

A Web-based Data Architecture for Problem Solving Environments:
Application of Distributed Authoring and Versioning to the Extensible

Computational Chemistry Environment

Karen Schuchardt, James Myers, and Eric Stephan
Pacific Northwest National Laboratory

Karen.Schuchardt@pnl.gov, Jim.Myers@pnl.gov, and Eric.Stephan@pnl.gov

Abstract: Next-generation problem solving environments
(PSEs) promise significant advances over those now
available. They will span scientific disciplines and
incorporate collaboration capabilities. They will host
feature-detection and other agents, allow data mining and
pedigree tracking, and provide access from a wide range
of devices. Fundamental changes in PSE architecture are
required to realize these and other PSE goals. This paper
focuses specifically on issues related to data management
and recommends an approach based on open, metadata-
driven repositories with loosely defined, dynamic schemas.
Benefits of this approach are discussed and the redesign of
the Extensible Computational Chemistry Environment's
(Ecce) data storage architecture to use such a repository is
described, based on the distributed authoring and
versioning (DAV) standard. The suitability of DAV for
scientific data, the mapping of the Ecce schema to DAV,
and promising initial results are presented.

 Index Terms—metadata, problem solving environments,
scientific data management, self-describing dynamic
schemas, WebDAV protocol, XML.

1. Introduction

 Scientific problem solving environments are complex
computing systems that seek to integrate the activities
necessary to accomplish high-level domain tasks [1][2].
They may include components for managing scientific
workflow, tracking data pedigrees, transforming and
filtering data, analyzing and visualizing results, automating
feature extraction, and annotating records. As described
by Gallopoulos et al., they also “use the language of the
target class of problems, so users can run them without
specialized knowledge of the underlying computer
hardware or software” [1]. Thus, at the cognitive level, a
PSE encodes domain knowledge, and, to varying degrees,
enforces or guides users toward best practices. This
characteristic is a powerful benefit of PSEs, particularly
for novices or occasional users.
 Unfortunately, contemporary PSEs tend to embed
domain knowledge into the design of persistent data
objects and the data store itself, requiring early agreement

about best practices, as well as a complete domain
ontology. These undesirable impacts may result:

• As the scope of a PSE increases, the number of parties

that must agree upon best practices and ontology, and
the resultant data structures, become untenably large.

• As components are incorporated into a PSE, negotiation
is required between the component developer and the
PSE framework designers. Creating a component that
fits within a PSE framework often makes the component
unusable in other PSEs or as a stand-alone application.

• As best practices evolve or PSEs are extended to
support users with different goals, the data structures
and control flows must change. All components must
be changed simultaneously and the existing data
structures migrated.

• As PSE usage expands, the need for federated access to
multiple data stores at multiple locations is necessary to
provide multi-scale and/or cross-disciplinary capabil-
ities. With current practices this is difficult and costly
because of incompatible access mechanisms and non-
integrable, non-discoverable schemas.

 These four problems reduce the ease of PSE evolution,
create undesirable coupling between components, and
introduce up-front delays in creating and extending PSEs.
Advances in data storage architectures will be required to
mitigate these problems and enable next-generation PSEs.
The work presented here is based on a concept for open,
metadata-driven repositories whose schema can be
dynamically extended and altered without requiring
changes to existing PSE components. This concept differs
in two respects from the use of metadata in digital libraries
and scientific archives. First, we use the repository as the
primary PSE persistence mechanism. Second, it is
expected that no individual component, data store
included, need understand or even be aware of the entire
schema. This significantly reduces the coupling between
components and between the data store and components,
thus reducing the level of agreement necessary to create
and evolve the PSE. This paper details our concept,
presents results of an initial implementation of such an
architecture within an existing PSE at the Pacific

mailto:Karen.Schuchardt@pnl.gov
mailto:Jim.Myers@pnl.gov
mailto:Eric.Stephan@pnl.gov

Northwest National Laboratory, and discusses some
motivating scenarios made possible by this new design.

2. Background

 The Pacific Northwest National Laboratory (PNNL) has
several ongoing efforts in developing PSEs,
collaboratories, and large-scale data management systems.
These efforts focus in different scientific and engineering
domains and have developed systems tailored for their
respective communities with their differing requirements
for security, computation, and data scaling. Unfortunately,
the different design choices made with respect to the data
management components have so far constrained the scope
of applicability of otherwise generic components and pose
significant barriers to the development of a single unifying
architecture with best-of-breed capabilities.

 In this paper, the context of PNNL’s Ecce is used to
explore these issues and to present an initial
implementation of an architecture that addresses them.
Ecce is one component of the Molecular Science Software
Suite (MS3) [3]. MS3 is an integrated suite of
comprehensive software that enables scientists to
understand complex chemical systems by coupling
advanced computational chemistry techniques with high-
performance, parallel computing systems. As shown in
Figure 1, MS3 consists of three components: NWChem
provides advanced computational chemistry techniques,
ParSoft provides efficient and portable libraries and tools
that enable NWChem to run on a wide variety of parallel
computing systems, and Ecce is a domain-encompassing
PSE composed of a suite of tools. Ecce assists chemists
with many tasks, including the management of projects
and calculations, construction of complex molecules and
basis sets, generation of input decks, distributed execution
of computational models, real-time monitoring, and post-
run analysis [4] [5]. Ecce and MS3 have been operational
since 1997 and won an R&D 100 award from R&D
Magazine in 1999.

