Users Guide for
 ASOS Daily and Monthly Summary Messages

Table of Contents

Page
Acronyms ii
1.0 Introduction 1
2.0 Daily Summary Messages 2
2.1 Primary DSM 2
2.2 Intermediate Daily Summary Message (s) 8
3.0 Monthly Summary Message 10
4.0 Communications Backup 16
5.0 Important OID Screens 17
5.1 ASOS Site Physical Characteristics Screen 18
5.1.1 Generate Primary DSMs and Transmit 18
5.1.2 Generate Intermediate DSMs and Transmit 19
5.1.3 Generate MSMs and Transmit 20
5.2 ASOS External Communications Screen 21
5.3 Daily Summary Product 22
5.4 Daily Summary Message 23
5.5 Monthly Summary Product 24
5.6 Monthly Summary Message 25

AFOS	Automation of Field Operations and Services
ASOS	Automated Surface Observing System
DSM	Daily Summary Message
LST	Local Standard Time
METAR	Aviation Routine Weather Report
MOS	Model Output Statistics
MPH	Miles Per Hour
MSM	Monthly Summary Message
NWS	National Weather Service
OID	Operator Interface Device
PLCD	Preliminary Local Climatological Data
SPECI	Aviation Selected Special Weather Report
UTC	Universal Time Coordinated

1.0 Introduction

Daily Summary Messages (DSM) and Monthly Summary Messages (MSM) will be available starting with Automated Surface Observing System (ASOS) Acquisition Control Unit software version 2.6. These new products are coded messages; they will be used with Aviation Routine Weather Reports (METAR) and Aviation Selected Special Weather Report(SPECI) at commissioned ASOS sites to create the Preliminary Local Climatological Data (PLCD) for the site. They will also be used to support National Weather Service (NWS) public services, daily and monthly climate messages, aviation services, statistical forecast guidance, public forecast verification, and the creation of various Climate Analysis Center products.

This document summarizes DSMs and MSMs and describes how to read and decode the messages (Chapters 2 and 3). Important Operator Interface Device (OID) screens (Chapter 5) such as the Site Physical Characteristics and External Communications screens are discussed and examples given. The Site Physical Characteristics screen (section 5.1) is used to program ASOS to generate and set communication transmission times for DSMs, intermediate DSMs, and MSMs. The External Communications Screen (section 5.2) displays the telephone number(s) that ASOS dials to transmit these messages, the AWIPS LDAD and address they will be sent to, and the product identifier. In addition to these screens, examples of the Daily Summary Product and Message, and Monthly Summary Product and Message are given.

2.0 Daily Summary Messages

Primary and intermediate DSMs will use the same general message format, described below. The primary DSM makes accommodations for all the necessary data to be transmitted to complete the PLCD for the day. Data are also provided for the national forecast verification program for disseminated Model Output statistics (MOS) guidance. Intermediate messages are used to help produce the local climatological products prior to the end of the day, as well as other routine public service products.

In these messages, missing data are indicated by an "M," data beyond the
 data not yet observed or computed for the day are indicated by a dash "-" (intermediate message only), and estimated data are annotated appropriately. A blank space separates the alphanumeric station identifier (YYYY), daily summary code (DS), and correction (COR); it also is used to separate multiple estimated parameters.

2.1 Primary DSM

PRIMARY DAILY SUMMARY MESSAGE

YYYY DS (COR) DaDa/MoMo SnTxTxTxtime/SnTnTnTntime//SnMMM/SnNNN//
SLPmmtime/PPPP/ $\mathrm{P}_{1} \mathrm{PPP} / \mathrm{P}_{2} \mathrm{PPP} / \mathrm{P}_{3} \mathrm{PPP} / \mathrm{P}_{4} \mathrm{PPP} / \mathrm{P}_{5} \mathrm{PPP} / \mathrm{P}_{6} \mathrm{PPP} / \mathrm{P}_{7} \mathrm{PPP} /$
$\mathrm{P}_{8} \mathrm{PPP} / \mathrm{P}_{9} \mathrm{PPP} / \mathrm{P}_{10} \mathrm{PPP} / \mathrm{P}_{11} \mathrm{PPP} / \mathrm{P}_{12} \mathrm{PPP} / \mathrm{P}_{13} \mathrm{PPP} / \mathrm{P}_{14} \mathrm{PPP} / \mathrm{P}_{15} \mathrm{PPP} /$
$\mathrm{P}_{16} \mathrm{PPP} / \mathrm{P}_{17} \mathrm{PPP} / \mathrm{P}_{18} \mathrm{PPP} / \mathrm{P}_{19} \mathrm{PPP} / \mathrm{P}_{20} \mathrm{PPP} / \mathrm{P}_{21} \mathrm{PPP} / \mathrm{P}_{22} \mathrm{PPP} / \mathrm{P}_{23} \mathrm{PPP} /$
$\mathrm{P}_{24} \mathrm{PPP} / \mathrm{FaFaFa/ddffftttt/DDFFFTTTT/WWWWW/SSSSpSpSp/SwSwSw/DDD/}$
CsCsCmCm/(Remarks)

Explanation of Daily Summary Message Text:

YYYY	Alphanumeric station identifier, 3 or 4 characters
DS	Daily Summary Code
(COR)	Correction. The parentheses indicate that it is not routinely transmitted.
DaDa	Day of the month (01-31)
MoMo	Month of the year (01-12)
Sn	Sign indicating whether the value is negative (-) or positive (blank).
TxTxTx	Maximum temperature for the calendar day (midnight to midnight, local standard time [LST]), reported in whole degrees Fahrenheit.

