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Abstract: Next-generation problem solving environments 
(PSEs) promise significant advances over those now 
available.  They will span scientific disciplines and 
incorporate collaboration capabilities.  They will host 
feature-detection and other agents, allow data mining and 
pedigree tracking, and provide access from a wide range 
of devices.  Fundamental changes in PSE architecture are 
required to realize these and other PSE goals.  This paper 
focuses specifically on issues related to data management 
and recommends an approach based on open, metadata-
driven repositories with loosely defined, dynamic schemas.  
Benefits of this approach are discussed and the redesign of 
the Extensible Computational Chemistry Environment's 
(Ecce) data storage architecture to use such a repository is 
described, based on the distributed authoring and 
versioning (DAV) standard.  The suitability of DAV for 
scientific data, the mapping of the Ecce schema to DAV, 
and promising initial results are presented. 
 
 Index Terms—metadata, problem solving environments, 
scientific data management, self-describing dynamic 
schemas, WebDAV protocol, XML. 
 
1.  Introduction 
 
 Scientific problem solving environments are complex 
computing systems that seek to integrate the activities 
necessary to accomplish high-level domain tasks [1][2].  
They may include components for managing scientific 
workflow, tracking data pedigrees, transforming and 
filtering data, analyzing and visualizing results, automating 
feature extraction, and annotating records.  As described 
by Gallopoulos et al., they also “use the language of the 
target class of problems, so users can run them without 
specialized knowledge of the underlying computer 
hardware or software” [1].  Thus, at the cognitive level, a 
PSE encodes domain knowledge, and, to varying degrees, 
enforces or guides users toward best practices.  This 
characteristic is a powerful benefit of PSEs, particularly 
for novices or occasional users. 
 Unfortunately, contemporary PSEs tend to embed 
domain knowledge into the design of persistent data 
objects and the data store itself, requiring early agreement 

about best practices, as well as a complete domain 
ontology.  These undesirable impacts may result: 
 
• As the scope of a PSE increases, the number of parties 

that must agree upon best practices and ontology, and 
the resultant data structures, become untenably large. 

• As components are incorporated into a PSE, negotiation 
is required between the component developer and the 
PSE framework designers.  Creating a component that 
fits within a PSE framework often makes the component 
unusable in other PSEs or as a stand-alone application. 

• As best practices evolve or PSEs are extended to 
support users with different goals, the data structures 
and control flows must change.  All components must 
be changed simultaneously and the existing data 
structures migrated. 

• As PSE usage expands, the need for federated access to 
multiple data stores at multiple locations is necessary to 
provide multi-scale and/or cross-disciplinary capabil-
ities.  With current practices this is difficult and costly 
because of incompatible access mechanisms and non-
integrable, non-discoverable schemas. 

 
 These four problems reduce the ease of PSE evolution, 
create undesirable coupling between components, and 
introduce up-front delays in creating and extending PSEs.  
Advances in data storage architectures will be required to 
mitigate these problems and enable next-generation PSEs.  
The work presented here is based on a concept for open, 
metadata-driven repositories whose schema can be 
dynamically extended and altered without requiring 
changes to existing PSE components.  This concept differs 
in two respects from the use of metadata in digital libraries 
and scientific archives.  First, we use the repository as the 
primary PSE persistence mechanism.  Second, it is 
expected that no individual component, data store 
included, need understand or even be aware of the entire 
schema.  This significantly reduces the coupling between 
components and between the data store and components, 
thus reducing the level of agreement necessary to create 
and evolve the PSE.  This paper details our concept, 
presents results of an initial implementation of such an 
architecture within an existing PSE at the Pacific 
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Northwest National Laboratory, and discusses some 
motivating scenarios made possible by this new design. 
 
2.  Background 
 
 The Pacific Northwest National Laboratory (PNNL) has 
several ongoing efforts in developing PSEs, 
collaboratories, and large-scale data management systems.  
These efforts focus in different scientific and engineering 
domains and have developed systems tailored for their 
respective communities with their differing requirements 
for security, computation, and data scaling.  Unfortunately, 
the different design choices made with respect to the data 
management components have so far constrained the scope 
of applicability of otherwise generic components and pose 
significant barriers to the development of a single unifying 
architecture with best-of-breed capabilities. 
 