 Ecce was designed nearly eight years ago around object
level integration. At the core of Ecce is an object-oriented
chemistry data model that supports management and
manipulation of computational data, experimental data,
and metadata. Ecce designers elected to apply object
database technology to the management of this data. Until
recently, persistent data and the model itself were

implemented using an object-oriented database

Figure 1. Molecular Science Software Suite (MS3):
Ecce, NWChem, and ParSoft

management system (OODBMS) [6] [7]. Persistent object
classes, representing molecules, basis sets, projects,
calculations, and jobs, provided the core for tool
development. These object classes also provided the
management of data, metadata, and complex relationships
between data objects. Use of object-oriented design and
the OODBMS allowed Ecce to provide a high degree of
interaction between components. At the time of its
development, the Ecce architecture represented an
innovative approach to managing the complex
computational chemistry research data [8].

 Despite its success, the Ecce design has significant
limitations when analyzed in Year 2001 terms. OODBM
systems have failed to mature and standardize as rapidly as
expected. As described by others [9], it is nearly
impossible to gain complete agreement between vendors
on anything concerning object database systems. Other
significant problems include proprietary binary formats,
tight coupling between the programming language and the
OODB, lack of application development tools, and a
schema evolution process made painful by outdated
schema/application compilation cycles. Object databases
have design principles opposite from the web-based thin-
client/fat-server architecture and cannot effectively
leverage the plethora of new technologies being developed
around this architecture.

 Our vision for next-generation PSEs is one where
independently designed and developed components are
rapidly combined to deliver more powerful solutions and
reach larger communities of researchers while sharing
development costs among the interested parties. For
example, Ecce is now adding support for the field of
molecular dynamics. This change entails enhancements
and additions to the object model and schema that, without

changes to the underlying data management system, would
have amplified the issues previously mentioned.

 Similar problems would be expected during the
inclusion of third-party tools to compare theoretical and
experimental results, to model chemical kinetics, or to add
functionality related to biology or materials science.
Within PNNL, two existing projects are targeted for
integration with Ecce in the near term: a large-scale
hierarchical data archive and an Electronic Laboratory
Notebook system. These systems, which were developed
in different languages with different object schemas and
data management systems, are essentially third-party
applications. Although a useful level of integration has
been accomplished with the Electronic Laboratory
Notebook, the use of independent data stores makes the
integration brittle with respect to the evolution of either
object model. Direct integration with either of these
systems is undesirable due to the resulting tight coupling
and impact on deployability and maintainability. Thus, an
alternate strategy is required. The work to lower
development costs and reduce deployment barriers for
PSEs reported here is therefore motivated by practical as
well as theoretical considerations. We sought to solve
several pressing deployability and integration issues in a
manner that would be widely applicable to PSEs in
general.

3. Approach

 A key observation leading toward an open PSE data
management architecture was the realization that PSE
components, although they manipulate common data
artifacts, often interact through data flow, generating
additional attributes or creating new objects related to data
generated by another component. This observation—
coupled with the issues previously discussed—leads to
several design criteria:

• Direct access to raw data. Access to data through a

common object model, although useful in maintaining
consistency, limits the representational power of
applications added to the system. Providing direct
access to the underlying persistent attributes of the data
removes this constraint.

• Self-describing data and data relationships. Without an
object model common across all applications, another
mechanism is needed to allow the discovery of data
semantics. Using a self-describing data format (that is,
a format that provides metadata about the data),
applications can use existing data in new ways and
generate new data attributes and relations, as needed.
Significantly, applications can also ignore existing
relationships that have no meaning for them, or can
translate the relationship semantics into their own
domain ontology.

• Schema-independent data stores. With self-describing
data, the data storage system does not need to have deep
knowledge of the application objects. By removing
knowledge of the schema from the storage system, it
becomes possible to support multiple independent or
loosely coupled schemas within a single data store
where these schemas can evolve without changes to the
data store itself.

• Separation of application-level object from the data
storage mechanism via a standard protocol(s). Using a
standard protocol for describing data management
operations helps to maintain the schema independence
previously described. Additionally, a standard protocol
allows the selection of the implementation of the data
store to be independent of the application technologies.
Thus, the data store can be selected based on the
performance, cost, and scaling requirements for a given
PSE deployment and on the expected use patterns.
Similarly, specifying a protocol instead of a
programming interface enables client-side components
to be independent of language and platform.

 These four criteria lead to a very flexible, yet powerful,
architecture. Applications designed this way can be
developed independently, yet integrated deeply based on a
partial, post-development mapping between their
respective schema descriptions. They can also be
deployed to a much broader range of users. Several Ecce-
related scenarios, enabled by this design, will be described.

3.1 Technology Selection

 The architecture discussed above could be implemented
using a variety of technologies. Data objects that support
arbitrary metadata can be developed using the Common
Object Request Broker Architecture (CORBA) [10].
Similarly, Version 3 of the Lightweight Directory Access
Protocol (LDAP) allows extension of existing entries with
new metadata through the use of the extensibleObject
class. However, the combination of the Web’s Hyper Text
Transfer Protocol (HTTP) [11], the Extensible Markup
Language (XML) [12], and the Distributed Authoring and
Versioning (DAV) protocol, also known as WebDAV [13],
provides the closest conceptual mapping to our design
goals. DAV, an extension to HTTP 1.1, was originally

designed to support collaborative authoring [14]. It
provides a simple command language for manipulating
MIME-typed “documents” (get, put, move, copy, lock) and
an encoded XML language for associated metadata
(propfind, proppatch). DAV “documents” are not
restricted to text-oriented formats and are more analogous
to files or binary large objects. Each piece of metadata is
an XML encoded key-value pair in which the value may
be simple text or contain complex data in, for example the
form of an XML object. New metadata can be added at
any time, and applications can manipulate arbitrary subsets
of metadata. For example, an application can request only
the values of metadata it understands from the server.
Thus, the DAV protocol, with its constructs to logically
organize opaque, typed data and to document that data
with arbitrary metadata, maps directly into the scientific
data management domain.

