# NASA CONTRACTOR REPORT 

## $\bar{\sigma}$ $\stackrel{\sim}{c}$ <br> 4 4 $z$



## SPACECRAFT TEMPERATURE CONTROL BY THERMOSTATIC FINS-ANALYSIS

by J. A. Wiebelt and J. F. Parmer

Prepared under Grant No. NsG-454 by
OKLAHOMA STATE UNTVERSITY
Stilmater, Okia.
for
national aeronautics and space administration - washingtion, d. C. - august 1964

# SPACECRAFT TEMPERATURE CONTROL BY THERMOSTATIC FINS-ANALYSIS <br> By J. A. Wiebelt and J. F. Parmer 

Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NsG-454 by OKLAHOMA STATE UNIVERSITY

Stillwater, Okla.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sole by the Office of Technical Services, Department of Commerce, Woshington, D.C. 20230 .- Price $\$ 0.75$

## SPACECRAFT TEMPERATURE CONTROL

## BY THERMOSTATIC FINS-ANALYSIS

By J. A. Wiebelt and
J. F. Farmer

## SUMMARY

## N64-2758

A spacecraft temperature control system is proposed which consists of thermostatic fins, mounted in pairs. The operation of these fins in conjunction with a white base material is analyzed to determine the surface average temperature with various energy fluxes leaving the surface.

As a result of the analysis work in this report, it is proposed that a spacecraft surface system may be designed for given conditions such that the surface temperatures will remain within acceptable limits for electronic apparatus. Although the problem when manned space probes are considered is not examined in detail, the system should be capable of maintaining inhabitable, although not comfortable, environmental temperatures for these missions.


Objective. The object of this investigation was to determine analytically the characteristics of a particular spacecraft system. This system (described in the approach following) basically was to be a system which could vary the ratio $\alpha_{s} / \varepsilon$ as a function of the surface temperature.

General Approach. In the space environment a spacecraft system gains or loses energy entirely by radiant exchange with the environment. As pointed out Edwards (ref. 1) the parameter which is most important for a system which must radiate energy away is the ratio $q^{\prime \prime} / \sigma T{ }^{4}$, where $q^{\prime \prime}$ is the energy radiated away from the surface per unit area, Btu/hr-ft $\mathrm{t}^{2} ; \sigma \mathrm{T}_{\mathrm{s}} 4$ is the Plankian radiation from a black surface which has a temperature, $\mathrm{T}_{\mathrm{s}}$.

This ratio is given the symbol $e_{r}^{\prime}$, i.e.,

$$
\begin{equation*}
e_{r}^{\prime}=q^{\prime \prime} / \diamond T_{s}^{4} \tag{1}
\end{equation*}
$$

As can be seen from the definition, when $e_{r}^{\prime}$ has a positive value, energy is radiated away from the spacecraft, or the spacecraft is experiencing a net energy loss to space from that portion of the surface for which $e_{r}^{\prime}$ (a point function) is positive. When $e^{\prime}$ is negative the surface element under consideration has a net energy gain from the space environment.

Since all spacecraft will be dissipating heat from internal parts (electronic equipment, men, etc.) the usual requirement for $e^{\prime}$ will be a positive value. However, if the spacecraft is shaded from solar input, the value of $e_{r}^{\prime}$ must not change radically. In order for a surface to meet these criteria, the surface must change the average value of $e_{r}^{\prime}$ within specified limits. The value of $e_{r}^{\prime}$ is a function of three variables for the surface element; $\varepsilon$, the emittance at the temperature of the surface, $\alpha_{s}$, the solar absorptance and $T_{s}$, the surface temperature. The value of $e_{r}^{\prime}$ as determined in (ref. 1) is:

$$
\begin{equation*}
e_{r}^{\prime}=\varepsilon-\alpha_{s} \frac{G_{s}}{\sigma T_{s}^{4}} \tag{2}
\end{equation*}
$$

where $G_{S}$ is the solar irradiation.
The fourth variable in the equation, $G_{s}$, is dependent upon the surface element orientation or shading by other elements. With the complex trajectories used today and the complex geometry of spacecraft, $G_{S}$ is a very difficult quantity to predict (note this must include reflections from other portions of the spacecraft). For this reason, reliable simple control of $e_{r}^{\prime}$ must depend on varying $\mathcal{E}$ and $\alpha_{s}$ for the surface.