time	```Time of occurrence (for maximum temperature, minimum temperature, and minimum sea-level pressure) reported in hours and minutes, LST, using a 24-hour clock.```
TnTnTn	Minimum temperature for the calendar day (midnight to midnight, LST) reported in whole degrees Fahrenheit.
MMM ${ }^{1}$	On the same calendar day, the maximum temperature, from 7 a.m. to 7 p.m. LST. The temperature shall be reported in whole degrees Fahrenheit. (It is used for MOS forecast verification.)
NNN ${ }^{1}$	Nighttime minimum temperature, from 19:00 LST previous calendar day to 08:00 LST current calendar day, reported in whole degrees Fahrenheit. (It is used for MOS forecast verification.)
SLP mm	Minimum sea-level pressure for the day, reported to the nearest . O1 inches of Hg.
P P P P	Total water equivalent precipitation for the day (midnight-tomidnight, LST). Value shall be reported in hundredths of an inch.
$\mathrm{P}_{\mathrm{n}} \mathrm{PP}$ P	Hourly precipitation amount for each hour of the observing day (n ranges from 1 to 24) reported in hundredths of a inch. For example, $P_{2} P P P$ is the amount from 01:00 through 01:59 LST.
FaFaFa	Average 2 -minute wind speed for the day, reported in tenths of miles per hour (mph).
dd	Direction of the 2 -minute fastest wind speed, reported in tens of degrees.
fff	Speed of the 2 -minute fastest wind speed, reported in mph.
tttt	Time of the 2 -minute fastest wind speed, reported in hours and minutes (LST) using a 24-hour clock.
DD	Direction of the day's peak wind, reported in tens of degrees.
FFF	Speed of the day's peak wind, reported in mph.
TTTT	Time of the day's peak wind, reported in hours and minutes (LST) using a $24-h o u r$ clock.

1 - These values are entered between double slants (//) to indicate they are not calendar day statistics.

Note: A DSM cannot end with "N." If "N" is the appropriate value for any of the following and no remark is given, TTTT will be the last reported variable.

WWWWW

```
Weather occurrence symbols. Codes 1, 2, 3, 4, 5, 7, 8, 9, and X
```

	are currently available. (1 is fog, 2 is fog reducing visibility to $1 / 4$ mile or less, 3 is thunder, 4 is ice pellets, 5 is hail, 7 is duststorm or sandstorm reducing visibility to $1 / 4$ mile or less, 8 is smoke or haze, 9 is blowing snow, and X is tornado.) Weather occurrences that may be automated are 1, 2, 3, and 8. If no significant weather (1, 2, 3, 4, 5, 7, 8, 9, or X) is encoded for the day, an "N" is encoded in the message.
SSS	Minutes of sunshine, reported in whole minutes (when available or if augmentation is available).
SpSpSp	Percentage of sunshine observed, to the nearest whole percent (when available or augmented). It is found by comparing SSS to maximum minutes of sunshine possible at the ASOS location.
SwSwSw	```Total amount, unmelted, of solid precipitation (snowfall or ice pellets) that fell in the 24-hour period ending at midnight LST, reported in tenths of an inch (when available or augmented).```
DDD	Depth of snow, ice pellets, or ice on the ground at a designated observation time, reported in whole inches (when available or augmented).
CsCs	Average daily sky cover from sunrise to sunset, in tenths of sky cover (when available or augmented).
CmCm	Average daily sky cover, midnight to midnight LST, in tenths of sky cover (when available or augmented).
(Remarks)	See table below for remarks used to indicate that estimated data are used. Parentheses indicate that this field is transmitted only when estimated data are contained in the summary message.

TABLE: REMARKS INDICATING ESTIMATED DATA IN THE DSM

Remark Definition

ET - Estimated Temperature
Epr - Estimated Pressure
EP - Estimated Precipitation
EW - Estimated Wind
ES - Estimated Sunshine
ESw - Estimated Snowfall
ESd - Estimated Snow Depth
EC - Estimated Sky Cover

ASOS encodes the DSMs to the fullest extent for which data exist. After the last data field is encoded, the remainder of the DSM is truncated. It should be noted that a value of "N" is not considered significant and will not appear in the message. However, if estimated data are included in the summary message, a remark is included in the message.

In an effort to keep the number of characters transmitted to a minimum, these messages will not be generated in fixed-field format. Please note that
a minimum of two digits is encoded for the temperature, excluding the $S n$ character (e.g., $-2^{\circ} \mathrm{F}=-02$,
$0^{\circ} \mathrm{F}=00,99^{\circ} \mathrm{F}=99$, and $\left.105^{\circ} \mathrm{F}=105\right)$. The minimum sea-level pressure will always have three digits encoded (e.9., 29.99 = 999). Precipitation amounts will be encoded as: "0" (non-occurrence), "T" (trace), or the observed amount (e.g., 0.01 of an inch $=01,1.11$ inches $=111,23.11$ inches $=2311$). Wind speeds are encoded in at least two digits. Wind direction is encoded in two digits. All times are entered in four digits, based on a $24-h o u r$ clock (e.g., $0023 \mathrm{LST}=0023$, $2045 \mathrm{LST}=2045$) . The number of days, or dates of occurrence, are encoded as two digits (e.g., 01 or 31). The minutes of sunshine have at least one digit encoded (e.g., 0, 9, 54, 245). The percentage of possible sunshine is either two or three digits (e.g., 00, 09, 100) .