 In this paper, the context of PNNL’s Ecce is used to 
explore these issues and to present an initial 
implementation of an architecture that addresses them.  
Ecce is one component of the Molecular Science Software 
Suite (MS3) [3].  MS3 is an integrated suite of 
comprehensive software that enables scientists to 
understand complex chemical systems by coupling 
advanced computational chemistry techniques with high-
performance, parallel computing systems.  As shown in 
Figure 1, MS3 consists of three components: NWChem 
provides advanced computational chemistry techniques, 
ParSoft provides efficient and portable libraries and tools 
that enable NWChem to run on a wide variety of parallel 
computing systems, and Ecce is a domain-encompassing 
PSE composed of a suite of tools.  Ecce assists chemists 
with many tasks, including the management of projects 
and calculations, construction of complex molecules and 
basis sets, generation of input decks, distributed execution 
of computational models, real-time monitoring, and post-
run analysis [4] [5].  Ecce and MS3 have been operational 
since 1997 and won an R&D 100 award from R&D 
Magazine in 1999. 
 
 Ecce was designed nearly eight years ago around object 
level integration.  At the core of Ecce is an object-oriented 
chemistry data model that supports management and 
manipulation of computational data, experimental data, 
and metadata.  Ecce designers elected to apply object 
database technology to the management of this data.  Until 
recently, persistent data and the model itself were 

implemented using an object-oriented database  

 
Figure 1. Molecular Science Software Suite (MS3):  
Ecce, NWChem, and ParSoft 
 
management system (OODBMS) [6] [7].  Persistent object 
classes, representing molecules, basis sets, projects, 
calculations, and jobs, provided the core for tool 
development.  These object classes also provided the 
management of data, metadata, and complex relationships 
between data objects.  Use of object-oriented design and 
the OODBMS allowed Ecce to provide a high degree of 
interaction between components.  At the time of its 
development, the Ecce architecture represented an 
innovative approach to managing the complex 
computational chemistry research data [8]. 
 
 Despite its success, the Ecce design has significant 
limitations when analyzed in Year 2001 terms.  OODBM 
systems have failed to mature and standardize as rapidly as 
expected.  As described by others [9], it is nearly 
impossible to gain complete agreement between vendors 
on anything concerning object database systems.  Other 
significant problems include proprietary binary formats, 
tight coupling between the programming language and the 
OODB, lack of application development tools, and a 
schema evolution process made painful by outdated 
schema/application compilation cycles.  Object databases 
have design principles opposite from the web-based  thin-
client/fat-server architecture and cannot effectively 
leverage the plethora of new technologies being developed 
around this architecture. 
 
 Our vision for next-generation PSEs is one where 
independently designed and developed components are 
rapidly combined to deliver more powerful solutions and 
reach larger communities of researchers while sharing 
development costs among the interested parties.  For 
example, Ecce is now adding support for the field of 
molecular dynamics.  This change entails enhancements 
and additions to the object model and schema that, without 



changes to the underlying data management system, would 
have amplified the issues previously mentioned. 
 
 Similar problems would be expected during the 
inclusion of third-party tools to compare theoretical and 
experimental results, to model chemical kinetics, or to add 
functionality related to biology or materials science.  
Within PNNL, two existing projects are targeted for 
integration with Ecce in the near term: a large-scale 
hierarchical data archive and an Electronic Laboratory 
Notebook system.  These systems, which were developed 
in different languages with different object schemas and 
data management systems, are essentially third-party 
applications.  Although a useful level of integration has 
been accomplished with the Electronic Laboratory 
Notebook, the use of independent data stores makes the 
integration brittle with respect to the evolution of either 
object model.  Direct integration with either of these 
systems is undesirable due to the resulting tight coupling 
and impact on deployability and maintainability.  Thus, an 
alternate strategy is required.  The work to lower 
development costs and reduce deployment barriers for 
PSEs reported here is therefore motivated by practical as 
well as theoretical considerations.  We sought to solve 
several pressing deployability and integration issues in a 
manner that would be widely applicable to PSEs in 
general. 
 
3.  Approach 
 
 A key observation leading toward an open PSE data 
management architecture was the realization that PSE 
components, although they manipulate common data 
artifacts, often interact through data flow, generating 
additional attributes or creating new objects related to data 
generated by another component.  This observation—
coupled with the issues previously discussed—leads to 
several design criteria: 
 
• Direct access to raw data.  Access to data through a 

common object model, although useful in maintaining 
consistency, limits the representational power of 
applications added to the system.  Providing direct 
access to the underlying persistent attributes of the data 
removes this constraint. 