$$
\text { Control of } \mathcal{E} \text { and } \alpha_{s} \text { for individual points on the surface would require a }
$$


Figure 1. NASA Spacecraft Thermostat Surface.
local surface with variable characteristics. Such a surface would have the characteristic of a paint or coating which changed "color" with temperature change. The control of et averaged over the entire surface would effectively accomplish the same result if sufficient internal mass is present to distribute the resulting temperature variations. For this reason a surface element having an average $e_{r}^{\prime}$ equal to the required $e_{r}^{\prime}$ was considered to be the proper design criteria.

Specific Approach. The average value of er will depend on the average value of $\mathcal{E}$ and $\alpha_{s}$ for the surface. For a surface area $A$ let $A_{1}$ be a portion of the area associated with $\varepsilon_{1}$ and $\alpha_{s_{1}}$ and $A_{2}$ be the portion of the surface area associated with $\varepsilon_{2}$ and $\alpha_{s_{2}}$. If the areas $A_{1}$ and $A_{2}$ can be controlled by means of a thermostatic material, the average values of $\varepsilon$ and $\alpha_{s}$ can be controlled. The method used to control areas herein is shown in Figure 1. The base material is a good white paint ( $\alpha_{s}=.1, \mathcal{E}=.8$ ) as obtained from (ref. 2). Pairs of fins with spacing " $b$ " and height " $a$ " as shown are mounted on the base material. These fins are made of 0.003 inches thick thermostatic material. As the temperature decreases, the fins are mounted such that they warp inwards or tend to shade the base material. This is accomplished by mounting each pair of fins with the low expansion sides adjacent. When the temperature increases, the fins tend to assume the vertical position since the high expansion side faces the base material between the fins. In order to get the largest area change, a very active thermostatic fin material was chosen. This material is "Truflex P-675R". As described by the manufacturer the deflection of the top of the fins (see Figure 2) is given by

$$
\begin{equation*}
d=\frac{\left(113 \times 10^{-7}\right)\left(T_{2}-T_{1}\right) a^{2}}{t} \tag{3}
\end{equation*}
$$



Figure 2.
in which
d is the deflection in inches, $\mathrm{T}_{2}-\mathrm{T}_{1}$ is the temperature change in degrees F , $t$ is the thickness in inches.

As can be seen from equation (3), large deflections for a given temperature difference require small thicknesses, $t$, or large lengths, a. For this analysis, the thinnest material available ( $t=0.003$ inches) was chosen. Since the amount
$\rho_{b}=$ Reflectance of the white base section.
$x=$ Length of base section which is irradiated by the
incoming radiation after being reflected by the walls
n times.
$y=$ Length of base section which is irradiated by the
incoming radiation after being reflected by the walls
$n+1$ times.

The method used herein assumes that the groove is being irradiated by a source which is far enough from the surface so that the incoming rays are parallel. Therefore, a certain fraction of the incoming radiation will be absorbed by interreflections between the specular walls, the number of interreflections being controlled by the radiations' angle of inclination ( $\varnothing$ ). The irradiation of the base surface can be broken up into two parts. Figure 3 illustrates the multiple reflections which irradiate the base surface. When the angle $\emptyset$ is between arctan(mb/a) and $\arctan (\mathrm{nb} / \mathrm{a})$, where $(\mathrm{m}, \mathrm{n})=(0,1),(1,2), \ldots . .,(m, m+1), \ldots .$. the irradiation of $A_{x}$ and $A_{y}$ is:

$$
\begin{equation*}
I_{x}=s \varphi_{W}^{m} \cos \emptyset \quad I_{y}=s \varphi_{W}^{n} \cos \emptyset \tag{4}
\end{equation*}
$$