 DAV currently supports only a simple, unordered
container/contains relationship, but the wide range of data
relationships used in PSEs (for example, temporal,
derivative, historical, and sequence, as well as the “is-a”
and “has-a” object modeling dependencies) can be
encoded using DAV’s XML metadata. Extensions to
DAV, such as DAV Searching and Locating (DASL),
Advanced Collections, and Versioning that are currently
under development promise additional PSE-relevant
capabilities [15], [16], [17]. XML provides rich
capabilities for schema description (XML Schema) and
translation (XSLT), avoiding name collisions (XML
Namespaces) and representing relationships (XLink). The
emergence of scientific domain languages defined in XML
and generic XML parsing tools provide additional leverage
(for example, the Chemical Markup Language (CML)
[18], MathML [19], the Extensible Scientific Interchange
Language (XSIL) [20]). Finally, the maturity of HTTP-
related mechanisms for supporting multiple security
options and providing scalable performance and fault
tolerance provides a wide range of options for deployment.

3.2 Implementation

3.2.1 DAV Server. DAV is quickly gaining popularity in
the web, content management, and database management
system industries. Before the end of 1999, the Apache
Software Foundation, IBM, and Microsoft had already
deployed DAV servers as extensions to Web servers. This
year Apache 2.0 will support DAV natively. The
popularity of DAV is extending far beyond web
servers,several DAV-based content management systems,
such as Slide and Xythos, are available [21] [22]. Database
management systems such as Oracle and Tamino offering
DAV interfaces [23] [24]. Client-side support is
incorporated into common desktop products such as
Microsoft Office 2000 suite, Macromedia Dreamweaver,
Adobe Photoshop 6, GoLive 5 and numerous other

products. DAV libraries are available for the popular
development languages including: Java, C++, Perl, and
Python [25]. Device drivers have been written for Linux,
Mac OS X, and Windows 2000 so that DAV servers
appear as network file systems [25]. This broad
acceptance of DAV is rapidly expanding the server-side
options available and the emergence of optimized, high-
performance implementations can be expected. In
choosing a DAV server implementation for development
use in this project, we emphasized cost, robustness, and
protocol conformance over performance. The OpenSource
mod_dav extension for the Apache Web Server fit these
criteria. The mod_dav implementation uses file system
files and directories to provide persistence for data objects
and collections, respectively. Metadata is stored in a hash
table within a database manager (DBM) formatted file, one
file per document or collection. Either Simple DBM
(SDBM) or Gnu DBM (GDBM) may be used. SDBM
imposes a 1-kilobyte (KB) size limit on individual
metadata values, has a default initial size of 8 KB and
requires fewer steps during the server build process.
GDBM imposes no size restrictions, has higher
performance, requires a few more steps during the server
build process, and has a default initial database size of
25 KB [26]. With both implementations, manual garbage
collection utilities must be used to reclaim space
associated with changed or deleted metadata.

 Under conditions expected to be representative of
typical PSE requirements, the Apache Server and mod_dav
module were tested for DAV protocol compliance,
robustness, and performance. Several server
configurations were used to assess the effects of key
parameters, such as network connection, memory, and
operating system features. All servers were built using
Apache 1.3.11, mod_dav 1.1, and GDBM 1.8. Each was
configured to use basic authentication, to accept persistent
connections with limits of 100 connections per minute, 15
seconds between requests, and a minimum of 5 daemons.
The test client machine was a 450-MHz Sun Ultra 60
with 512 MB RAM. Our client-side software consisted of
internally developed C++ classes with 1500-byte packets
to mirror our typical TCP packet sizes and the Xerces
1.3 DOM parser for processing results.

 As of this writing, no public protocol compliance test
suites exist for DAV. Test programs were developed to
test each DAV method (put, proppatch, propfind…). In
addition, both the Microsoft Office 2000 tools and a Java
DAV Explorer client [27] were used as interactive client-
side applications test tools. As a result of this testing and
the robustness and performance tests described next, we
did not find any major DAV protocol compliance issues
except for the few noted on the DAV development Web
site [28]. These issues did not present any significant
problems for the anticipated use.

 Tests were performed to verify upper size limits and
ensure the server behaved properly when encountering
large metadata and documents. With mod_dav and
GDBM, metadata values as large as 100 MB and
documents as large as 200 MB were created repeatedly
without problems. Document size restrictions are those
imposed by the underlying file system. Although these
tests involve property and data sizes much larger than
those expected in DAV’s prototypical use in document
management, no problems were encountered, convincing
us that mod_dav would be suitable for our application.
The maximum size of metadata is configurable and, as an
initial (post-testing) value, we set a limit of 10 MB per
property. It should be noted that storing an XML-based
metadata property using mod_dav currently requires
double the memory of the property: one copy with the
XML request body and another copy that is the key/value
pair extracted from the body. Further, effective denial-of-
service attacks can be created by repeatedly sending large
XML request bodies. Thus, in a production system, the
maximum should be set as low as possible for a given
application.

 When initially considering DAV as the basis for a PSE
data management architecture, it was unclear whether
overall performance of a request-response protocol such as
HTTP would be comparable to alternative strategies such
as an OODBMS with a cache-forward architecture as used
by Ecce. To assess the feasibility, tests that mimic typical
PSE access patterns were developed. PSEs typically
include capabilities to traverse through data sets and
examine metadata, query and replace metadata, add new
metadata as tasks are performed, copy entire task
sequences, and delete task sequences (Table 1).
Additionally, to mimic storing and retrieving
computational input and output files, the performance of
get and put were tested (Table 2). All tests were
performed during off-hours to minimize the effect of
network traffic.