Based on the initial operating capabilities of ASOS, the text portion of the message from a site where augmentation is not available will be limited to:

```
    YYYY DS (COR) DaDa/MoMo SnTxTxTxtime/SnTnTnTntime
    //SnMMM/SnNNN//SLPmmtime/PPPP/P P
    P}\mp@subsup{5}{5}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{6}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{7}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{8}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{9}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{10}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{11}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{12}{}\textrm{PPP}
P}\mp@subsup{\mp@code{13}}{3}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{14}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{15}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{16}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{17}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{18}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{19}{}\textrm{PPP}
P}\mp@subsup{2}{20}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{21}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{22}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{23}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{24}{}\textrm{PPP}/\textrm{FaFaFa/
    ddffftttt/DDFFFTTTT/WWWWW/(Remarks)
```


EXAMPLE 1:

XYZ1 DS 01/12 1151642/-020431//115/-10//9901644/1069/ $0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / T / 01 / 05 / 04 / T / 300 / 400 / 50 / 200 /$
$100 / 01 / 02 / 02 / 03 / 01 / T / 256 / 31451627 / 32571623 / 2$

For the station identified as "XYZ1," the primary DSM for December 1 shows that this station reported a daily maximum of $115^{\circ} \mathrm{F}$, which occurred at 4:42 p.m. (1642) LST, and a minimum of $-2^{\circ} \mathrm{F}$ occurred at 4:31 a.m. (0431) LST. The maximum temperature observed on the 1st from $7 \mathrm{a} . \mathrm{m}$. through $7 \mathrm{p} . \mathrm{m}$. (1900) LST was $115^{\circ} \mathrm{F}$; the minimum temperature observed from $7 \mathrm{p} . \mathrm{m}$. on November 30 through 8 a.m. LST on December 1 was $-10^{\circ} \mathrm{F}$. (The last two values are encoded between double slants to indicate that they are not calendar day statistics.) A minimum sea-level pressure of 29.90 (in. of Hg) occurred at 4:44 p.m. (1644) LST, and the precipitation for the day (liquid equivalent) was 10.69 inches. The hourly
precipitation (liquid equivalent) for each hour during the day is presented in the table below. The station had an average 2 -minute wind speed of 25.6 mph , a fastest 2 -minute wind from 310 degrees at 45 mph was observed at 1627 LST , a peak wind was from 320 degrees at 57 mph at 1623 LST , and fog reducing visibility to $1 / 4$ mile or less was detected by ASOS. Since no additional daily summary data exist from this site, the message encoding ends with the weather occurrence data field (WWWWW).

As new sensors are developed and commissioned, or if aug-mentation
occurs, the DSM will be expanded to accommodate the data. The daily summary product will show the hourly incremental precipitation values shown. The precipitation at "0059" corresponds to the amount that fell from minute 00 : 00 to 00:59.

TABLE: 24-HOUR PRECIPITATION (LIQUID EQUIVALENT)

$\frac{\text { Hour }}{0059}$	Precipitation (inches)
0159	0.00
0259	0.00
0359	0.00
0459	0.00
0659	0.00
0759	0.00
0859	0.00
0959	0.00
1059	Trace
1159	0.01
12599	0.05
1459	0.04
1559	Trace
1659	3.00
1759	4.00
1859	0.50
1959	2.00
2059	1.00
2159	0.01
2359	0.02
	0.02
	0.03

EXAMPLE 2:

XYZ1 DS COR 12/03 781759/560611//78/55//9821751/M/M/M/M/M/ $M / 101 / 18161602 /$
20221215/13/N/O/0/1008/ET

In this example, a corrected primary DSM was transmitted for March 12. The maximum temperature was $78^{\circ} \mathrm{F}$ at 1759 LST and the minimum temperature was $56^{\circ} \mathrm{F}$ at 0611 LST . The maximum temperature from 0700 through 1900 LST was $78^{\circ} \mathrm{F}$, while the minimum temperature observed from 1900 LST on the 11th through 0800 LST on the 12 th was $55^{\circ} \mathrm{F}$. The minimum sea-level pressure was 29.82 (in. of Hg) at 1751 LST. The daily precipitation amount is missing, along with the hourly precipitation amounts for the day. The average 2 -minute wind speed was 10.1 mph . The fastest $2-$ minute wind was from 180 degrees, at 16 mph , which occurred at 1602 LST. The peak wind was from 200 degrees at 22 mph at 1215 LST . The weather included fog and thunderstorm(s). An "N" is encoded for the minutes of sunshine since this ASOS site does not have the capability to observe this element. A zero is encoded in the fields of snowfall and snow depth, through augmentation, signifying that these parameters did not
occur. The average daily sky cover (sunrise to sunset) is ten-tenths, and the average daily sky cover (midnight to midnight) is eight-tenths. The remark "ET" indicates that the temperature data are estimated.

In this example, if the average daily sky cover amounts, snowfall, and snow depth were not included through augmentation, the primary DSM would have been:

XYZ1 DS COR 12/03 781759/560611//78/55//9821751/M/M/M/M/M/M/
$M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / 101 / 18161602 /$
$20221215 / 13 / E T$

Likewise, if a sunshine sensor were commissioned at the site, and 500 minutes of sunshine were observed this day (i.e., 82% of the possible sunshine), the primary DSM would have been:

XYZ1 DS COR 12/03 781759/560611//78/55//9821751/M/M/M/M/M/M/
$M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / M / 101 / 18161602 /$
20221215/13/50082/ET

Each day, ASOS transmits the primary DSM for the previous day, at the time scheduled in the Site Physical Characteristics Screen (see section 5.1.1). The operator has 4 days to make any corrections. At the end of the fourth day, at 0030 LST, the correction to the primary DSM will be transmitted if any changes have been made.

If the primary DSM is not transmitted at its scheduled time, ASOS will attempt to transmit it one hour after the scheduled time; if that transmission is not successful, ASOS will attempt another transmission 2 hours after the scheduled time.