• Self-describing data and data relationships.  Without an 
object model common across all applications, another 
mechanism is needed to allow the discovery of data 
semantics.  Using a self-describing data format (that is, 
a format that provides metadata about the data), 
applications can use existing data in new ways and 
generate new data attributes and relations, as needed.  
Significantly, applications can also ignore existing 
relationships that have no meaning for them, or can 
translate the relationship semantics into their own 
domain ontology. 

• Schema-independent data stores.  With self-describing 
data, the data storage system does not need to have deep 
knowledge of the application objects.  By removing 
knowledge of the schema from the storage system, it 
becomes possible to support multiple independent or 
loosely coupled schemas within a single data store 
where these schemas can evolve without changes to the 
data store itself. 

• Separation of application-level object from the data 
storage mechanism via a standard protocol(s).  Using a 
standard protocol for describing data management 
operations helps to maintain the schema independence 
previously described.  Additionally, a standard protocol 
allows the selection of the implementation of the data 
store to be independent of the application technologies.  
Thus, the data store can be selected based on the 
performance, cost, and scaling requirements for a given 
PSE deployment and on the expected use patterns.  
Similarly, specifying a protocol instead of a 
programming interface enables client-side components 
to be independent of language and platform. 

 
 These four criteria lead to a very flexible, yet powerful, 
architecture.  Applications designed this way can be 
developed independently, yet integrated deeply based on a 
partial, post-development mapping between their 
respective schema descriptions.  They can also be 
deployed to a much broader range of users.  Several Ecce-
related scenarios, enabled by this design, will be described. 
 
3.1  Technology Selection 
 
 The architecture discussed above could be implemented 
using a variety of technologies.  Data objects that support 
arbitrary metadata can be developed using the Common 
Object Request Broker Architecture (CORBA) [10].  
Similarly, Version 3 of the Lightweight Directory Access 
Protocol (LDAP) allows extension of existing entries with 
new metadata through the use of the extensibleObject 
class.  However, the combination of the Web’s Hyper Text 
Transfer Protocol (HTTP) [11], the Extensible Markup 
Language (XML) [12], and the Distributed Authoring and 
Versioning (DAV) protocol, also known as WebDAV [13], 
provides the closest conceptual mapping to our design 
goals.  DAV, an extension to HTTP 1.1, was originally 



designed to support collaborative authoring [14].  It 
provides a simple command language for manipulating 
MIME-typed “documents” (get, put, move, copy, lock) and 
an encoded XML language for associated metadata 
(propfind, proppatch).  DAV “documents” are not 
restricted to text-oriented formats and are more analogous 
to files or binary large objects.  Each piece of metadata is 
an XML encoded key-value pair in which the value may 
be simple text or contain complex data in, for example the 
form of an XML object.  New metadata can be added at 
any time, and applications can manipulate arbitrary subsets 
of metadata.  For example, an application can request only 
the values of metadata it understands from the server.  
Thus, the DAV protocol, with its constructs to logically 
organize opaque, typed data and to document that data 
with arbitrary metadata, maps directly into the scientific 
data management domain. 
 
 DAV currently supports only a simple, unordered 
container/contains relationship, but the wide range of data 
relationships used in PSEs (for example, temporal, 
derivative, historical, and sequence, as well as the “is-a” 
and “has-a” object modeling dependencies) can be 
encoded using DAV’s XML metadata.  Extensions to 
DAV, such as DAV Searching and Locating (DASL), 
Advanced Collections, and Versioning that are currently 
under development promise additional PSE-relevant 
capabilities [15], [16], [17].  XML provides rich 
capabilities for schema description (XML Schema) and 
translation (XSLT), avoiding name collisions (XML 
Namespaces) and representing relationships (XLink).  The 
emergence of scientific domain languages defined in XML 
and generic XML parsing tools provide additional leverage 
(for example, the Chemical Markup Language (CML) 
[18], MathML [19], the Extensible Scientific Interchange 
Language (XSIL) [20]).  Finally, the maturity of HTTP-
related mechanisms for supporting multiple security 
options and providing scalable performance and fault 
tolerance provides a wide range of options for deployment. 
 