For example, the irradiation of the surface from 0 to $x_{0}$ (Figure 3a) consists of both reflected and direct irradiation, the surface from o to $y$ only of reflected radiation. However, for purposes of calculation, the base section is divided into two areas; the area from 0 to $X\left(A_{X}\right)$ is assigned an irradiation of $S$ cos $\emptyset$. The radiosity of $A_{x}$ is therefore,

$$
\begin{equation*}
J_{x}=\rho_{b} s \cos \phi \tag{5}
\end{equation*}
$$

and the radiosity of Ay is, similarly,

$$
\begin{equation*}
J_{y}=\rho_{w} \rho_{b} S \cos \emptyset \tag{6}
\end{equation*}
$$

of control required may vary from case to case "a" values of 0.25 inch; 0.75 inch, and 2.0 inches were used. Inasmuch as the deflection " $d$ " increases as the square of the "a" dimension, the control or ability to maintain a controlled temperature increases as " $a$ " increases.

Examination of equation (3) shows that the deflection depends on the temperature change of the thermostatic fins, i.e., $T_{2}-T_{1}$. The fin material can be formed into any desired shape by stressing beyond the elastic limit. After stress relief by heating, the fin material will assume a required shape at some given temperature, $\mathrm{T}_{1}$. An arbitrary choice of shape and temperature was used in this analysis. Fins were assumed to be vertical when the average temperature was $110^{\circ} \mathrm{F}$. This value can be changed to meet any desired fin surface characteristic. With the assumed surface temperature of $110^{\circ} \mathrm{F}$, analysis indicated that $37.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} 2$ could be radiated away from the surface when the surface faced the sun. In order to obtain this value of energy loss, the fin surfaces must be specular in their reflection.

The basic action of the finned surface may be described by assuming the fins are not in the vertical position. When the fins are warped open, two areas may be described:
$A_{1}$ - the area between fins (nearly equal to the dimension " $b$ " in Figure 1 if the temperature is near $110^{\circ} \mathrm{F}$.)
$A_{2}$ - the area between adjacent fin elements (equals 2d, darkened area in Figure 1).

These two areas have apparent emittance and reflectance values which differ considerably. Area $A_{1}$ will have an apparent solar absorptance $\alpha_{s_{1}}$, which is very much lower than $\alpha_{\text {s2 }}$. This is because the slit formed by a fin has a small angle and therefore will be nearly black. Similarly, the emittance of the two areas will be different, although the emittance variation is not as large as the solar absorptance variation. Both of the above statements depend on the slit having a small angle. As the fins cool to a temperature significantly different than $110^{\circ} \mathrm{F}$ the slit angle becomes larger. Considering large slit angles as a case to be examined later, the case of small slit angles was examined.

## ANALYSIS

Calculation of Effective Reflectance to Solar Radiation of a Groove with Specular Sides and a Diffuse Bottom.



Figure 3. Illumination of base surface.


Figure 4. Illustration of illuminstion of opening 4 by virtual images.

In general

$$
\begin{equation*}
J_{x}=I_{x} \rho_{b} \quad \text { and } \quad J_{y}=I_{y} \rho_{b} \tag{7}
\end{equation*}
$$

Note that since $A_{x}$ and $A_{y}$ overlap in reality $A_{x}$ will have a true radiosity of $J_{X r y}=J_{x}+J_{y}$, but since the calculation of effective reflectance will be based on the fractions of energy which leave $A_{x}$ and $A_{y}$ and eventually escape through the opening, the following relation is true

$$
\begin{equation*}
F_{y t} A_{x} J_{x}+F_{y t} J_{y} A_{y}=F_{x t}\left(J_{x}+J_{y}\right) A_{x}+F_{(y-x) T} A_{(y-x)} J_{y} \ldots \ldots \tag{8}
\end{equation*}
$$

In which $F_{x T}, F_{y T}$, and $F(y-x) T$ are the total fractions of energy, which, after being reflected from areas, $A x$, $A y$, or $A_{y-x}$, reach the groove opening. These "view" factors include the energy which travels directly to the opening from the base as well as the energy which first undergoes one or more reflections from the walls before reaching the opening.