The primary DSM will be retained on-site, in ASOS's short-term storage, for a minimum of 10 days from the time it was last transmitted. Therefore, a corrected summary message must also be retained for 10 days.

2.2 Intermediate Daily Summary Message

In addition to the primary DSM discussed in section 2.1 , ASOS sites will have the capability to transmit DSMs at three additional "intermediate" times during the day. At these times, the DSM, as updated so far for the day, will be transmitted. The three additional, optional, transmission times will be programmable by the ASOS site's system manager (see section 5.1.2). The system manager should check to ensure that transmissions do not conflict with policy guidelines from NWS Headquarters or the NWS regions.

The format for the intermediate DSM is shown below. It is essentially the same as the primary DSM. The only differences are the addition of the message valid time (ZZZZ), the removal of the COR for corrected reports, removal of the percentage of sunshine possible (SpSpSp), and the removal of the average daily sky cover information (CsCsCmCm). Through ASOS, it is not necessary to generate corrected intermediate DSMs.

INTERMEDIATE DAILY SUMMARY MESSAGE

```
YYYY DS ZZZZ DaDa/MoMo SnTxTxTxtime/SnTnTnTntime//SnMMM/SnNNN//
SLPmmtime/PPPP/P P PPP/ P 
P
P}\mp@subsup{\mp@code{15}}{5PPP/ P}{16
P 23PPP/P P 24PPP/FaFaFa/ddffftttt/DDFFFTTTT/WWWWW/
SSS/SwSwSw/DDD/(Remarks)
    Based on the initial operating capabilities of ASOS, the text portion of
the message will be limited to:
YYYY DS ZZZZ DaDa/MoMo SnTxTxTxtime/SnTnTnTntime//SnMMM/SnNNN//
SLPmmtime/PPPP/ P 1 PPP/ P 
P
P}\mp@subsup{}{15}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{16}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{17}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{18}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{19}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{20}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{21}{}\textrm{PPP}/\mp@subsup{\textrm{P}}{22}{}\textrm{PPP}
P 23 PPP/ P }\mp@subsup{2}{4}{}PPPP/FaFaFa/ddffftttt/DDFFFTTTT/WWWWW/(Remarks)
    The following example shows how the primary and intermediate DSMs could
be used.
```


EXAMPLE 3:

Let's say it is March 2 at midnight LST. At 0015 LST, the primary DSM for March 1 has been programmed to be transmitted. The system manager has also programmed ASOS to transmit intermediate DSMs at 0610 , 1715, and 2210 LST. At these times on March 2, intermediate DSMs will also be transmitted based on the daily summary information calculated so far for the day. (These intermediate messages would be used to support NWS public services.) At 0015 LST on March 3, the completed primary DSM for March 2 will be transmitted.

The message transmitted at 0610 LST is shown below. Notice that the valid time (0600 LST) is encoded prior to the day/month (i.e., 02/03). Since ASOS updates the entire daily summary product every hour, on the hour, a message transmitted at 0610 LST will contain only data that are in the 0600 LST update of the daily summary product.

XYZ1 DS 0600 02/03 610111/560534//82/56//9820251/ 01/0/0/T/01/T/T/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/121/ 18150312/20210545/1/N/0/0/ET

In this example, an intermediate daily summary was transmitted at 0610 LST for March 2. It includes data from midnight to 6 a.m. LST. The maximum temperature so far for the day was $61^{\circ} \mathrm{F}$ at 0111 LST and the minimum temperature was $56^{\circ} \mathrm{F}$ at 0534 LST . The maximum temperature for March 1 from 0700 through 1900 LST was $82^{\circ} \mathrm{F}$. The minimum temperature from March 1 at 1900 LST through March 2 at the 0600 update time was 56°. The minimum sea-level pressure was 29.82 (in. of Hg) at 0251 LST. The daily precipitation amount, so far for the day, was 0.01 of an inch. The hourly precipitation amounts for the hours from 0000 LST through 0600 LST were: 0,0, Trace, 0.01, Trace, and Trace. The dashes indicate that the data in these fields are yet to be observed. The average 2 -minute wind speed so far this day has been 12.1 mph . The fastest 2 -minute wind was from 180 degrees, at 15 mph , which occurred at 0312 LST. The peak wind, was from 200 degrees at 21 mph at 0545 LST. The weather so far includes fog. An "N" is encoded for the minutes of sunshine since ASOS does not have the capability to observe this element. A zero is encoded in the fields of snowfall and snow depth, through augmentation, signifying that these parameters did not occur. The remark "ET" indicates that the temperature data are estimated.

It should be noted that it is not necessary to retransmit or send corrected intermediate DSMs transmitted by an ASOS site. Only the most current intermediate message is retained in ASOS's memory. This means that unlike primary DSMs, which can be retransmitted 1 or 2 hours after the scheduled transmission time, the intermediate DSMs cannot.

3.0 Monthly Summary Message

The following is a description of the MSM that will be generated by ASOS. It will be used to help generate the PLCD for the month and for other purposes.

