI/OpenMP version of sPPM has significant differences between the
master and worker threads in the target section: only master threads
conduct MPI operations. Also, the master thread must manage the
remaining worker threads; it incurs more copying of data and
synchronization as evidenced by the F-ratio and k-means clustering
results.

4.6 Factor Analysis
Table 6 shows the result of factor analysis at a section of sweep3D

on 256 MPI tasks. Each column represents loadings of metrics for each
factor. We group together those metrics with larger loadings. Grouping

 - 13 -

is depicted with different font color and background shapes/colors in
the table.

 Table 6: Factor Analysis of a code section of sweep3D

As table 6 suggests, highly correlated metrics fall into the same peer group.
For example, with respect to Factor 3, it appears that all three metrics belonging to
it are closely related to floating point operations. Hence, it is fairly easy to
speculate that this underlying factor measures computation aspect of the
performance. Similarly, in the case of Factor 2, the fact that all the grouped
metrics are memory system related leads us to infer it as memory behavior factor.
Finally, we speculate Factor 3 as a performance implication that is caused by
resource idling during message passing, in part because it includes measures on
hardware event of no instruction completed (PM_0INST_CMPL) in absence of
floating point related metrics in its peer group. In addition, it also involves a direct
measure for a functional unit (load/store unit) idling. (PM_LSU_IDLE)

0.948-0.303PM_TLB_MISS

0.7770.3060.408PM_ST_MISS

0.5220.103PM_ST_L2MISS

0.3030.849-0.4100.115PM_FPU1_CMPL

0.826-0.553PM_FPU0_CMPL

0.848-0.521PM_EXEC_FMA

0.2810.242-0.2620.8320.302PM_LD_MISS_L2HIT

0.279 0.239-0.2610.8320.306PM_LD_MISS_L1

-0.120-0.3630.728PM_IC_MISS

-0.182-0.132-0.1350.895PM_BIU_ST_NORTRY

-0.212-0.2280.906PM_BIU_LD_NORTRY

0.1010.970PM_ST_DISP

0.192-0.2480.1670.926PM_ST_CMPL

0.2920.4330.1980.1470.1320.794PM_LSU_IDLE

-0.1010.1120.977PM_LD_DISP

0.192-0.249-0.1020.1670.925PM_LD_CMPL

0.981PM_INST_DISP

0.195-0.2520.1290.934PM_INST_CMPL

0.1820.970PM_FXU2_PROD_RESULT

0.1580.979PM_FXU1_PROD_RESULT

-0.1360.1170.975PM_FXU0_PROD_RESULT

0.2460.1910.941PM_CYC

0.4790.3970.758PM_0INST_CMPL

FACTOR7FACTOR6FACTOR5FACTOR4FACTOR3FACTOR2FACTOR1

0.948-0.303PM_TLB_MISS

0.7770.3060.408PM_ST_MISS

0.5220.103PM_ST_L2MISS

0.3030.849-0.4100.115PM_FPU1_CMPL

0.826-0.553PM_FPU0_CMPL

0.848-0.521PM_EXEC_FMA

0.2810.242-0.2620.8320.302PM_LD_MISS_L2HIT

0.279 0.239-0.2610.8320.306PM_LD_MISS_L1

-0.120-0.3630.728PM_IC_MISS

-0.182-0.132-0.1350.895PM_BIU_ST_NORTRY

-0.212-0.2280.906PM_BIU_LD_NORTRY

0.1010.970PM_ST_DISP

0.192-0.2480.1670.926PM_ST_CMPL

0.2920.4330.1980.1470.1320.794PM_LSU_IDLE

-0.1010.1120.977PM_LD_DISP

0.192-0.249-0.1020.1670.925PM_LD_CMPL

0.981PM_INST_DISP

0.195-0.2520.1290.934PM_INST_CMPL

0.1820.970PM_FXU2_PROD_RESULT

0.1580.979PM_FXU1_PROD_RESULT

-0.1360.1170.975PM_FXU0_PROD_RESULT

0.2460.1910.941PM_CYC

0.4790.3970.758PM_0INST_CMPL

FACTOR7FACTOR6FACTOR5FACTOR4FACTOR3FACTOR2FACTOR1

 - 14 -

 Table 7: Factor Analysis of a code section of umt2k.