 Table 1 includes both elapsed and CPU time to help
determine whether performance costs were occurring on
the client or the server side. Roughly, the CPU time
represents client-side processing time while server
processing time can be determined as elapsed time minus
CPU time with some time allocated to moving the requests
and responses across the network. Given the relatively
small sizes of the metadata and the 150-Mbit/s network
connection, network transport has little impact on these
tests, thus providing a reasonable assessment of server
performance. For these tests, we created 50 documents,
each with 50 metadata of 1 KB in size and performed
operations to query for selected data, traverse the data,
copy it, and remove it. Server responses were parsed and
moved into generic hierarchical object representations. As
shown, metadata operations on individual objects are quite
fast. However metadata operations on a large number of
objects added up to several seconds. For these operations,
the bulk of the time was spent on client-side processing.
This percentage can be attributed to the current use of a
parser based on the Document Object Model (DOM) [29]
to parse the response and create custom data structures.
Significant improvements can be expected by converting
to a Simple API for XML (SAX) [30]-style parser. (SAX
parsers do not build an in-memory representation of the
entire XML document as DOM parsers do, eliminating
significant overhead.) In addition, alternative server-side
implementations that do not operate on many small
metadata databases as mod_dav does are expected to
provide significant server-side performance improvements.
In this particular test case, 50 separate database files were
opened, queried, and closed. With data distributed across
many documents and collections, copy and remove
operations can be costly on the server side, but preliminary
testing with journaling file systems show that significant
performance increases can be expected for these operations
as well.

 Table 2 shows that our implementation of HTTP/put
performed comparably with a standard binary-mode File
Transfer Protocol (FTP)

Table 1. Performance results of typical PSE operations – elapsed and CPU time

Get all
metadata.
Depth=0(a)

Get selected
metadata
Depth=0(b)

Get selected metadata
for 50 objects

depth=1(c)

Get metadata
for

50 objects(d)

Copy hierarchy
with 50 objects

totaling 4.5MB(e)

Remove hierarchy with
50 objects totaling

4.5MB(f)

elapsed(g)
 cpu

0.068 s
0.04 s

0.055 s
0.03 s

2.732 s
2.04 s

3.032 s
1.93 s

3.482 s
0.14 s

1.782 s
0.01 s

(a) Get all metadata on single document including system metadata and 50 test metadata values each 1 KB.
(b) Query for 5 metadata values on a single document.
(c) Use depth=1 capability to query for metadata for 5 of 50 values on 50 objects within a collection.
(d) Query for 5 of 50 metadata values on 50 objects - one at a time.
(e) Copy collection of 50 documents each containing 50 1 KB application metadata values.
(f) Remove collection created by copy step.
(g) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s OODB server.

Table 2. Performance of binary FTP vs HTTP/put

FTP 20 MB
mem to mem

using /tmp

FTP 20 MB
Local file to

local file

FTP 200 MB
Local file to

local file

Put 20 MB
Local file to

local file

Put 200 MB
Local file to

local file
Enterprise 450(a) 1.5 s 3.3 s 30 s 3.0 s 30 s
(a) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s

OODB server.

client. It also demonstrates that network bandwidth is the
primary driver for moving large amounts of data: our
client and server did not introduce bottlenecks. As of this
writing, no performance tests have been run when using
alternative authentication mechanisms, such as public key
certificates, and no tests of scaling through the use of
multi-processor, multi-server load-balancing systems have
been done. Because these issues are related to the Apache
server, rather than the mod_dav module, the performance
hit for secure communications and overall server
scalability is expected to be similar to those reported for
generic Web applications.

 The mod_dav/GDBM/Apache server remained stable
during approximately 6 months of testing using all of the
scenarios described above. During this time, no loss of
persistent data or any data transmission loss was
experienced. Even without performance enhancements
such as pipelining and event-based XML parsing, the
performance, compatibility, and reliability tests provided
confidence that a reliable, deployable system could be built
with the current mod_dav implementation.

3.2.2 Data Access Architecture. Figure 2 portrays a
high-level view of the Ecce data architecture. As shown,
although the system uses the Apache/mod_dav server, the
system can take advantage of any service that implements
the DAV protocol. On the client side is a multi-layered
architecture designed to accomplish several objectives:
isolate data access to support plug-in protocol migration
and enhancements in the future, encapsulate object access
behind a factory/object layer for easy migration of existing
object-based applications, and provide a generic data and
metadata layer for flexible access to raw data for future
development work. Existing Ecce applications can
continue to work in terms of its rich set of C++ classes.
Factory modules in the object layer encapsulate access to
persistent data using implementations of the Data Storage
Interface, which maps requests for manipulating data and

Figure 2. Data access architecture overview

metadata into protocol-specific operations. While DAV is
the only protocol currently implemented, a separate data
storage interface will reduce the changes required to
provide native-protocol access to data grids or to
incorporate high-performance extensions to DAV - for
example, a GridDAV analogous to GridFTP [31].

 The initial DAV client implementation, based on C++
HTTP classes developed at PNNL and the Apache xerces
1.3 XML DOM parser, is blocking and supports persistent
connections, but not pipelining. Further optimizations of
this implementation, using a SAX parser for example, as
well as the extension of the architecture to include a client-
side cache, are anticipated. As previously noted, the data
store is decoupled from Ecce and its only requirement is
DAV compliance.