YYYY MS (COR) MoMo SnTxTxTx-DxDxDxDxDxDx/SnTnTnTn-DnDnDnDnDnDn/	
$\operatorname{SnTxTxTx} / \operatorname{SnTnTnTn} / \operatorname{SnTTT} / \mathrm{Dx}_{32} \mathrm{Dx}_{32} \mathrm{Dx}_{90} \mathrm{Dx}_{90} \mathrm{Dn}_{32} \mathrm{Dn}_{32} \mathrm{Dn}_{00} \mathrm{Dn}_{00} / \mathrm{HHHH} /$ CCCC/ $\overline{X X X X X} / \overline{S L P} / \operatorname{SLPmmDmDmtime~(+)/SPLnnDnDntime~(+)/MpMpMpMpMp/~}$	
$\mathrm{Pd}_{01} \mathrm{Pd}_{01} \mathrm{Pd}_{10} \mathrm{Pd}_{10} \mathrm{Pd}_{50} \mathrm{Pd}_{50} \mathrm{Pd}_{100} \mathrm{Pd}_{100} / \mathrm{PmPmPmPmDpDpDpDp}(+) / \mathrm{P}_{5} \mathrm{PPDDTTTT/}$	
$\mathrm{P}_{180} \mathrm{PPPDDTTTT/SSSSSpSpSp/SmSmSmDsDsDsDs} \mathrm{(+)/SgSgSgSgDmDm(+)/}$	
McMcMpcMpcMcdMcd/(Remarks)	
Explanation of MSM Text:	
YYYY	Alphanumeric station identifier, 3 or 4 characters
MS	Monthly Summary code
(COR)	Correction. The parentheses indicate that it is not routinely transmitted.
MoMo	Month of the year (01-12)
Sn	Sign indicating whether the value is negative (-) or positive (blank).
TxTxTx	Maximum temperature observed during the month, reported in whole degrees Fahrenheit.
-	Indicator that date information follows and that up to three dates may be encoded.
DxDx	Date(s) of occurrence of TxTxTx (01-31).
TnTnTn	Minimum temperature observed during the month, reported in whole degrees Fahrenheit.
DnDn	Date(s) of occurrence of TnTnTn (01-31).
$\overline{\text { TxTxTx }}$	Average daily maximum temperature, reported to the nearest 0.1 degree Fahrenheit.
TnTnTn	Average daily minimum temperature, reported to the nearest 0.1 degree Fahrenheit.
$\overline{\text { TTT }}$	Average monthly temperature, reported to the nearest 0.1 degree Fahrenheit.

Dx ${ }_{32} \mathrm{Dx}_{32}$	Number of days with a maximum temperature of less than or equal to $32^{\circ} \mathrm{F}$ (encoded as two digits).
Dx ${ }_{90} \mathrm{DX}_{90}$	Number of days with a maximum temperature greater than or equal to $90^{\circ} \mathrm{F}$, or $70^{\circ} \mathrm{F}$ in NWS Alaska Region (encoded as two digits).
$\mathrm{Dn}_{32} \mathrm{Dn}_{32}$	Number of days with a minimum temperature less than or equal to $32^{\circ} \mathrm{F}$ (encoded as two digits).
$\mathrm{Dn}_{00} \mathrm{Dn}_{00}$	Number of days with a minimum temperature of less than or equal to 0 degrees Fahrenheit (encoded as two digits).
HHHH	Monthly total of heating degree days.
CCCC	Monthly total of cooling degree days.
$\overline{\mathrm{XXXXX}}$	Monthly mean station pressure, reported to the nearest 0.005 inch of Hg .
$\overline{S L P}$	Monthly mean sea-level pressure, reported to the nearest 0.01 inch of Hg .
SLPmm	Monthly maximum sea-level pressure, reported to the nearest 0.01 inch of Hg .
DmDm	Date of occurrence of SLPmm (01-31).
time	Time of occurrence of $S L P m m$, reported in hours and minutes (LST) using a 24-hour clock.
(+)	"+" indicates last of several occurrences. The parentheses indicate that this field is not routinely transmitted.
SLPnn	Monthly minimum sea-level pressure, to the nearest 0.01 inch of Hg.
time	Time of occurrence of SLPnn, reported in hours and minutes (LST) using a 24 -hour clock.
DnDn	Date of occurrence of SLPnn (01-31).
MpMpMpMpMp	Monthly total precipitation (water equivalent), reported to the nearest 0.01 inch.
$\mathrm{Pd}_{01} \mathrm{Pd}_{01}$	Number of days with precipitation greater than or equal to 0.01 inch.
$\mathrm{Pd}_{10} \mathrm{Pd}_{10}$	Number of days with precipitation greater than or equal to 0.10 inch.
$\mathrm{Pd}_{50} \mathrm{Pd}_{50}$	Number of days with precipitation greater than or equal to 0.50 inch.

$\mathrm{Pd}_{100} \mathrm{Pd}_{100}$	Number of days with precipitation greater than or equal to 1 inch.
PmPmPmPm	Greatest precipitation in 24 hours (water equivalent) reported to the nearest 0.01 inch.
DpDpDpDp	Date(s) of occurrence of PmPmPmPm (01-31).
$\mathrm{P}_{5} \mathrm{PP}$	Short-duration precipitation (5-minute maximum), reported to the nearest 0.01 inch.
DD	Date on which the short-duration precipitation ended (01-31).
TTTT	Time of the ending of the specified short-duration precipitation, reported in hours and minutes (LST) using a 24 -hour clock.
$\mathrm{P}_{10} \mathrm{PPP}$	Short-duration precipitation (10-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{15} \mathrm{PPP}$	Short-duration precipitation (15-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{20} \mathrm{PPP}$	Short-duration precipitation (20-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{30} \mathrm{PPP}$	Short-duration precipitation (30-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{45} \mathrm{PPP}$	Short-duration precipitation (45-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{60} \mathrm{PPP}$	Short-duration precipitation (60-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{80} \mathrm{PPP}$	Short-duration precipitation (80-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{100} \mathrm{PPP}$	Short-duration precipitation (100-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{120} \mathrm{PPP}$	Short-duration precipitation (120-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{150} \mathrm{PPP}$	Short-duration precipitation (150-minute maximum), reported to the nearest 0.01 inch.
$\mathrm{P}_{180} \mathrm{PPP}$	Short-duration precipitation (180-minute maximum), reported to the nearest 0.01 inch.
SSSS	Hours of sunshine, reported to the nearest 0.1 hour.
SpSpSp	Percentage of sunshine observed, to the nearest whole percent.