3.2  Implementation 
 
3.2.1  DAV Server.  DAV is quickly gaining popularity in 
the web, content management, and database management 
system industries.  Before the end of 1999, the Apache 
Software Foundation, IBM, and Microsoft had already 
deployed DAV servers as extensions to Web servers.  This 
year Apache 2.0 will support DAV natively.  The 
popularity of DAV is extending far beyond web 
servers,several DAV-based content management systems, 
such as Slide and Xythos, are available [21] [22]. Database 
management systems such as Oracle and Tamino offering 
DAV interfaces [23] [24].  Client-side support is 
incorporated into common desktop products such as 
Microsoft Office 2000 suite,  Macromedia Dreamweaver, 
Adobe Photoshop 6, GoLive 5 and numerous other 

products.  DAV libraries are available for the popular 
development languages including: Java, C++, Perl, and 
Python [25].   Device drivers have been written for Linux, 
Mac OS X, and Windows 2000 so that DAV servers 
appear as network file systems [25].    This broad 
acceptance of DAV is rapidly expanding the server-side 
options available and the emergence of optimized, high-
performance implementations can be expected.  In 
choosing a DAV server implementation for development 
use in this project, we emphasized cost, robustness, and 
protocol conformance over performance.  The OpenSource 
mod_dav extension for the Apache Web Server fit these 
criteria.  The mod_dav implementation uses file system 
files and directories to provide persistence for data objects 
and collections, respectively.  Metadata is stored in a hash 
table within a database manager (DBM) formatted file, one 
file per document or collection.  Either Simple DBM 
(SDBM) or Gnu DBM (GDBM) may be used.  SDBM 
imposes a 1-kilobyte (KB) size limit on individual 
metadata values, has a default initial size of 8 KB and 
requires fewer steps during the server build process.  
GDBM imposes no size restrictions, has higher 
performance, requires a few more steps during the server 
build process, and has a default initial database size of 
25 KB [26].  With both implementations, manual garbage 
collection utilities must be used to reclaim space 
associated with changed or deleted metadata.   
 
 Under conditions expected to be representative of 
typical PSE requirements, the Apache Server and mod_dav 
module were tested for DAV protocol compliance, 
robustness, and performance.  Several server 
configurations were used to assess the effects of key 
parameters, such as network connection, memory, and 
operating system features.  All servers were built using 
Apache 1.3.11, mod_dav 1.1, and GDBM 1.8.  Each was 
configured to use basic authentication, to accept persistent 
connections with limits of 100 connections per minute, 15 
seconds between requests, and a minimum of 5 daemons.  
The test client machine was a 450-MHz Sun Ultra 60 
with 512 MB RAM.  Our client-side software consisted of 
internally developed C++ classes with 1500-byte packets 
to mirror our typical TCP packet sizes and the Xerces 
1.3 DOM parser for processing results. 
 
 As of this writing, no public protocol compliance test 
suites exist for DAV.  Test programs were developed to 
test each DAV method (put, proppatch, propfind…).  In 
addition, both the Microsoft Office 2000 tools and a Java 
DAV Explorer client [27] were used as interactive client-
side applications test tools.  As a result of this testing and 
the robustness and performance tests described next, we 
did not find any major DAV protocol compliance issues 
except for the few noted on the DAV development Web 
site [28].  These issues did not present any significant 
problems for the anticipated use. 



 
 Tests were performed to verify upper size limits and 
ensure the server behaved properly when encountering 
large metadata and documents.  With mod_dav and 
GDBM, metadata values as large as 100 MB and 
documents as large as 200 MB were created repeatedly 
without problems.  Document size restrictions are those 
imposed by the underlying file system.  Although these 
tests involve property and data sizes much larger than 
those expected in DAV’s prototypical use in document 
management, no problems were encountered, convincing 
us that mod_dav would be suitable for our application.  
The maximum size of metadata is configurable and, as an 
initial (post-testing) value, we set a limit of 10 MB per 
property.  It should be noted that storing an XML-based 
metadata property using mod_dav currently requires 
double the memory of the property:  one copy with the 
XML request body and another copy that is the key/value 
pair extracted from the body.  Further, effective denial-of-
service attacks can be created by repeatedly sending large 
XML request bodies.  Thus, in a production system, the 
maximum should be set as low as possible for a given 
application.   
 
 When initially considering DAV as the basis for a PSE 
data management architecture, it was unclear whether 
overall performance of a request-response protocol such as 
HTTP would be comparable to alternative strategies such 
as an OODBMS with a cache-forward architecture as used 
by Ecce.  To assess the feasibility, tests that mimic typical 
PSE access patterns were developed.  PSEs typically 
include capabilities to traverse through data sets and 
examine metadata, query and replace metadata, add new 
metadata as tasks are performed, copy entire task 
sequences, and delete task sequences (Table 1).  
Additionally, to mimic storing and retrieving 
computational input and output files, the performance of 
get and put were tested (Table 2).  All tests were 
performed during off-hours to minimize the effect of 
network traffic. 
 