The effective reflectance is defined as the total outgoing energy divided by the total incoming energy.

$$
\begin{equation*}
\rho_{e}=\frac{A_{x} F_{x T} J_{x}+A_{y} F_{y T} J_{y}}{b S \cos \emptyset} \tag{9}
\end{equation*}
$$

Calculation of $\mathrm{F}_{\mathrm{xT}}$ and $\mathrm{F}_{\mathrm{yT}}$. Figure 4 illustrates how the opening of the groove sees surface $A_{x o}$. Part of the energy reflected from $A_{x o}$ travels directly to the opening. This fraction is designated $\mathrm{F}_{\mathrm{xo}-4}$. Surface $\mathrm{A}_{\mathrm{xo}}$ has a virtual image $\mathrm{A}_{\mathrm{x} 1 \mathrm{~L}}$ in the left specular surface and therefore the energy which is reflected from $A_{\text {xo }}$ and strikes the left wall between $c$ and $d$ is reflected once from the wall and the opening 4 "sees" this energy as if the energy had come from the surface $A_{x l l}$. This particular fraction of energy is designated $\mathrm{F}_{\mathrm{xlL}} \mathrm{L}-4$ and is numerically equal to the view factor from the virtual image $A_{x l l}$ to the opening -4. Similarly, energy which leaves $A_{x o}$ to the left and undergoes 2 reflections would appear to be coming from $A_{x} 2 R$ ( $A_{x} 2 R$ being the virtual image of $A_{x l l}$ in the right wall) this fraction is designated $F_{\times 2 R-4}$. The total energy which finally reaches the opening from $A_{x o}$ is:

$$
\begin{align*}
A_{x} J_{x} F_{x 0-4} & +\sum_{n=1}^{\infty} \rho_{W}^{n}\left(F_{x n L-4}+F_{x n R-4}\right)  \tag{10}\\
& =A_{x} J_{x} F_{x T}
\end{align*}
$$

The total energy which reaches the opening from both $A_{x}$ and $A_{y}$ is therefore,

$$
\begin{equation*}
A_{x} J_{x} F_{x T}+A_{y} J_{y} F_{y o-4}+\sum_{n=1}^{\infty} \rho_{w}^{n}\left(F_{n y L-4}+F_{y n r-4}\right)=A_{x} J_{x} F_{x T}+A_{y} J_{y} F_{y T} \tag{11}
\end{equation*}
$$

Since the surfaces involved are infinitely long, McAdam's method of crossed strings is used to evaluate the various view factors involved. This method yields:

$$
F_{x n-4}=\frac{\sqrt{(n b+x)^{2}+a^{2}}+\sqrt{(n-1)^{2} b^{2}+a^{2}}-\sqrt{n^{2} b^{2}+a^{2}}-\sqrt{((n-1) b+x)^{2}+a^{2}}}{2 x}
$$

$$
\begin{gather*}
n=1,3,5 \ldots \ldots  \tag{12}\\
F_{x m-4}=\frac{\sqrt{(m+1)^{2} b^{2}+a^{2}}+\sqrt{(m b-x)^{2}+a^{2}}-\sqrt{m^{2} b^{2}+a^{2}}-\sqrt{(m b+b-x)^{2}+a^{2}}}{2 x}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{m}=2,4,6 \ldots \tag{13}
\end{equation*}
$$ $\mathrm{m}=2,4,6 \ldots$

$$
F_{x n r-4}=\frac{\sqrt{(n+1)^{2} b^{2}+a^{2}}+\sqrt{(n b-x)^{2}+a^{2}}-\sqrt{(n b+b-x)^{2}+a^{2}}-\sqrt{(n b)+a^{2}}}{2 x}
$$

$$
\begin{equation*}
\mathrm{n}=1,3,5 \ldots \ldots \tag{14}
\end{equation*}
$$

$F_{x m r-4}=\frac{\sqrt{(m b+x)^{2}+a^{2}}+\sqrt{(m-1)^{2} b^{2}+a^{2}}-\sqrt{(m b)^{2}+a^{2}}-\sqrt{((m-1) b+x)^{2}+a^{2}}}{2 x}$