SmSmSm	Greatest snowfall in 24 hours, to the nearest 0.1 inch.
DsDsDsDs	Date(s) of occurrence of the greatest snowfall SmSmSm (01-31).
SgSgSgSg	Greatest snow depth during the month, reported to the nearest whole inch.
DmDm	Date of occurrence of the greatest snow depth SgSgSg (01-31).
McMc	Number of clear days (00-31).
MpcMpc	Number of partly cloudy days (00-31).
McdMcd	Number of cloudy days (00-31).
(Remarks)	ee table below for remarks used to indicate estimated data. arentheses indicate that this field is transmitted only when stimated data are contained in the summary message.

TABLE: REMARKS INDICATING ESTIMATED DATA IN THE MSM

```
            Remark Definition
            ET - Estimated Temperature
            EPr - Estimated Pressure
            EP - Estimated Precipitation
            ES - Estimated Sunshine
            ESw - Estimated Snowfall
            ESd - Estimated Snow Depth
            EC - Estimated Sky Cover
        ASOS encodes the MSM to the fullest extent for which data exist from the
site. Since it is important to keep the impact on communication loading to a
minimum, the MSM, like the DSM, will not be generated in fixed-field format.
    Based on the initial operating capabilities of ASOS, the text portion of
the message from a site where augmentation is not available will be limited
to:
```

```
YYYY MS (COR) MoMo SnTxTxTx-DxDxDxDxDxDx/SnTnTnTn-DnDnDnDnDnDn/
```



```
CCCC/\overline{XXXXX}/\overline{SLP}/SLPmmDmDmtime(+)/SPLnnDnDntime(+)/MpMpMpMpMp/
Pd01 Pd
```



```
P (150PPPDDTTTT/ P180PPPDDTTTT/(Remarks)
```

EXAMPLE 4:
XYZ1 MS 03 93-010217/-02-2930/823/521/672/02070502/200/321/
$30010 / 016 / 030161732+/ 992280008 / 2621 / 10080503 / 6272728 /$
$75270021 / 135270026 / 169271311 / 184271316 / 254271326 / 300271341 /$
$302271356 / 310271416 / 312271436 / 322271456 / 323271526 /$
325271556
Station Location: XYZ1
Monthly Summary: MS
Month: 03 (March)
Monthly Maximum Temperature: $93^{\circ} \mathrm{F}$
Dates of Occurrence: 1, 2, and 17
Monthly Minimum Temperature: - $\mathbf{2}^{\circ}$ F
Dates of Occurrence: 29 and 30
Average Daily Maximum Temperature for the Month: $\mathbf{8 2 . 3 ^ { \circ }} \mathrm{F}$
Average Daily Minimum Temperature for the Month: $52 . \mathbf{1}^{\circ} \mathrm{F}$
Monthly Average Temperature: $67 . \mathbf{2}^{\circ} \mathrm{F}$
Number of Days With Maximum Temperature $32^{\circ} \mathrm{F}$ and Below: 02
Number of Days With Maximum Temperature $90^{\circ} \mathrm{F}$ and Above: 07
Number of Days With Minimum Temperature $32^{\circ} \mathrm{F}$ and Below: 05
Number of Days With Minimum Temperature $0^{\circ} \mathrm{F}$ and Below: 02
Monthly Total Heating Degree Days: 200
Monthly Total Cooling Degree Days: 321
Average Station Pressure: 30.010 inches of mercury
Average Sea-Level Pressure: 30.16 inches of mercury
Greatest Sea-Level Pressure: 30.30 inches of mercury
Date of Occurrence: 16 at 1732 LST
(this was the last of several occurrences for the month)
Lowest Sea-Level Pressure: 29.92 inches of mercury
Date of Occurrence: 28 at 0008 LST
Total Monthly Precipitation, water equivalent: 26.21 inches
Number of Days With Precipitation ≥ 0.01 inch: 10
Number of Days With Precipitation ≥ 0.10 inch: 08
Number of Days With Precipitation ≥ 0.50 inch: 05
Number of Days With Precipitation ≥ 1.00 inch: 03
The greatest 24 -hour precipitation: 6.27 inches
Date(s) of occurrence: 27 and 28.

The short-duration precipitation values are displayed below:

Observation Period	Precip. Amount	$\begin{gathered} \text { Duration } \\ \text { Date } \\ \hline \end{gathered}$	$\begin{gathered} \text { Period Ending } \\ \text { Time (LST) } \\ \hline \end{gathered}$
5 min	0.75 in	27	0021
10 min	1.35 in	27	0026
15 min	1.69 in	27	1311
20 min	1.84 in	27	1316
30 min	2.54 in	27	1326
45 min	3.00 in	27	1341
60 min	3.02 in	27	1356
80 min	3.10 in	27	1416
100 min	3.12 in	27	1436
120 min	3.22 in	27	1456
150 min	3.23 in	27	1526
180 min	3.25 in	27	1556

EXAMPLE 5:

If the monthly summary product in EXAMPLE 4 had been augmented for the greatest snow depth observed during the month (63 inches), along with its associated date (25), the monthly summary code would have appeared as:

```
XYZ1 MS 03 93-010217/-02-2930/823/521/672/02070502/200/321/
30010/016/030161732+/992280008/2621/10080503/6272728/
75270021/135270026/169271311/184271316/254271326/300271341/
302271356/310271416/312271436/322271456/323271526/
325271556/N/N/6325
```