 Table 1 includes both elapsed and CPU time to help 
determine whether performance costs were occurring on 
the client or the server side.  Roughly, the CPU time 
represents client-side processing time while server 
processing time can be determined as elapsed time minus 
CPU time with some time allocated to moving the requests 
and responses across the network.  Given the relatively 
small sizes of the metadata and the 150-Mbit/s network 
connection, network transport has little impact on these 
tests, thus providing a reasonable assessment of server 
performance.  For these tests, we created 50 documents, 
each with 50 metadata of 1 KB in size and performed 
operations to query for selected data, traverse the data, 
copy it, and remove it.  Server responses were parsed and 
moved into generic hierarchical object representations.  As 
shown, metadata operations on individual objects are quite 
fast.  However metadata operations on a large number of 
objects added up to several seconds.  For these operations, 
the bulk of the time was spent on client-side processing.  
This percentage can be attributed to the current use of a 
parser based on the Document Object Model (DOM) [29] 
to parse the response and create custom data structures.  
Significant improvements can be expected by converting 
to a Simple API for XML (SAX) [30]-style parser.  (SAX 
parsers do not build an in-memory representation of the 
entire XML document as DOM parsers do, eliminating 
significant overhead.)  In addition, alternative server-side 
implementations that do not operate on many small 
metadata databases as mod_dav does are expected to 
provide significant server-side performance improvements.  
In this particular test case, 50 separate database files were 
opened, queried, and closed.  With data distributed across 
many documents and collections, copy and remove 
operations can be costly on the server side, but preliminary 
testing with journaling file systems show that significant 
performance increases can be expected for these operations 
as well.  
 
 Table 2 shows that our implementation of HTTP/put 
performed comparably with a standard binary-mode File 
Transfer Protocol  (FTP) 

 
 

Table 1.  Performance results of typical PSE operations – elapsed and CPU time 
 

 

Get all 
metadata. 
Depth=0(a) 

Get selected 
metadata 
Depth=0(b) 

Get selected metadata 
for 50 objects 

depth=1(c) 

Get metadata 
for 

50 objects(d) 

Copy hierarchy 
with 50 objects 

totaling 4.5MB(e) 

Remove hierarchy with 
50 objects totaling 

4.5MB(f) 

elapsed(g)  
 cpu 

0.068 s 
0.04 s 

0.055 s 
0.03 s 

2.732 s 
2.04 s 

3.032 s 
1.93 s 

3.482 s 
0.14 s 

1.782 s 
0.01 s 

(a) Get all metadata on single document including system metadata and 50 test metadata values each 1 KB. 
(b) Query for 5 metadata values on a single document. 
(c) Use depth=1 capability to query for metadata for 5 of 50 values on 50 objects within a collection. 
(d) Query for 5 of 50 metadata values on 50 objects - one at a time. 
(e) Copy collection of 50 documents each containing 50 1 KB application metadata values. 
(f) Remove collection created by copy step. 
(g) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s OODB server. 

 



Table 2.  Performance of binary FTP vs HTTP/put 
 

 

FTP 20 MB 
mem to mem 

using /tmp 

FTP 20 MB 
Local file to 

local file 

FTP 200 MB 
Local file to 

local file 

Put 20 MB 
Local file to 

local file 

Put 200 MB 
Local file to 

local file 
Enterprise 450(a) 1.5 s 3.3 s 30 s 3.0 s 30 s 
(a) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s 

OODB server. 
 
client.  It also demonstrates that network bandwidth is the 
primary driver for moving large amounts of data:  our 
client and server did not introduce bottlenecks.  As of this 
writing, no performance tests have been run when using 
alternative authentication mechanisms, such as public key 
certificates, and no tests of scaling through the use of 
multi-processor, multi-server load-balancing systems have 
been done.  Because these issues are related to the Apache 
server, rather than the mod_dav module, the performance 
hit for secure communications and overall server 
scalability is expected to be similar to those reported for 
generic Web applications. 
 
 The mod_dav/GDBM/Apache server remained stable 
during approximately 6 months of testing using all of the 
scenarios described above.  During this time, no loss of 
persistent data or any data transmission loss was 
experienced.  Even without performance enhancements 
such as pipelining and event-based XML parsing, the 
performance, compatibility, and reliability tests provided 
confidence that a reliable, deployable system could be built 
with the current mod_dav implementation. 
 