$$
\begin{gather*}
\mathrm{m}=2,4,6 \ldots  \tag{15}\\
\mathbf{F}_{\mathrm{x}-4}=\frac{\sqrt{\mathrm{b}^{2}+\mathrm{a}^{2}}+\sqrt{x^{2}+a^{2}-a-\sqrt{a^{2}+(b-x)^{2}}}}{2 x} \ldots \ldots \tag{16}
\end{gather*}
$$

for $F$ factors from surface $y$ substitute the subscript " $y$ " for " $x$ " in the above equations.

Now by using equations (4) and (7) in (9) and then dividing by $\rho b$ one obtains the effective reflectance ratio

$$
\begin{equation*}
\rho_{e} / \rho_{b}=\frac{\rho_{w}^{m} A_{x} F_{x T}+\rho_{w}^{n} A_{y} F_{y T}}{b} \tag{17}
\end{equation*}
$$

in which the values of $\mathrm{F}_{\mathrm{xT}}$ and $\mathrm{F}_{\mathrm{yT}}$ are calculated for a given $a / b$ ratio and angle of inclination $\emptyset$ by use of equations (12) thru (16).

The effective reflectance ratios for $a / b=.667,1$, and 2 were calculated and the results are shown in Figures 5,6 , and 7. These graphs enable one to calculate a monochromatic effective reflectance curve for a particular groove if the monochromatic reflectance data for the wall and base material are known. This is accomplished by first looking up the $\rho_{e} / \rho_{b}$ value which corresponds to the wall reflectance at a particular wavelength and angle and then multiplying this value of $\rho_{e} / \rho_{b}$ by the reflectance of the base material at the same wavelength. By doing this for as many different wavelengths as needed to have a smooth curve, one obtains the monochromatic effective reflectance characteristics of the surface. The


Figure 5.

Effective Reflectance Ratio


Figure 6.

Effective Reflectance Ratio


Figure 7.
monochromatic effective reflectance curve for walls of evaporated aluminum and base
 Figure 8. A tabular presentation of monochromatic effective reflectance values is given in Table 1.

Once the monochromatic curve is known for each angle of inclination, the total reflectance of the surface to solar irradiation can be calculated (ref. 5). The results are illustrated in Figure 9.

Calculation of $e_{r}^{\prime}$.
Assumptions

1) The fins always remain vertical.
2) The fins are thin enough so that they don't conduct any heat to or from the surface.
3) The slit between the adjacent thermostatic strips which form a fin is black.
4) The base surface emits energy diffusely.
5) The fins and base are all at the same uniform temperature.

The net heat flux from the spacecraft will be given by a modified form of equation (5) which takes into consideration variations of the solar polar angle $\emptyset$.

$$
\begin{equation*}
q^{\prime \prime}(\emptyset)=\varepsilon-\alpha_{s}\left(\frac{G_{s} \cos \emptyset}{\sigma_{T_{s}}^{4}}\right) \ldots \ldots \tag{18}
\end{equation*}
$$

In which $\alpha_{s}=f\left(\emptyset, T_{s}\right)$ is the solar absorptance of the surface for a given solar polar angle and surface temperature, and $\mathcal{E}=f(T)$, the total effective emittance of the surface at a specified temperature. Figure 1 indicates that the incoming energy from the sun may strike the surface and 1) enter the groove between the fins, 2) enter the slit formed by the adjacent thermostat elements, or 3) strike the top of the fins. The areas of the first two depend upon the temperature of the spacecraft surface because of the action of the fin, (as explained in the introduction).

The area of the groove ( $A_{G}$ ) will be equal to the total area minus the area of the slit and fin top. The ratio of $A_{G} / A_{T O T}$ will be the fraction of the surface which will allow the incoming radiation to strike the white base.