3.2.3 Ecce Schema Mapping. The replacement of the
Ecce OODBMS data store with the new architecture has
required examination of the use of persistent classes in
Ecce and decisions about how to map their structure,
content, and relationships into the DAV constructs of
collections, documents, and metadata. Ecce had 70 classes
“marked” for persistent storage, including relatively simple
types, such as dates, and complex class hierarchies that
include abstract classes for modeling experiments and
calculations, output data properties, molecules, basis sets,
and compute jobs. For brevity, the discussion of this
mapping process is limited to a subset of the data model –
the calculation model. A simplified version of the class
model in Unified Modeling Language (UML) notation [32]
is shown in Figure 3.

 The inheritance in this model provides semantics
through virtual methods, as well as through data
derivation. Briefly, the model shows a study subject
(Molecule) on which a task of an Experiment is performed,
the results of which are a series of n-dimensional output
Properties. The focus of the model is on simulated
experiments or calculations. All the

Figure 3. Simplified calculation object model
information needed to reproduce the calculation and
provide historical context or post-analysis capabilities is
captured. The mapping of the model to DAV can be
somewhat simplified because the DAV structure does not
need to explicitly capture the full inheritance semantics.
These semantics can be applied in the object factory layer
for applications in which they are important. For example,
to ease the migration of existing Ecce applications that
work directly with objects depicted in Figure 3, the
object/factory layer of Figure 2 provides the objects as was
previously done through the OODBMS.

 Figure 4 depicts how the model was mapped to DAV
constructs. In general, objects recognizable by domain
scientists were mapped to separate DAV documents. This
strategy allows the lowest granularity of access to raw
data, minimizing overhead for tools or agents that only
care about certain subsets of data and reducing coupling at
the data level. It also allows metadata attachment at the
lowest granularity. Alternative strategies exist, but we

believe they have significant drawbacks with respect to our
objectives. For example, because DAV supports arbitrary
XML-encoded metadata values, we could have chosen to
include related objects within a single document.
However, objects mapped as metadata cannot themselves
have DAV-accessible metadata. Objects mapped as
metadata also become accessible only through their
relationship to the document’s main object, severely
limiting their ability to participate in multiple relationships
and reducing their visibility to other applications.

 In the initial implementation, hierarchical relationships
were mapped into the DAV container/contains relationship
provided by collections. Thus, the list of tasks in a
calculation is located through the collection mechanism.
This collection-based structuring provides convenience
when viewing the data store through standard DAV
browsers, but does bend our rule about schema
independence. In future implementations, as shown in
italics in Figure 4, we expect to implement relationships
through metadata, making the meaning of the relationship
available to other programs and allowing the physical
layout of objects in DAV to be adjusted dynamically and
independent of the metadata. For example, an application
or a DAV implementation might elect to store large
documents on an archive system, or perhaps store all
documents of a given type, such as 3D molecular
structures, in a single hierarchy for easier algorithmic
processing. Because the document will have self-
describing structure, the DAV structure can be reorganized
without breaking existing applications, as long as
applications interpret the structure dynamically through the
metadata. This “virtual document” approach increases the
granularity of access and assures that all objects are
independently accessible and can have their own metadata.
It also enables the dynamic creation of relationships
discovered and defined by third-party agents.

 The data members of individual Ecce objects shown in
Figure 3 were mapped to a combination of DAV document
data and DAV document metadata.

Figure 4. Calculation model mapped to DAV constructs. Scrolls represent metadata for
documents/collections.

Mapping decisions were based on assumptions about
other applications that might want to discover, annotate,
and manipulate the individual data members. Although
these mapping decisions were somewhat arbitrary, the
tendency was to decompose Ecce objects as much as
possible to increase flexibility, stopping at the point
where community standard data structures exist. For
example, Ecce’s Molecule object was mapped to a
Protein Data Bank (PDB) [33], simple XYZ, or custom
encoded molecular geometry with metadata encoding the
format of the raw data, empirical formula, symmetry
group, and charge state. Thus, applications could search
the data store for DAV documents matching the formula
metadata and render a 3D display of the molecule without
understanding the rest of the Ecce schema. Where
standards do not currently exist, plain text or XML
markup (where appropriate) is applied to the data, as is
done for the Molecular Basisset document.

 For metadata, a single “ecce” namespace was defined.
As conventions mature and usage becomes widespread,
the project will migrate to community standard
conventions (for example, CML and naming standards
for computational science developed within the Global
GridForum [34]).

3.2.4 Data Migration. Ecce has been operational for a
number of years, and existing OODB data sets had to be
transferred to the new storage system. The migration
process was done in two stages: First, we converted
OODB data into the DAV data structures as previously
described. Secondly, raw calculation data in the form of

input and output files was moved from users local disk
storage directly into the calculation virtual document on
the data server. The second step was required due to the
fact that the OODB data only contained directory path
references to the raw data for each calculation. This was
done to ensure that raw user data could never be lost by
storing it solely in an OODB proprietary format and to
reduce the demands on both the OODB server and client
software. By merging the OODB and raw calculation data
into the DAV server (where mod_dav stores them as
files), we hope to reduce ‘broken link’ problems caused
when users copy or move raw files without realizing they
are being managed. With DAV, users still have direct
access to the raw data files when needed, but the files’
location on a remote server, and the existence of other
Ecce related data files in the same directories/collections
should increase users’ awareness that they should not be
moved/deleted without considering the consequences.