Table 7 shows the result of factor analysis on a code section of UMT
at 288 MPI tasks. In contrast to that of sweep3D, a majority of metrics
falls into one peer, suggesting computation behavior dominates
performance characteristics at the code section. In fact, further
investigation reveals that workload distribution imbalance caused by
its unstructured mesh technique makes around 20% of tasks do less
work (20−30% less) at this code section. Given such information, users
can be advised now to focus on resolving workload imbalance issue at
this section in their performance efforts.

4.7 Combining Factor Analysis and Cluster Analysis
We combine factor analysis with cluster analysis in an attempt to

narrow down the multiple viewpoints on the original performance data
space into a single viewpoint on a reduced data space. That is, instead
of looking at multiple performance implications on individual tasks, we
view one major characteristic at a time on the clusters.

0.514 0.145 0.156 PM_TLB_MISS

0.125 0.205 0.215 PM_IC_MISS

0.216 0.288 0.709 0.597 PM_ST_L2MISS

0.263 0.303 0.721 0.558 PM_BIU_ST_NORTRY

0.324 0.421 0.595 0.497 PM_BIU_LD_NORTRY

0.195 0.305 0.462 0.768 PM_ST_MISS

0.266 0.361 0.398 0.783 PM_LSU_IDLE

0.546 0.308 0.332 0.700 PM_LD_MISS_L2HIT

0.538 0.325 0.334 0.697 PM_LD_MISS_L1

0.247 0.289 0.432 0.817 PM_ST_DISP

0.247 0.289 0.432 0.817 PM_ST_CMPL

0.249 0.284 0.427 0.821 PM_LD_DISP

0.251 0.284 0.426 0.821 PM_LD_CMPL

0.249 0.285 0.425 0.821 PM_INST_DISP

0.252 0.283 0.425 0.822 PM_INST_CMPL

0.242 0.287 0.436 0.816 PM_FXU2_PROD_RESULT

0.234 0.278 0.435 0.821 PM_FXU1_PROD_RESULT

0.239 0.293 0.436 0.814 PM_FXU0_PROD_RESULT

0.262 0.283 0.412 0.823 PM_FPU1_CMPL

0.245 0.276 0.427 0.823 PM_FPU0_CMPL

0.256 0.276 0.416 0.827 PM_EXEC_FMA

0.232 0.368 0.444 0.780 PM_CYC

0.213 0.397 0.452 0.765 PM_0INST_CMPL

FACTOR4FACTOR3FACTOR2FACTOR1

0.514 0.145 0.156 PM_TLB_MISS

0.125 0.205 0.215 PM_IC_MISS

0.216 0.288 0.709 0.597 PM_ST_L2MISS

0.263 0.303 0.721 0.558 PM_BIU_ST_NORTRY

0.324 0.421 0.595 0.497 PM_BIU_LD_NORTRY

0.195 0.305 0.462 0.768 PM_ST_MISS

0.266 0.361 0.398 0.783 PM_LSU_IDLE

0.546 0.308 0.332 0.700 PM_LD_MISS_L2HIT

0.538 0.325 0.334 0.697 PM_LD_MISS_L1

0.247 0.289 0.432 0.817 PM_ST_DISP

0.247 0.289 0.432 0.817 PM_ST_CMPL

0.249 0.284 0.427 0.821 PM_LD_DISP

0.251 0.284 0.426 0.821 PM_LD_CMPL

0.249 0.285 0.425 0.821 PM_INST_DISP

0.252 0.283 0.425 0.822 PM_INST_CMPL

0.242 0.287 0.436 0.816 PM_FXU2_PROD_RESULT

0.234 0.278 0.435 0.821 PM_FXU1_PROD_RESULT

0.239 0.293 0.436 0.814 PM_FXU0_PROD_RESULT

0.262 0.283 0.412 0.823 PM_FPU1_CMPL

0.245 0.276 0.427 0.823 PM_FPU0_CMPL

0.256 0.276 0.416 0.827 PM_EXEC_FMA

0.232 0.368 0.444 0.780 PM_CYC

0.213 0.397 0.452 0.765 PM_0INST_CMPL

FACTOR4FACTOR3FACTOR2FACTOR1

 - 15 -

Figure 4 illustrates a dendrogram at a section of Sweep3D. It is
produced using only those metrics that have high factor loadings with
respect to computation factor shown in Table 6. The fact that it includes
only a group of computation metrics enables us to describe this
dedrogram much easier; each task is assigned to its cluster solely based
on its computation behavior. Three distinct clusters visually stand out.

 A B C

Figure 4: Dendrogram for �sweep� section of Sweep3D using counter metrics of
computation factor.

Figure 5 is a cluster membership map constructed from this
dendrogram. It depicts membership by means of coloring on the 2-D