Because the fins are assumed to be infinitely long repeating sections:

$$
\begin{equation*}
\frac{A_{G}}{A_{T O T}}=1-\frac{2 t}{b+2 t}-\frac{2\left(113 \times 10^{-7}\right)\left(T_{2}-T_{1}\right) a^{2}}{t(b+2 t)} \ldots . \tag{19}
\end{equation*}
$$

in which $A_{T O T}=b+2 t$. (The distance between fins plus the thickness of the fins).

| Wavelength | Monochromatic Wall Reflectance | Monochromatic Base - Reflectance | Solar Polar Angle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda$ | $\rho_{\lambda w}$ | $\rho \lambda_{b}$ | 0 | $10 \quad 20$ | 30 | 40 | 50 | 60 | 70 |
| . 25 | . 95 | . 50 | . 475 | . 471.466 | . 462 | . 455 | . 447 | . 435 | . 413 |
| . 30 | . 97 | . 76 | . 737 | . 733.727 | . 719 | . 709 | . 698 | . 684 | . 668 |
| . 40 | . 92 | . 88 | . 814 | . 804.792 | . 773 | . 754 | . 729 | . 699 | . 653 |
| . 50 | . 92 | . 91 | . 842 | . 832.819 | . 800 | . 780 | . 754 | . 722 | . 675 |
| . 75 | . 842 | . 94 | . 812 | . 790.766 | . 738 | . 705 | . 667 | . 602 | . 503 |
| . 80 | . 83 | . 94 | . 771 | . 743.712 | . 673 | . 627 | . 577 | . 507 | . 390 |
| . 85 | . 843 | . 95 | . 823 | . 800.776 | . 748 | . 715 | . 677 | . 612 | . 512 |
| . 90 | . 86 | . 95 | . 836 | . 817.796 | . 769 | . 741 | . 703 | . 646 | . 552 |
| 1.0 | . 89 | . 94 | . 846 | . 832.815 | . 795 | . 772 | . 742 | . 692 | . 611 |
| 1.5 | . 91 | . 88 | . 807 | . 794.780 | . 764 | . 745 | . 720 | . 688 | . 634 |
| 2.0 | . 91 | . 75 | . 688 | . 677.665 | . 651 | . 634 | . 613 | . 586 | . 541 |
| 2.5 | . 92 | . 69 | . 636 | . 624.617 | . 605 | . 593 | . 575 | . 552 | . 507 |
| 3.0 | . 93 | . 16 | . 150 | . 148.146 | . 143 | . 139 | . 135 | . 129 | . 123 |
| 3.5 | . 94 | . 38 | . 358 | . 355.350 | . 346 | . 340 | . 333 | . 319 | . 300 |
| 4.0 | . 95 | . 50 | . 475 | . 471.466 | . 462 | . 455 | . 448 | . 435 | . 413 |
| 4.5 | . 95 | . 20 | . 190 | . 188.187 | . 185 | . 182 | . 179 | . 174 | . 165 |
| 5.0 | . 96 | . 08 | . 077 | . 0763.0756 | . 0745 | . 0737 | . 0725 | . 0709 | . 0682 |
| 6.0 | . 96 | . 05 | . 0480 | . 0477.0473 | . 0466 | . 0461 | . 0456 | . 0443 | . 0426 |
| 7.0 | . 96 | . 03 | . 0288 | . 0286.0284 | . 0280 | . 0276 | . 0272 | . 0266 | . 0256 |
| 8.0 | . 96 | . 10 | . 0962 | . 0956.0948 | . 0935 | . 0924 | . 0901 | . 0980 | . 0856 |
| 9.0 | . 96 | . 23 | . 221 | . 220.218 | . 215 | . 213 | . 209 | . 205 | . 197 |
| 10.0 | . 96 | . 13 | . 125 | . 124.123 | . 122 | . 120 | . 118 | . 116 | . 112 |
| 13.0 | . 97 | . 095 | . 0923 | .0916.0908 | . 0899 | . 0886 | . 0872 | . 0855 | . 0835 |
| 17.0 | . 97 | . 08 | . 0776 | . 0771.0765 | . 0757 | . 0746 | . 0734 | . 0720 | . 0703 |
| 21.0 | . 97 | . 28 | . 271 | . 270.268 | . 265 | . 261 | . 257 | . 252 | . 246 |




Figure 9. Effective Reflectance of a Specular Wall-Diffuse Base Groove.