EXAMPLE 6:

Let's say that ASOS has been equipped with a sunshine sensor. During the month of March, 265.2 hours of sunshine (71 percent) were observed. Augmentation occurred for snowfall, snow depth, and the number of clear, partly cloudy, and cloudy days. All temperature information was estimated (ET). The MSM shown in EXAMPLE 4 would be changed to:

XYZ1 MS 03 93-010217/-02-2930/823/521/672/02070502/200/321/
$30010 / 016 / 030161732+/ 992280008 / 2621 / 10080503 / 6272728 /$
$75270021 / 135270026 / 169271311 / 184271316 / 254271326 / 300271341 /$
$302271356 / 310271416 / 312271436 / 322271456 / 323271526 /$
$325271556 / 265271 / 0 / 0 / 021910 / E T$

The augmented portion of the message is explained below.

Hours of sunshine: 265.2
Percent of possible sunshine: 71

Greatest snowfall in 24 hours: 0
(Since zero is entered because of no occurrances, no date is encoded.)

```
    Greatest snow depth: 0
    (Since zero is entered, a date of occurrence is not encoded.)
    Number of clear days: 02
    Number of partly cloudy days: 19
    Number of cloudy days: 10
    Remark for estimated temperature data: ET
    EXAMPLE 6 represents the maximum amount of data that can be reported
from an augmented ASOS site.
ASOS transmits the MSM for the previous month on the first day of the following month, at the scheduled time entered by the system manager. The operator has 4 days to make any corrections. At the end of the fourth day, at 0040 LST, the corrected MSM will be transmitted if any changes have been made.
If the MSM is not transmitted at its scheduled time, ASOS will attempt to transmit it one hour after the scheduled time; if that transmission is not successful, ASOS will attempt another transmission two hours after the scheduled time.
The MSM will be retained on-site, in ASOS's short-term storage, for a minimum of 10 days from the time of its last transmission. No intermediate MSMs are transmitted from an ASOS site.
```


4.0 Communication Backup

To maximize the amount of data that can be received by the National Climatic Data Center for archival, ASOS will retransmit those primary DSMs and MSMs that were not initially transmitted at their scheduled times (see sections 5.1.1 and 5.1.3). ASOS will try to retransmit one hour later; if this fails it will try again two hours after the originally scheduled time. There is no redial for intermediate DSMs after their scheduled transmission times.

The daily (primary and intermediate) and monthly summary messages are available through the remote user's port via the direct command mode of operation. This allows remote users to obtain these messages instead of extracting the entire daily summary products and monthly summary products as developed by ASOS.

5.0 Important OID Screens

```
    This chapter illustrates the ASOS OID display screens that users will
find helpful. They are used for setting ASOS to generate DSMs and MSMs,
schedule their transmissions, identify their product identification names,
change their routing address, and display information and products.
The Site Physical Characteristics Screen (section 5.1)
indicates whether primary DSMs, intermediate DSMs, and/or MSMs are
generated and transmitted from the ASOS site. It also shows the time of
transmission, which can be edited at the technician and system manager
user levels.
The External Communications Screen (section 5.2) displays the telephone
number(s) that ASOS could dial to transmit the DSM/MSMs, the routing
address, and the product identifier. The screen can be edited by the
technician and system manager user levels.
The Daily Summary Product (section 5.3) shows the data that ASOS uses to
create a DSM.
The Daily Summary Message (section 5.4) shows the messages that have
been generated and/or transmitted. It also contains the partial DSM
from midnight to the last completed hour for the present day. If the
present time is 7:15 a.m. LST, the partial DSM is from midnight to 7
a.m.
The Monthly Summary Product (section 5.5) shows the data that ASOS uses
to create an MSM.
Monthly Summary Message (section 5.6) shows an MSM. It was generated
with information from 10/1 to 10/27.
```


5.1 ASOS Site Physical Characteristics Screen

5.1.1 Generate Primary DSMs and Transmit

In the Site Physical Characteristics screen below, the DSMs are generated if "YES" is placed to the right of "DSM GENERATED:." The primary DSM will be transmitted at the time highlighted, i.e., 07:00:00 Coordinated Universal Time (UTC). If, instead, "--:--:-- UTC" is substituted, primary DSMs are created but not transmitted.

The screen can be viewed from all user levels except the air traffic control specialist; only the electronics technician and system manager are permitted to edit the screen.
$08: 10: 49$ 10/28/97 1310Z STERLING \#4

Site Physical Characteristics Screen
From the 1-Minute Screen press the following commands to arrive at this screen: REVUE-SITE-PHYS
Section 5.4 contains examples of primary and intermediate DSMs.

5.1.2 Generate Intermediate DSMs and Transmit

ASOS v2.6 allows up to three intermediate DSMs to be generated and transmitted. DSM is updated once each hour at HH+00. The screen below shows that three intermediate DSM transmission times have been entered: 12:15:00, 18:15:00, and 00:15:00 UTC. These values are changed by editing the page and entering different times. Intermediate messages are updated once an hour but are transmitted only at the time(s) entered.

08:10:49 10/28/97 1310Z
STERLING \#4

Site Physical Characteristics Screen
From the 1-Minute Screen press the following commands to arrive at this screen: REVUE-SITE-PHYS
Section 5.4 gives an example of a primary DSM and the last intermediate DSM transmitted.

5.1.3 Generate MSMs and Transmit

In the screen below, the MSMs are generated if "YES" is entered by an electronics technician or system manager next to "MSM GENERATED." The MSM will be transmitted at the time indicated next to "MSM XMIT TIME." The value must be in UTC. If, instead, "--:--:-- UTC" is substituted, MSMs are created but not transmitted.