processor grid. This representation is chosen in that Sweep3D itself
decomposes the global 3-D problem onto such a 2-D orthogonal mesh
for processor assignment. The map immediately reveals that
computation behavior is different between corner tasks and edge/inner
tasks, implying slight load imbalance between tasks in different
equivalent classes.

 A
Task at the left side of dendrogram

 B

 Task in the center of dendrogram

 C

 Task at the right side of dendrogram

Figure 5: Cluster membership map constructed from Figure 4 on processor grid.

Similarly, cluster analysis on the metrics belonging to memory
system behavior factor [Table 6] yields a cluster configuration such that
most tasks on the edges and at four corners (and a few inside tasks)
differ themselves from the others. We believe at least two code features
of Sweep3D algorithm contributes to such cluster assignments on its
computation and memory system behavior. First, its corner and edge

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515

1616 1717 1818 19 20 21 22 23 24 25 26 27 28 2929 3030 3131

3232 3333 34 35 36 37 38 39 40 41 42 43 44 45 4646 4747

4848 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6363

6464 65 66 67 68 69 70 71 72 73 74 75 76 77 78 7979

8080 81 82 83 84 85 86 87 88 89 90 91 92 93 94 9595

9696 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111111

112112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127127

128128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143143

144144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159159

160160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175175

176176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191191

192192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207207

208208 209209 210 211 212 213 214 215 216 217 218 219 220 221 222222 223223

224224 225225 226226 227 228 229 230 231 232 233 234 235 236 237237 238238 239239

240240 241241 242242 243243 244244 245245 246246 247247 248248 249249 250250 251251 252252 253253 254254 255255

tasktask

tasktask

task

tasktask task tasktasktasktask tasktask tasktasktasktasktasktasktasktasktasktasktasktask tasktasktasktasktasktasktasktask tasktask tasktask tasktask tasktask

 - 16 -

tasks have fewer number of neighbor tasks to communicate with.
Secondly, its wavefront algorithm starts from four corners of 2-D
processor grid and then transfers waves diagonally to other tasks;
thereby incurs more start-up burden to corner tasks.

Figure 6 illustrates a similar cluster membership map of the same
code section of Sweep3D with respect to Factor 1 shown in Table 8.
This map represents three equivalence classes of tasks with respect to
idling behavior during message passing.

 Figure 6: Cluster memberships of MPI tasks on factor 1

It suggests that tasks that are handling right and bottom side of
problem domain tend to be underutilizing the system resources at this
code section. Examining individual metrics used to produce Figure 6
explains it in detail. For example, Figure 7 shows a subset of individual
metrics that belongs to the Factor 1. It indicates that MPI tasks that
are located toward right and bottom side of 2-D processor grid tend to
spend more cycles at the code section; yet, the increased cycles are
contributable to system idling; Counts for no instruction completion
(PM_0INST_CMPL) event and load and store units idle
(PM_LSU_IDLE) event increase with cycle metric. (but floating point
related metrics do not).