The area of the slit $\dot{A}_{\text {sL }}$ is simply the distance between the adjacent thermostatic elements.

$$
\begin{equation*}
\frac{A_{S L}}{A_{T O T}}=\frac{2 d}{A_{T O T}}=\frac{2\left(113 \times 10^{-7}\right)\left(T_{2}-T_{1}\right) a^{2}}{t(b+2 t)} \tag{20}
\end{equation*}
$$

The area of the top $A_{T O T}$ is equal to twice the thickness of the thermostatic element.

$$
\begin{equation*}
\frac{\mathrm{A}_{\mathrm{TOP}}}{\mathrm{~A}_{\mathrm{TOT}}}=\frac{2 t}{\mathrm{~b}+2 t} \tag{21}
\end{equation*}
$$

Equations ( $19,20,21$ ) are the fractions of the total area which have the radiant characteristics of the slit, groove or thermostatic fin top. The effective emissivity of the surface will therefore be equal to the sum of the emissivities of the three areas times their area fractions.

$$
\begin{equation*}
\varepsilon_{e}=\frac{A_{T O P}}{A_{T O T}} \varepsilon_{T O P}+\frac{A s L}{A_{T O T}} \varepsilon_{s L}+\frac{A_{G}}{A_{T O T}} \varepsilon_{G} \ldots \tag{22}
\end{equation*}
$$

and similarly for absorptance

$$
\begin{equation*}
\alpha_{S}=\frac{A_{T O P}}{A_{T O T}} \alpha_{T O P}+\frac{A S L}{A_{T O T}} \alpha_{S L}+\frac{A_{G}}{A_{T O T}} \alpha_{G} \tag{23}
\end{equation*}
$$

In the calculations which were made for this report, the following assumptions were used in the evaluation of $\mathcal{E}_{e}$ and $\alpha_{e}$ (22 and 23).

1) $\varepsilon_{\mathrm{TOP}}=\alpha_{\mathrm{TOP}}=.1$
2) $\varepsilon_{S L}=\alpha_{S L}=1.0$
3) $\varepsilon_{G}=\varepsilon_{\text {base }} \times F_{b T-4}=$ constant
4) $\quad \alpha_{G}=\left(1-\rho_{e}(\emptyset)\right)$ is independent of temperature

The last three assumptions are quite good when the temperature of the surface deviates only a few degrees from the temperature ( $\mathrm{T}_{2}$ ) at which the fins are perfectly vertical with respect to the white base surface. However, as the surface turns away from the sun and gets colder, the opening over the white groove becomes smaller. Therefore, the absorptance and emittance of the groove both approach one. At the same time, the small slit between the adjacent thermostatic fins is opening, decreasing both its emittance and absorptivity. The net heat flux calculated by

Equilibrium Temperatures for a . $75 \times .75$ Thermostat Surface


Figure 10.

Eguilibrium Temperatures fora
2"×2" Thermostat Surface


Figure 11.



Figure 13.
the use of equation (23) is shown in Figures 10 and 11. The equilibrium temperatures for surfaces with different size fins, but all with a/b ratios of one and net heat fluxes equal to $37.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$ are shown in Figures 12 and 13 . The dashed line in these figures represents an approximation to the correct equilibrium temperatures which will be obtained when the walls have deviated from their vertical position so that the emittance of the slit is low and the emittance of the groove is high.

## RESULTS

As a result of the analysis work preceding, the design of a thermostatic finned surface for radiant energy control appears entirely feasible. Examination of the two sample curves, Figures 12 and 13 , indicates what may be possible. These curves were prepared for a particular combination of base paint (Corning 非7941 (ref. 2)) and aluminized fin surfaces. Many different coatings could be used in place of the two chosen, resulting in a wide variation of characteristics. However, assuming a surface is used with these two coating materials, the degree of temperature control is shown to be variable by variation of the fin length. As. was expected, the longer (two inch) fin exhibits a more constant temperature characteristic. Actually, the temperature predicted for either fin length is essentially the same for solar polar angles from $0^{\circ}$ to $4^{\circ}$. From $45^{\circ}$ to $75^{\circ}$, the longer fin maintains a more uniform temperature. In the region from $75^{\circ}$ to $90^{\circ}$ (or complete shade) the analysis is obviously very much in error. This error may be exanined qualitatively to determine the effect.