3.2.2  Data Access Architecture.  Figure 2 portrays a 
high-level view of the Ecce data architecture.  As shown, 
although the system uses the Apache/mod_dav server, the 
system can take advantage of any service that implements 
the DAV protocol.  On the client side is a multi-layered 
architecture designed to accomplish several objectives: 
isolate data access to support plug-in protocol migration 
and enhancements in the future, encapsulate object access 
behind a factory/object layer for easy migration of existing 
object-based applications, and provide a generic data and 
metadata layer for flexible access to raw data for future 
development work.  Existing Ecce applications can 
continue to work in terms of its rich set of C++ classes.  
Factory modules in the object layer encapsulate access to 
persistent data using implementations of the Data Storage 
Interface, which maps requests for manipulating data and  
 

 
 
Figure 2.  Data access architecture overview 
 
metadata into protocol-specific operations.  While DAV is 
the only protocol currently implemented, a separate data 
storage interface will reduce the changes required to 
provide native-protocol access to data grids or to 
incorporate high-performance extensions to DAV - for 
example, a GridDAV analogous to GridFTP [31]. 
 
 The initial DAV client implementation, based on C++ 
HTTP classes developed at PNNL and the Apache xerces 
1.3 XML DOM parser, is blocking and supports persistent 
connections, but not pipelining.  Further optimizations of 
this implementation, using a SAX parser for example, as 
well as the extension of the architecture to include a client-
side cache, are anticipated.  As previously noted, the data 
store is decoupled from Ecce and its only requirement is 
DAV compliance. 
 
3.2.3  Ecce Schema Mapping.  The replacement of the 
Ecce OODBMS data store with the new architecture has 
required examination of the use of persistent classes in 
Ecce and decisions about how to map their structure, 
content, and relationships into the DAV constructs of 
collections, documents, and metadata.  Ecce had 70 classes 
“marked” for persistent storage, including relatively simple 
types, such as dates, and complex class hierarchies that 
include abstract classes for modeling experiments and 
calculations, output data properties, molecules, basis sets, 
and compute jobs.  For brevity, the discussion of this 
mapping process is limited to a subset of the data model – 
the calculation model.  A simplified version of the class 
model in Unified Modeling Language (UML) notation [32] 
is shown in Figure 3. 



 
 The inheritance in this model provides semantics 
through virtual methods, as well as through data 
derivation.  Briefly, the model shows a study subject 
(Molecule) on which a task of an Experiment is performed, 
the results of which are a series of n-dimensional output 
Properties.  The focus of the model is on simulated 
experiments or calculations.  All the  
 

 
 
Figure 3.  Simplified calculation object model 
information needed to reproduce the calculation and 
provide historical context or post-analysis capabilities is 
captured.  The mapping of the model to DAV can be 
somewhat simplified because the DAV structure does not 
need to explicitly capture the full inheritance semantics.  
These semantics can be applied in the object factory layer 
for applications in which they are important.  For example, 
to ease the migration of existing Ecce applications that 
work directly with objects depicted in Figure 3, the 
object/factory layer of Figure 2 provides the objects as was 
previously done through the OODBMS. 
 
 Figure 4 depicts how the model was mapped to DAV 
constructs.  In general, objects recognizable by domain 
scientists were mapped to separate DAV documents.  This 
strategy allows the lowest granularity of access to raw 
data, minimizing overhead for tools or agents that only 
care about certain subsets of data and reducing coupling at 
the data level.  It also allows metadata attachment at the 
lowest granularity.  Alternative strategies exist, but we 

believe they have significant drawbacks with respect to our 
objectives.  For example, because DAV supports arbitrary 
XML-encoded metadata values, we could have chosen to 
include related objects within a single document.  
However, objects mapped as metadata cannot themselves 
have DAV-accessible metadata.  Objects mapped as 
metadata also become accessible only through their 
relationship to the document’s main object, severely 
limiting their ability to participate in multiple relationships 
and reducing their visibility to other applications. 
 