Figure 7: Each graph, from left to right, represents respectively number of
cycle, no instruction completed, and load and store unit idling. (Vertical axis is
counter value and horizontal axis is MPI task number)

PM_CYC

18500000000

19000000000

19500000000

20000000000

20500000000

21000000000

21500000000

22000000000

0 50 100 150 200 250 300

PM_0INST_CMPL

12000000000

12200000000

12400000000

12600000000

12800000000

13000000000

13200000000

13400000000

13600000000

13800000000

14000000000

0 50 100 150 200 250 300

PM_LSU_IDLE

0
1000000000
2000000000
3000000000
4000000000
5000000000
6000000000
7000000000
8000000000
9000000000

10000000000

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0
6

1
2
1

1
3
6

1
5
1

1
6
6

1
8
1

1
9
6

2
1
1

2
2
6

2
4
1

2
5
6

0 1 2 3 4 5 6 7 88 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 2525 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 4141 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110110 111111

112 113 114 115 116 117 118 119 120 121 122 123 124 125125 126126 127127

128 129 130 131 132 133 134 135 136 137 138 139 140140 141141 142142 143143

144 145 146 147 148 149 150 151 152 153 154 155155 156156 157157 158158 159159

160 161 162 163 164 165 166 167 168 169 170170 171171 172172 173173 174174 175175

176 177 178 179 180 181 182 183 184 185185 186186 187187 188188 189189 190190 191191

192 193 194 195 196 197 198 199 200200 201201 202202 203203 204204 205205 206206 207207

208 209 210 211 212 213 214 215215 216216 217217 218218 219219 220220 221221 222222 223223

224 225 226 227 228 229 230230 231231 232232 233233 234234 235235 236236 237237 238238 239239

240 241 242 243 244 245245 246246 247247 248248 249249 250250 251251 252252 253253 254254 255255

0 1 2 3 4 5 6 7 88 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 2525 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 4141 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110110 111111

112 113 114 115 116 117 118 119 120 121 122 123 124 125125 126126 127127

128 129 130 131 132 133 134 135 136 137 138 139 140140 141141 142142 143143

144 145 146 147 148 149 150 151 152 153 154 155155 156156 157157 158158 159159

160 161 162 163 164 165 166 167 168 169 170170 171171 172172 173173 174174 175175

176 177 178 179 180 181 182 183 184 185185 186186 187187 188188 189189 190190 191191

192 193 194 195 196 197 198 199 200200 201201 202202 203203 204204 205205 206206 207207

208 209 210 211 212 213 214 215215 216216 217217 218218 219219 220220 221221 222222 223223

224 225 226 227 228 229 230230 231231 232232 233233 234234 235235 236236 237237 238238 239239

240 241 242 243 244 245245 246246 247247 248248 249249 250250 251251 252252 253253 254254 255255

 - 17 -

4.8 Recursive application of statistical techniques.
We recursively apply the statistical techniques when there exist

statistically very distinct clusters such as the case of sPPM illustrated
in Figure 2. As explained in section 4.5.1, sPPM has two significantly
different clusters in its data space. Naturally, the same set of
statistical analyses can be recursively applied to each of two clusters.
Figure 8 shows the cluster membership of slave threads on the raw
counter metrics of computation factor peer.

Figure 8: Cluster membership of slave threads at a code section of sPPM on 256
tasks. (Metrics from its computation factor is used)

It indicates that threads spawned from high-ranked MPI tasks are

doing more amount of floating point work than ones spawned from low-
ranked MPI tasks. Without recursive application of those techniques,
such workload imbalance would not easily get discovered. Figure 9
contains a couple of individual metrics that are used in producing
Figure 8. Indeed, slave threads managed by high-ranked MPI tasks
have about 3% more FMA instructions executed.

Figure 9: Each graph, from left to right, represents respectively FMA instruction,
and cycle where no instruction completed.