 In order to determine disk space requirements for our
new storage system we conducted preliminary
conversions of two large databases, which contain a total
of 259 calculations represented by about 420,000 OODB
objects with a combined size (excluding raw data files) of
35 MB on our OODB server. While it was difficult to
accurately compare disk space usage between the
OODBMS and mod_dav we found that the disk
requirements increased by about 10% when using
mod_dav with SDBM and 25% when using GDBM. The
bulk of the increase was due to mod_dav: each document
or collection that had metadata had an associated
database file. With default sizes of 8 KB and 25 KB for
SDBM and GDBM respectively, there is significant

unused but allocated space. Some of the difference in
size can also be attributed to the fact that binary
formatted objects such as doubles are typically more
compact than textual/XML representations of the same
data. Finally, these particular data sets were on very small
chemical systems with correspondingly small output
dataset sizes. For studies on larger systems, the metadata
databases will be a much smaller percentage of the total
space used. While these differences can be explained,
we were still somewhat surprised because our OODBMS
also creates its own overhead, using hidden segments to
optimize performance. Alternative back-end DAV
solutions could be selected to provide more efficient
storage, though at current storage costs this is not a
pressing concern for Ecce.

4. Discussion

 The production release of Ecce version 2.0 with the
new storage architecture was released in July of 2001,
and design work for adding DAV capabilities to PNNL’s
electronic notebook have begun. As described in
following paragraphs, we believe that porting Ecce to the
new architecture meets our objectives: it satisfies our
goal of creating a lightweight data storage architecture
with dynamically evolving schema and loose coupling at
the data access level. It will provide a useful platform for
further research and development efforts.

 Performance assessments comparing Ecce version 1.5
to Ecce version 2.0 were initiated. Table 3 summarizes
size, application startup time, and the operation of each
tool loading its set of data for a typical calculation. The
selected calculation is a Uranium Oxide surrounded by 15
water molecules

Table 3. Ecce 1.5 vs. Ecce 2.0 beta Performance Summary for Ecce Tools (The client is a Sun Ultra 60.

Times are elapsed time.)

 Builder BasisTool Calc Editor Calc Viewer Calc Manager Job Launcher
Ecce 1.5

Size (res) 30 MB 20 MB 30 MB 30 MB 20 MB 19 M
Cold Start 1.6 s 5.0 s 2.4 s 1.5 s 2.8 s 0.9 s

Warm Start 1.2 s 4.6 s 2.2 s 1.1 s 2.7 s 0.8 s
UO2-

15H2O(a) 0.5 s 2.14 s 7.6 s 4.4 s NA 0.9 5 s
Ecce 2.0

Size (res) 25 MB 14 MB 21 MB 25 MB 13 MB 12 MB
Start 1.1 s 1.0 s 1.0 s 0.9 s 2.0 s 0.42 s

UO2-15H2O 0.1 s 0.2 s 0.9 s 2.2 s NA 0.48 s
(a) This is an example chemical system consisting of a molecule of Uranium Oxide surrounded by 15 water

molecules, typical in size of those studied using Ecce.

(UO2-15H2O) for a total of 50 atoms and individual
output properties up to 1.8 MB in size. Although
enhancing performance was not a primary goal of the
project, it was our goal to avoid a significant
performance decrease that would compromise usability.
As Table 3 shows, the overall performance actually
improved–in some cases significantly. While this set of
tests is small, we have qualitatively found that
applications perform as well or better than their
OODBMS-based counterparts overall. The typical
workflow processes that a user performs within Ecce did
not derive significant benefit from the cache-forward
architecture of our OODB. If we do encounter areas of
performance concern where a cache makes sense, it
would be relatively straight forward to add a cache to the
layered client architecture of Figure 2.

 Several additional possible optimizations have not
been pursued, such as taking advantage of HTTP 1.1

pipelining, making use of multiple simultaneous
connections, or bundling requests where class usage
patterns involve setting many data members (mapped to
metadata on the DAV object) in rapid succession. Note
that the test results reported here do not reflect the use of
HTTP 1.1 persistent connections. In the current
environment, reconnecting each time was significantly
faster than making use of persistent connections, an
anomaly still under investigation. Overall, these
directions, combined with anticipated enhancements in
DAV server performance levels, provide a variety of
options for substantially improving performance in
subsequent Ecce releases.

 In terms of deployability, the DAV-enabled Ecce
represents a vast improvement. The client and server
licensing costs are now zero, assuming use of a no-cost
implementation of DAV, such as Apache and mod_dav.
Because DAV allows manipulation of individual objects

and metadata, the memory and processing requirements
are much reduced in comparison to the OODBMS
solution. Configuring and running Apache/mod_dav is
significantly simpler than installing an OODBMS.
Installation is performed by a running a self-extracting
script that asks a few simple questions much like the
installation wizards familiar to many computer users.
Installers are not assumed to be system administrators or
to know anything about web servers. In fact most of our
installers have been international scientists who have
limited knowledge of web administration. All were able
to complete the process readily without the need to
involve system administrators. Using an Apache web
server is expected to become even easier when Apache
version 2.0 is released since the mod_dav module is part
of the binary distribution. This will enable future users
to simply use an existing Apache web server as a dual
purpose DAV server. Also, because Ecce can share a
DAV server, it is possible to have no server setup at all.
This raises the possibility of small academic groups
using a departmental DAV server as their data store, or
outsourcing the server completely. Although
commercial DAV services are aimed more at simple
document and file sharing, we have already
demonstrated running Ecce against a public DAV server
hosted by Xythos. That is, since Xythos’ Web File
System (WFS) 3.0 product is DAV-compliant, we were
able to have the Ecce client use it as a database by
simply configuring the client with the URL of a public
WFS server maintained by Xythos at their site. For
larger installations, the possibility for using multiple
servers with standard Web load-balancing and fail-over
services (a path not yet explored in detail) promises
reliability and scalability. The level of security can also
be tailored to group needs; because DAV inherits the
HTTP authentication, authorization, and encryption
mechanisms, a variety of options exist. The standard
HTTP libraries required to support the various Web
security protocols are not yet included in Ecce. When
this is done, selecting encryption of communications
with the data store becomes a simple matter of Web
server configuration. This broad flexibility makes it
possible to tailor Ecce to the performance, storage, and
management needs of individual groups.