 In the initial implementation, hierarchical relationships 
were mapped into the DAV container/contains relationship 
provided by collections.  Thus, the list of tasks in a 
calculation is located through the collection mechanism.  
This collection-based structuring provides convenience 
when viewing the data store through standard DAV 
browsers, but does bend our rule about schema 
independence.  In future implementations, as shown in 
italics in Figure 4, we expect to implement relationships 
through metadata, making the meaning of the relationship 
available to other programs and allowing the physical 
layout of objects in DAV to be adjusted dynamically and 
independent of the metadata.  For example, an application 
or a DAV implementation might elect to store large 
documents on an archive system, or perhaps store all 
documents of a given type, such as 3D molecular 
structures, in a single hierarchy for easier algorithmic 
processing.  Because the document will have self-
describing structure, the DAV structure can be reorganized 
without breaking existing applications, as long as 
applications interpret the structure dynamically through the 
metadata.  This “virtual document” approach increases the 
granularity of access and assures that all objects are 
independently accessible and can have their own metadata.  
It also enables the dynamic creation of relationships 
discovered and defined by third-party agents. 
 
 The data members of individual Ecce objects shown in 
Figure 3 were mapped to a combination of DAV document 
data and DAV document metadata.

   
 



 
 
Figure 4.  Calculation model mapped to DAV constructs.  Scrolls represent metadata for 
documents/collections. 
 
Mapping decisions were based on assumptions about  
other applications that might want to discover, annotate, 
and manipulate the individual data members. Although 
these mapping decisions were somewhat arbitrary, the 
tendency was to decompose Ecce objects as much as 
possible to increase flexibility, stopping at the point 
where community standard data structures exist.  For 
example, Ecce’s Molecule object was mapped to a 
Protein Data Bank (PDB) [33], simple XYZ, or custom 
encoded molecular geometry with metadata encoding the 
format of the raw data, empirical formula, symmetry 
group, and charge state.  Thus, applications could search 
the data store for DAV documents matching the formula 
metadata and render a 3D display of the molecule without 
understanding the rest of the Ecce schema.  Where 
standards do not currently exist, plain text or XML 
markup (where appropriate) is applied to the data, as is 
done for the Molecular Basisset document. 
 
 For metadata, a single “ecce” namespace was defined.  
As conventions mature and usage becomes widespread, 
the project will migrate to community standard 
conventions (for example, CML and naming standards 
for computational science developed within the Global 
GridForum [34]). 
 
 
3.2.4  Data Migration.  Ecce has been operational for a 
number of years, and existing OODB data sets had to be 
transferred to the new storage system.  The migration 
process was done in two stages:  First, we converted 
OODB data into the DAV data structures as previously 
described.  Secondly, raw calculation data in the form of 

input and output files was moved from users local disk 
storage directly into the calculation virtual document on 
the data server.  The second step was required due to the 
fact that the OODB data only contained directory path 
references to the raw data for each calculation.  This was 
done to ensure that raw user data could never be lost by 
storing it solely in an OODB proprietary format and to 
reduce the demands on both the OODB server and client 
software. By merging the OODB and raw calculation data 
into the DAV server (where mod_dav stores them as 
files), we hope to reduce ‘broken link’ problems caused 
when users copy or move raw files without realizing they 
are being managed. With DAV, users still have direct 
access to the raw data files when needed, but the files’ 
location on a remote server, and the existence of other 
Ecce related data files in the same directories/collections 
should increase users’ awareness that they should not be 
moved/deleted without considering the consequences. 
 
 In order to determine disk space requirements for our 
new storage system we conducted  preliminary 
conversions of two large databases, which contain a total 
of 259 calculations represented by about 420,000 OODB 
objects with a combined size (excluding raw data files) of 
35 MB on our OODB server.  While it was difficult to 
accurately compare disk space usage between the 
OODBMS and mod_dav we found that the disk 
requirements increased by about 10% when using 
mod_dav with SDBM and 25% when using GDBM.  The 
bulk of the increase was due to mod_dav: each document 
or collection that had metadata had an associated 
database file.  With default sizes of 8 KB and 25 KB for 
SDBM and GDBM respectively, there is significant 



unused but allocated space.  Some of the difference in 
size can also be attributed to the fact that binary 
formatted objects such as doubles are typically more 
compact than textual/XML representations of the same 
data. Finally, these particular data sets were on very small 
chemical systems with correspondingly small output 
dataset sizes. For studies on larger systems, the metadata 
databases will be a much smaller percentage of the total 
space used.   While these differences can be explained, 
we were still somewhat surprised because our OODBMS 
also creates its own overhead, using hidden segments to 
optimize performance.  Alternative back-end DAV 
solutions could be selected to provide more efficient 
storage, though at current storage costs this is not a 
pressing concern for Ecce. 
 