0/1 0/2 0/3 0/4 0/5 0/6 0/7 0/8 0/9 0/10 0/11 0/12 0/13 0/14 0/15 0/16

1/1

2/1

3/1

1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16

2/2 2/3 2/4 2/5 2/6 2/7 2/8 2/9 2/10 2/11 2/12 2/13 2/14 2/15 2/16

3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11 3/12 3/13 3/14 3/15 3/16

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 4/9 4/10 4/11 4/12 4/13 4/14 4/15 4/16

5/1

6/1

7/1

5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12 5/13 5/14 5/15 5/16

6/2 6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15 6/16

7/2 7/3 7/4 7/5 7/6 7/7 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/15 7/16

8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/10 8/11 8/12 8/13 8/14 8/15 8/16

9/1

10/1

11/1

9/2 9/3 9/4 9/5 9/6 9/7 9/8 9/9 9/10 9/11 9/12 9/13 9/14 9/15 9/16

10/2 10/3 10/4 10/5 10/6 10/7 10/8 10/9 10/10 10/11 10/12 10/13 10/14 10/15 10/16

11/2 11/3 11/4 11/5 11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15 11/16

12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/11 12/12 12/13 12/14 12/15 12/16

13/1

14/1

15/1

13/2 13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11 13/12 13/13 13/14 13/15 13/16

14/2 14/3 14/4 14/5 14/6 14/7 14/8 14/9 14/10 14/11 14/12 14/13 14/14 14/15 14/16

15/2 15/3 15/4 15/5 15/6 15/7 15/8 15/9 15/10 15/11 15/12 15/13 15/14 15/15 15/16

0/1 0/2 0/3 0/4 0/5 0/6 0/7 0/8 0/9 0/10 0/11 0/12 0/13 0/14 0/15 0/16

1/1

2/1

3/1

1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16

2/2 2/3 2/4 2/5 2/6 2/7 2/8 2/9 2/10 2/11 2/12 2/13 2/14 2/15 2/16

3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11 3/12 3/13 3/14 3/15 3/16

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 4/9 4/10 4/11 4/12 4/13 4/14 4/15 4/16

5/1

6/1

7/1

5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12 5/13 5/14 5/15 5/16

6/2 6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15 6/16

7/2 7/3 7/4 7/5 7/6 7/7 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/15 7/16

8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/10 8/11 8/12 8/13 8/14 8/15 8/16

9/1

10/1

11/1

9/2 9/3 9/4 9/5 9/6 9/7 9/8 9/9 9/10 9/11 9/12 9/13 9/14 9/15 9/16

10/2 10/3 10/4 10/5 10/6 10/7 10/8 10/9 10/10 10/11 10/12 10/13 10/14 10/15 10/16

11/2 11/3 11/4 11/5 11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15 11/16

12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/11 12/12 12/13 12/14 12/15 12/16

13/1

14/1

15/1

13/2 13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11 13/12 13/13 13/14 13/15 13/16

14/2 14/3 14/4 14/5 14/6 14/7 14/8 14/9 14/10 14/11 14/12 14/13 14/14 14/15 14/16

15/2 15/3 15/4 15/5 15/6 15/7 15/8 15/9 15/10 15/11 15/12 15/13 15/14 15/15 15/16

PM_EXEC_FMA

1280000000
1300000000
1320000000
1340000000
1360000000
1380000000
1400000000
1420000000
1440000000

0\
2

1\
15

3\
13

5\
11 7\

9

9\
7

11
\5

13
\3

14
\1

6

PM.0INST.CMPL

7200000000

7250000000

7300000000

7350000000

7400000000

7450000000

7500000000

7550000000

0\
2

1\
9

2\
16 4\
8

5\
15 7\
7

8\
14

10
\6

11
\1

3

13
\5

14
\1

2

Rank / Thread id

 - 18 -

4.9 PCA
We primarily use PCA for a visualization technique on our

multidimensional counter data. We first run cluster analysis to group
together those similar data points and then project them onto first few
principal component axes to validate cluster structure.

Figure 10: Hierarchical clustering results after PCA on UMT raw
metrics at 288 tasks.