 Ecce now provides an unprecedented level of access
to its data store, leading to a variety of possibilities. As
DAV is an extension of HTTP, Ecce users can run
standard Web browsers to “surf” the Ecce database and
to view Ecce-generated images, subject to the same
access controls applied when accessing the data through
Ecce. Existing applets and applications can retrieve and
render molecular structures and other data given the
HTTP URL for that item within the Ecce data store.
Relatively simple cgi scripts or servlets can quickly be
developed to provide thin-client access to many of the

features currently provided by heavy UNIX/Motif
clients. DAV-enabled browsers would provide the
additional benefit of allowing users to view all of the
data members mapped as DAV metadata as they
navigate through the data objects.

 Developers maintaining and enhancing Ecce have also
benefited from the new data architecture. Web and DAV
browsers become debugging tools. In-house developers
are no longer burdened with a combined
application/schema compilation cycle. Third-party
developers choose whether to use the Ecce object
schema or to develop a mapping of their own objects into
DAV using generic XML parsing tools. The latter
option will allow electronic notebooks to directly
reference and display Ecce data. In addition, the
notebooks will have the capability to add additional
metadata, such as digital signatures and annotation
relationships, to the data without affecting the operation
of Ecce. This open data architecture also makes possible
feature analysis applications or agents that can
independently discover objects in the data store (3D
structures, for example), apply feature analysis
algorithms, and attach their discoveries to the objects as
new metadata. For example, an agent could use the
molecular geometry, vibrational frequencies, electron
distribution and other properties calculated via Ecce to
determine thermodynamic properties of the molecule
which could then be appended as new DAV metadata of
the molecule object. Although Ecce currently cannot
make use of this additional data, we envision a
modification that would allow Ecce, or any PSE, to
present such metadata to the user as part of a query
interface. This generic mechanism would make
metadata created by new applications immediately
available for use in categorizing and selecting data sets
within an existing PSE.

 These lightweight integration scenarios can provide
real benefits to users without system-wide agreement on
a common schema. Moreover, the capability to move
incrementally and partially towards a common schema in
this open architecture is expected to actually promote
more semantic integration. Since DAV supports
metadata that are calculated dynamically, it is possible to
imagine generating metadata on-the-fly to support new
applications. Using XML stylesheet language
translations (XSLT), a DAV server could be extended to
translate metadata for applications built using different
schema. Thus, developers can encode the mapping
between their object schemas external to their
applications in a dynamically evolvable form. Although
this paper has assumed that such mappings will involve
data members encoded in metadata, we are investigating
similar mechanisms that would allow XML description
of the mapping between the (potentially) binary DAV

objects. Ultimately, it may be possible to achieve any
desired level of data interoperability between
applications through the installation of XML mapping
descriptions in a common DAV-based data store.

5. Conclusions

 Full realization of this vision will require significant
additional work. As noted earlier, many of the advanced
features of DAV, including DAV Searching and
Locating (DASL) and DAV Advanced Collections, are
still being standardized, while features such as
transaction support are not yet addressed. Development
tools that simplify extracting metadata from binary data
files are also needed, as are mechanisms to dynamically
translate between metadata definitions. However, the
growing acceptance of XML and DAV should quickly
lead to a range of choices in these areas. Once
developed, these tools will provide a rich, domain-
independent foundation for developing flexible, scalable,
evolvable PSEs.

 The release of a DAV-based version of Ecce
represents a significant advance for current Ecce users
and a step toward a more flexible PSE architecture. The
development of a new Ecce architecture to use open,
metadata-driven repositories based on DAV has provided
immediate benefits in terms of flexibility, reduced
deployment and maintenance costs, additional security
options, and improved data accessibility. Such schema-
neutral repositories will be a critical component of next-
generation PSE architectures that will enable dynamic
collaboration across scientific disciplines and enhance
information discovery. Using Ecce as a test bed, the plan
is to continue to expand and explore the possibilities
inherent in open data architectures for integrating feature
detection, data mining, and other agents, along with
notebooks and domain applications. This approach is
expected to significantly reduce the barriers to PSE
development and evolution while enhancing capabilities
and helping make the PSE a basic part of the scientific
infrastructure.

Acknowledgment
The Pacific Northwest National Laboratory is operated
by Battelle for the U.S. Department of Energy. This
work was supported in part by the U.S. Department of
Energy under contract DE-AC06-76RLO 1830.

References
[1] S. Gallopoulos, E. Houstis, and J. R. Rice, 1994,

“Problem-solving environments for computational
Science,” pp. 11-23, IEEE Computational Science and
Engineering, Summer.

[2] J. R. Rice and R. F. Boisvert, 1996, “From scientific
software libraries to problem-solving environments,”

pp. 44-53, IEEE Computational Science & Engineering,
Fall.

[3] Molecular Science Software Suite.
http://www.emsl.pnl.gov:2080/mscf/about/descr_ms3.htm
l

[4] D. A. Dixon, T. H. Dunning, M. Dupuis, D. F. Feller,
D. K. Gracio, R. J. Harrison, J. A. Nichols, and K. L.
Schuchardt, 1999, “Computational Chemistry in the
Environmental Molecular Sciences Laboratory,” Plenum
Publications, Book Chapter in “High Performance
Computing."