As an example, consider the two inch finned surface of Figure 13. The thermostatic material chosen will warp to a position in which the fin tops touch at $52^{\circ} \mathrm{F}$. Under this condition, the average emittance of the surface will be the average for a V-groove surface with a surface material emittance equal to the emittance of the low expansion side of the fins. The fin material used in the analysis was "invar" on the low expansion side. Invar is approximately $36 \%$ nickle and $64 \%$ iron. It may be expected that the emittance of this material is near 0.1. With an emittance of 0.1 for the material the grooves will have an emittance of about 0.18 (ref. 4). Examination of the Stephen-Boltzmann equation, $q^{\prime \prime}=\mathcal{E}_{e} \sigma T^{4}$ indicates that the surface temperature $\mathrm{T}_{\mathrm{S}}$ must be approximately $130^{\circ} \mathrm{F}$ if $\mathrm{q}^{\prime \prime}$ is $37.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$. Recalling that this was based on a temperature of $52^{\circ} \mathrm{F}$, the conclusion is that the surface will be warmer than $52^{\circ} \mathrm{F}$, but less than $130^{\circ} \mathrm{F}$, since the fins will open to cool at any temperature above $52^{\circ} \mathrm{F}$. Analysis for the temperature under these conditions is more difficult than the analysis presented since the fins form V-grooves with varying groove angles and the base-fin-opening enclosure becomes more difficult to analyze. This analysis work is being examined and will be forthcoming at a later date. Present information indicates that the surface temperature from $75^{\circ}$ to $90^{\circ}$ will be higher than the extrapolated temperature (for the two inch fins) but not above $110^{\circ} \mathrm{F}$. Of course this result is exactly what is required to improve the overall temperature control characteristics for the finned surface.

## CONCLUSIONS AND RECOMMENDATIONS

The finned surface proposed can be expected to maintain a uniform temperature
on the surface of spacecraft within prescribed limits. For example, if fins two inches long with the prescribed characteristics are used, the surface temperature is expected to vary between $112^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$ for solar polar angles from $0^{\circ}$ to $70^{\circ}$. From angles of $70^{\circ}$ to $90^{\circ}$ (or shaded) the surface temperature should be between $90^{\circ} \mathrm{F}$ and some temperature higher than $52^{\circ} \mathrm{F}$. As an estimate $70^{\circ} \mathrm{F}$ may be the minimum temperature experienced.

It is recommended that finned surfaces of the type described be constructed and tested in a space simulator. Such tests are required because of the many variables which were not included in the analysis. Also, variables in construction may occur which would alter the results of the analysis work. Furthermore, it is recommended that a design procedure (possibly digital computer oriented) be developed for the design of surface systems to be used on specific missions. The analysis work from this report may be used in the design, however, design procedures will be lengthy.

## REFERENCES

1. Edwards, D. K. and Roddick, R. D.: "Basic Studies on the Use and Control of Solar Energy", Report 62-27, Department of Engineering, University of California, Los Angeles, July, 1962.
2. Tanzilli, R., : "Development of a Stable White Coating System", AIAA Journal, Vol. I, Number 4, April, 1963.
3. Sparrow, E. M., Eckert, E.R.G., and Jonsson, V.K.: "An Enclosure Theory for Radiative Exchange Between Specularly and Diffusely Reflecting Surfaces", A.S.M.E. Paper No. 61 WA-167.
4. Sparrow, E. M. and Liu, S. H.: "Absorption of Thermal Radiation in V-Groove Cavities", Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, April 1962, NASA Number N-62-10610.
5. Dunkle, R. V.: "Thermal Radiation Tables and Applications", Transactions of the A.S.M.E. publication. May 1954.

November, 1963
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.