Figure 10 illustrates projection of cluster analysis result onto the
first two components of PCA with the raw counter data from UMT at
288 tasks. Component 1 is loaded to the PM_INST_CMPL (instructions
completed) metric while Component 2 is loaded to the PM_TLB_MISS
(TLB misses) metric. These two components capture 99.91% of the
variability in this dataset. Thus, cluster separation should be
reasonably depicted in the PCA plot as Figure 10 illustrates.

5 Observations
Our experiments revealed several important points. First, most of

the multivariate statistical techniques that we evaluated helped us
answer some question that would be a burdensome task otherwise.
Clustering, for example, improves the ability to identify which tasks in
the application have similar performance counter metrics. The F-ratio
test discovers which metrics vary across tasks and why they form
separate clusters. Second, these techniques are a means to an end. The
output of these statistical methods is quite valuable, but they also
require additional interpretation and integration with other methods,
such as rule-based systems, to actually prescribe performance
optimizations to the user. Third, raw performance counter data
supplies information on load balance and correlation across metrics
while derived performance data helps to identify regions of code that
are performing in the same way. Fourth, although most of our

 - 19 -

applications and experiment platforms are similar, resulting in well-
behaved performance and workloads, heterogeneous platforms or grid
environments [6] offer new challenges in understanding performance
data.

6 Conclusions
Scalable computing platforms generate tremendous volumes of

performance data, especially when monitoring low-level, frequent
events like those produced by microprocessor performance counters.
Developers need new techniques to help them gain insight into these
massive datasets. Traditional multivariate statistical techniques can
play a prominent role in this effort by reducing the dataset
dimensionality and classifying similar data points. Our experiments on
several applications demonstrate the feasibility of this approach and
highlight several useful implementation strategies. For example, our
experiments with sPPM, Sweep3d, and UMT clearly confirmed that
clustering on both raw and derived metrics can allow a user to
understand the performance implications across all tasks in an
application. Factor analysis is another technique that helps to correlate
hardware counter data that appears closely correlated.

We are beginning to use these results from statistical analysis
techniques in our environment to drive more advanced performance
analysis systems as motivated in Section 1.

Acknowledgments
This work was performed under the auspices of the U.S.

Department of Energy by the University of California, Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.
This paper is available as LLNL Technical Report UCRL-JC-148058.

Appendix A: Power3 Events Used in Experiments
Name Description
PM_0INST_CMPL No Instructions completed

PM_CYC Cycles

PM_FXU0_PROD_RESULT FXU 0 instructions

PM_FXU1_PROD_RESULT FXU 1 instructions

PM_FXU2_PROD_RESULT FXU 2 instructions

PM_INST_CMPL Instructions completed

PM_INST_DISP Instructions dispatched

PM_LD_CMPL Loads completed

PM_LD_DISP Loads dispatched

 - 20 -

PM_LSU_IDLE Load store unit idle

PM_ST_CMPL Stores completed

PM_ST_DISP Stores dispatched

PM_BIU_LD_NORTRY L2 Misses

PM_BIU_ST_NORTRY Write Back

PM_IC_MISS Instruction cache misses

PM_LD_MISS_L1 Load miss L1

PM_LD_MISS_L2HIT Load miss in L12

PM_EXEC_FMA FMA instruction executed

PM_FPU0_CMPL FPU 0 instruction complete

PM_FPU1_CMPL FPU 1 instruction complete

PM_ST_L2MISS Stores misses in L2

PM_ST_MISS Store misses in L1

PM_TLB_MISS TLB misses

References
[1] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-

T.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E.
Weihl, �Continuous profiling: where have all the cycles gone?,� ACM
Trans. Computer Systems, 15(4):357-90, 1997.

[2] P. Bose and T.M. Conte, �Performance analysis and its impact on design,�
Computer, 31(5):41-9, 1998.

[3] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, �A Scalable
Cross-Platform Infrastructure for Application Performance Tuning Using
Hardware Counters,� Proc. SC2000: High Performance Networking and
Computing Conf. (electronic publication), 2000.