ASOS v2.6 does not allow the creation and transmission of intermediate MSMs.

08:10:49 10/28/97 13102	STERLING \#4		
STATION			
NAME:	STERLING \#4		
IDENTIFIER:	ST2	DATE:	10/28/97
COMMISSIONED:	COMM	TIME:	13:10:39 UTC
ATTENDED:	YES	UTC TO LST OFFSET:	-5
OPEN 24 HOURS:	YES	METAR SWITCH DATE:	07/01/96 UTC
OPENING TIME:		METAR SWITCH TIME:	07:45:00 UTC
CLOSING TIME:		DSM GENERATED:	YES
ELEVATION:	277 FEET	PRIMARY DSM XMIT TIME:	: 05:15:00 UTC
		INTERMED DSM XMIT TIMES:	2:15:00 UTC
FIELD ELEVATION:	260 FEET		18:15:00 UTC
PRESSURE SENSOR ELEVATION:	283 FEET		00:15:00 UTC
		MSM GENERATED:	YES
OBS HOURLY REPORT TIME:	50	MSM XMIT TIME:	07:00:00 UTC
OBS EDIT TIME:	$5: 00$		PHYSICAL
OBS HOURLY TRANSMIT TIME:	55:00		
SHEF HOURLY TRANSMIT TIME:		PRINT	
LATITUDE:	$38.58 \mathrm{~N}$		
LONGITUDE:	77.29W		CHANG
MAG DECLINATION:	9 W		
		EXIT	$\|\underset{\perp}{\mid \mathrm{BACK}}\|$

Site Physical Characteristics Screen
From the 1-Minute Screen press the following commands to arrive at this screen: REVUE-SITE-PHYS
An example of an MSM generated by ASOS is found in section 5.6.

5.2 ASOS External Communications Screen

The External Communications Screen displays the DSM/MSM product identification. An ASOS electronics technician or system manager can edit the information on the screen.

The DSM/MSMs are sent to the same telephone numbers as the METAR/SPECIs and correspond to the numbers associated with the three stations below. These are the primary dial-out or backup phone numbers. Once received, the DSM or MSM is sent to the address indicated. "000" causes the product to remain in the receiving station. "ALL" causes the product to be sent to all sites. The product identification can be edited, as well.

External Communication Screen (Phone Numbers Were Blanked Out For Security) From the 1-Minute Screen: REVUE-SITE-CONFG-EXTRN

5.3 Daily Summary Product

The daily summary product screen consists of three pages and is used to generate a DSM and intermediate DSM.

08:13:24 10/28/97 13132
STERLING \#4

Page 1 of the Daily Summary Product Screen
From the 1-Minute Screen Press: REVUE-DAILY
08:13:46 10/28/97 1313Z STERLING \#4

Page 2 of the Daily Summary Product Screen
From the 1-Minute Screen Press: REVUE-DAILY-PAGE

DAILY PRESSURE SUMMARY FOR 10/27/97				
HOURLY STATION PRESSURE VALUES:				
0556Z 29.320				
1156229.265				
1756 Z 29.350				
$2356 Z 29.480$				
AVERAGE STATION PRESSURE: 29.355				
MINIMUM SEA LEVEL PRESSURE TIME OF OCCURRENCE:	$\begin{aligned} & 29.53 \\ & 0556 \end{aligned}$			
		DAILY DATA		
		PRINT	PAGE	PREV
				DATE
		$\underset{\perp}{\text { EXIT }}$	BACK	$\stackrel{\mathrm{NEXT}}{\perp}$

Page 3 of the Daily Summary Product Screen
From the 1-Minute Screen Press: REVUE-DAILY-PAGE-PAGE

5.4 Daily Summary Message

The following screen displays a DSM and two intermediate DSMs.

08:14:28 10/28/97 1314Z
STERLING \#4

$$
\begin{aligned}
& \text { 10/27/97 23:59:34 KST2 DS 27/10 581324/ 422358// 58/M//9530556/02/01/00/00 } \\
& \text { /00/00/00/00/00/00/00/00/01/T/T/T/T/T/00/00/00/00/00/00/00/09/32241414/ } \\
& \text { 33311324/- FIBI } \\
& \text { 10/28/97 06:59:34 KST2 DS } 0700 \text { 28/10 420006/ 360659// 58/ 36//9880003/00/ } \\
& \text { 00/00/00/00/00/00/00/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/13/31210354/30300353 } \\
& \text { /-/NN/N/N/NN/ET FIBI } \\
& \text { 10/28/97 07:59:34 KST2 DS } 0800 \text { 28/10 420006/ 360720//M/ 36//9880003/00/00/ } \\
& \text { 00/00/00/00/00/00/00/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/13/31210354/30300353/- } \\
& \text { DAILY SUMMARY }
\end{aligned}
$$

Daily Summary Message
From the 1-Minute Screen Press: REVUE-RPT-DSM
A primary DSM was generated on 10/28/97 at 23:59:34 LST.
An intermediate DSM was created 10/28/97 at 06:59:34 LST. According to the Site Physical Characteristics Screen, this message was transmitted at 12:15:00 UTC (7:15 a.m. LST). The values were calculated to the nearest whole hour. It should be noted that even if several intermediate DSMs were transmitted daily, only the latest one would appear.

The last message shown is an intermediate DSM that generated at 07:59:34 a.m. but not transmitted. Intermediate DSMs are transmitted only if they appear in the Site Physical Characteristics Screen.

At the end of the day, only the primary DSM for that day is stored and remains in the file.