[5] D. R. Jones, T. L. Keller, K. L. Schuchardt, H. L. Taylor,
and D. K. Gracio, “Extensible Computational Chemistry
Environment Data Centered Framework for Scientific
Research,” 1999, Domain-Specific Application
Frameworks: Manufacturing, Networking, Distributed
Systems, and Software Development, Chapter 24,
Vol. Three, No. 0-471-332801.

[6] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and S. Zdonik, “The object-oriented database
system manifesto.” In Proceedings of the First
International Conference on Deductive and Object-
Oriented Databases, pp. 223-40, Kyoto, Japan, December
1989.

[7] The Committee For Advanced DBMS Function, Third
generation database system manifesto, Computer
Standards and Interfaces 13 (1991), pages 41-54. North
Holland. Also appears in SIGMOD Record 19:3 Sept,
1990.

[8] External Review Committee Report on the Extensible
Computational Chemistry Environment, January 1996.

[9] M. J. Carey and David J. DeWitt, “Of objects and
databases: A decade of turmoil.” Proceedings of the 22nd
VLDB Conference, Mumbai (Bombay), India, 1996.

[10] PRE - A FRAMEWORK for ENTERPRISE
INTEGRATION. R. A. Whiteside, E. J. Friedman-Hill,
and R. J. Detry, http://daytona.ca.sandia.gov/pre/s-
docs/Information/HICCS.html

[11] RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1,
http://andew2.andew.cmu.edu/rfc/rfc2616.html

[12] XML Specification, http://www.w3.org/TR/REC-xml
[13] RFC 2518 HTTP Extensions for Distributed Authoring –

WEBDAV,
http://andrew2.andrew.cmu.edu/rfc/rfc2518.html

[14] R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson, G.
A. Bolcer, P. Oreizy, and R. N. Taylor, “Web-based
development of complex information products,
communications of the ACM,” August 1998 (Vol. 41,
No. 8), pp. 84-92.

[15] DAV Searching & Locating – DASL,
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-
00.html

[16] WebDAV Ordered Collections Protocol,
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-
ietf-webdav-ordering-protocol-02.txt

[17] Goals for Web Versioning,
http://www.webdav.org/deltav/goals/draft-ietf-webdav-
version-goals-01.txt

[18] P. M.-Rust, H. S. Rzepa, M. Write, and S. Zara, 2000, “A
universal approach to web-based chemistry using XML
and CML,” Chem Commun, pp. 1471-1472.

http://www.emsl.pnl.gov:2080/mscf/about/descr_ms3.html
http://www.emsl.pnl.gov:2080/mscf/about/descr_ms3.html
http://daytona.ca.sandia.gov/pre/s-docs/Information/HICCS.html
http://daytona.ca.sandia.gov/pre/s-docs/Information/HICCS.html
http://andew2.andew.cmu.edu/rfc/rfc2616.html
http://www.w3.org/TR/REC-xml
http://andrew2.andrew.cmu.edu/rfc/rfc2518.html
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-ietf-webdav-ordering-protocol-02.txt
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-ietf-webdav-ordering-protocol-02.txt
http://www.webdav.org/deltav/goals/draft-ietf-webdav-version-goals-01.txt
http://www.webdav.org/deltav/goals/draft-ietf-webdav-version-goals-01.txt

[19] Math Markup Language, http://www.w3.org/TR/REC-
MathML/

[20] Extensible Scientific Interchange Language,
http://www.cacr.Caltech.edu/SDA/xsil/

[21] Slide, http://jakarta.apache.org/slide/index.html
[22] Xythos, http://www.xythos.com/
[23] Oracle, http://www.oracle.com
[24] Tamino http://www.softwareag.com/tamino/
[25] WebDAV, http://www.webdav.org
[26] DBM Comparisons, http://www.rz.uni-

hohenheim.de/anw/prg/perl/
nmanual/lib/AnyDBM_File.html

[27] DAV Explorer, http://www.ics.uci.edu/~webdav/
[28] WebDAV mod_dav, http://www.webdav.org/mod_dav/
[29] Document Object Model (DOM) Level 2 Core

Specification, http://www.w3.org/TR/DOM-Level-2-Core/
[30] Simple API for XML, http://www.megginson.com/SAX.
[31] GridFTP: Protocol Extensions to FTP for the Grid. W.

Allcock, J. Bester, J. Breshnahan, A. Chervenak, L. Liming,
and S. Tuecke. Internet Draft. March 2001.
http://www.gridforum.org.

[32] Unified Modeling Language, http://www.omg.org/uml
[33] Protein Data Bank Format,

http://www.rcsb.org/pdb/docs/format/
pdbguide2.2/guide2.2_frame.html

[34] Global GridForum, http://www.gridforum.org

http://www.cacr.caltech.edu/SDA/xsil/
http://jakarta.apache.org/slide/index.html
http://www.xythos.com/
http://www.oracle.com/
http://www.softwareag.com/tamino/
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.ics.uci.edu/~webdav/
http://www.webdav.org/mod_dav/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.megginson.com/SAX
http://www.gridforum.org/
http://www.omg.org/uml
http://www.rcsb.org/pdb/docs/format/ pdbguide2.2/guide2.2_frame.html
http://www.rcsb.org/pdb/docs/format/ pdbguide2.2/guide2.2_frame.html
http://www.gridforum.org/

	Ecce 1.5
	Ecce 2.0