[4] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J.S. Vetter, �A
Dynamic Tracing Mechanism for Performance Analysis of OpenMP
Applications,� Proc. Workshop on OpenMP Applications and Tools
(WOMPAT), 2001.

[5] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos,
�ProfileMe: hardware support for instruction-level profiling on out-of-
order processors,� Proc. Thirtieth Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 1997, pp. 292-302.

[6] I. Foster and C. Kesselman, Eds., The Grid: blueprint for a new
computing infrastructure. San Francisco: Morgan Kaufmann Publishers,
1999, pp. xxiv, 677.

[7] J. Hoeflinger, B. Kuhn, P. Petersen, R. Hrabri, S. Shah, J.S. Vetter, M.
Voss, and R. Woo, �An Integrated Performance Visualizer for
OpenMP/MPI Programs,� Proc. Workshop on OpenMP Applications and
Tools (WOMPAT), 2001.

[8] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme, �A
General Predictive Performance Model for Wavefront Algorithms on
Clusters of SMPs,� Proc. ICPP 2000, 2000.

 - 21 -

[9] Intel, �Intel IA-64 Architecture Software Developer's Manual, Volume 4:
Itanium Processor Programmer's Guide,� Intel 2000.

[10] Intel, VTune Performance Analyzer,
http://www.intel.com/software/products/vtune, 2002.

[11] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical
Analysis, 4 ed. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1998.

[12] L. Kaufman and P.J. Rousseeuw, Finding groups in data: an introduction
to cluster analysis. New York: Wiley, 1990.

[13] K.R. Koch, R.S. Baker, and R.E. Alcouffe, �Solution of the First-Order
Form of the 3-D Discrete Ordinates Equation on a Massively Parallel
Processor,� Trans. Amer. Nuc. Soc., 65(198), 1992.

[14] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T.
Spencer, �End-user Tools for Application Performance Analysis Using
Hardware Counters,� Proc. International Conference on Parallel and
Distributed Computing Systems, 2001.

[15] J.M. May, �MPX: Software for Multiplexing Hardware Performance
Counters in Multithreaded Programs,� Proc. International Parallel and
Distributed Processing Symposium (IPDPS) (electronic publication),
2001.

[16] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B.
Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall, �The
Paradyn parallel performance measurement tool,� IEEE Computer,
28(11):37-46, 1995.

[17] A.A. Mirin, R.H. Cohen, B.C. Curtis, W.P. Dannevik, A.M. Dimits, M.A.
Duchaineau, D.E. Eliason, D.R. Schikore, S.E. Anderson, D.H. Porter,
P.R. Woodward, L.J. Shieh, and S.W. White, �Very High Resolution
Simulation of Compressible Turbulence on the IBM-SP System,� Proc.
SC99: High Performance Networking and Computing Conf. (electronic
publication), 1999.

[18] D.A. Reed, O.Y. Nickolayev, and P.C. Roth, �Real-Time Statistical
Clustering and for Event Trace Reduction,� J. Supercomputing
Applications and High-Performance Computing, 11(2):144-59, 1997.

[19] J.S. Vetter, �Performance Analysis of Distributed Applications using
Automatic Classification of Communication Inefficiencies,� Proc. ACM
Int'l Conf. Supercomputing (ICS), 2000, pp. 245 - 54.

[20] J.S. Vetter and F. Mueller, �Communication Characteristics of Large-
Scale Scientific Applications for Contemporary Cluster Architectures,�
Proc. International Parallel and Distributed Processing Symposium
(IPDPS), 2002.

[21] J.S. Vetter and D. Reed, �Managing Performance Analysis with Dynamic
Statistical Projection Pursuit,� Proc. SC99: High Performance Networking
and Computing Conf. (electronic publication), 1999.

[22] J.S. Vetter and A. Yoo, �An Empirical Performance Evaluation of
Scalable Scientific Applications,� Proc. SC 2002, 2002.

[23] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, �Performance Analysis
Using the MIPS R10000 Performance Counters,� Proc. Supercomputing
(electronic publication), 1996.