4.  Discussion 
 

 The production release of Ecce version 2.0 with the 
new storage architecture was released in July of 2001, 
and design work for adding DAV capabilities to PNNL’s 
electronic notebook have begun.  As described in 
following paragraphs, we believe that porting Ecce to the 
new architecture meets our objectives:  it satisfies our 
goal of creating a lightweight data storage architecture 
with dynamically evolving schema and loose coupling at 
the data access level.  It will provide a useful platform for 
further research and development efforts. 
 
 Performance assessments comparing Ecce version 1.5 
to Ecce version 2.0 were initiated.  Table 3 summarizes 
size, application startup time, and the operation of each 
tool loading its set of data for a typical calculation.  The 
selected calculation is a Uranium Oxide surrounded by 15 
water molecules 

 
 
Table 3.  Ecce 1.5 vs. Ecce 2.0 beta Performance Summary for Ecce Tools (The client is a Sun Ultra 60. 

Times are elapsed time.) 
 

 Builder BasisTool Calc Editor Calc Viewer Calc Manager Job Launcher 
Ecce 1.5 

Size (res) 30 MB 20 MB 30 MB 30 MB 20 MB 19 M 
Cold Start 1.6 s 5.0 s 2.4 s 1.5 s 2.8 s 0.9 s 

Warm Start 1.2 s 4.6 s 2.2 s 1.1 s 2.7 s 0.8 s 
UO2-

15H2O(a) 0.5 s 2.14 s 7.6 s 4.4 s NA 0.9 5 s 
Ecce 2.0 

Size (res) 25 MB 14 MB 21 MB 25 MB 13 MB 12 MB 
Start 1.1 s 1.0 s 1.0 s 0.9 s 2.0 s 0.42 s 

UO2-15H2O 0.1 s 0.2 s 0.9 s 2.2 s NA 0.48 s 
(a) This is an example chemical system consisting of a molecule of Uranium Oxide surrounded by 15 water 

molecules, typical in size of those studied using Ecce. 
 
(UO2-15H2O) for a total of 50 atoms and individual 
output properties up to 1.8 MB in size.  Although 
enhancing performance was not a primary goal of the 
project, it was our goal to avoid a significant 
performance decrease that would compromise usability.  
As Table 3 shows, the overall performance actually 
improved–in some cases significantly.  While this set of 
tests is small, we have qualitatively found that 
applications perform as well or better than their 
OODBMS-based counterparts overall.  The typical 
workflow processes that a user performs within Ecce did 
not derive significant benefit from the cache-forward 
architecture of our OODB.  If we do encounter areas of 
performance concern where a cache makes sense, it 
would be relatively straight forward to add a cache to the 
layered client architecture of Figure 2. 
 
 Several additional possible optimizations have not 
been pursued, such as taking advantage of HTTP 1.1 

pipelining, making use of multiple simultaneous 
connections, or bundling requests where class usage 
patterns involve setting many data members (mapped to 
metadata on the DAV object) in rapid succession.  Note 
that the test results reported here do not reflect the use of 
HTTP 1.1 persistent connections.  In the current 
environment, reconnecting each time was significantly 
faster than making use of persistent connections, an 
anomaly still under investigation.  Overall, these 
directions, combined with anticipated enhancements in 
DAV server performance levels, provide a variety of 
options for substantially improving performance in 
subsequent Ecce releases. 
 
 In terms of deployability, the DAV-enabled Ecce 
represents a vast improvement.  The client and server 
licensing costs are now zero, assuming use of a no-cost 
implementation of DAV, such as Apache and mod_dav.   
Because DAV allows manipulation of individual objects 



and metadata, the memory and processing requirements 
are much reduced in comparison to the OODBMS 
solution.  Configuring and running Apache/mod_dav is 
significantly simpler than installing an OODBMS.  
Installation is performed by a running a self-extracting 
script that asks a few simple questions much like the 
installation wizards familiar to many computer users.  
Installers are not assumed to be system administrators or 
to know anything about web servers.  In fact most of our 
installers have been international scientists who have 
limited knowledge of web administration.  All were able 
to complete the process readily without the need to 
involve system administrators.  Using an Apache web 
server is expected to become even easier  when Apache 
version 2.0 is released since  the mod_dav module is part 
of the binary distribution.  This will enable future users 
to simply use an existing Apache web server as a dual 
purpose DAV server.  Also, because Ecce can share a 
DAV server, it is possible to have no server setup at all.  
This raises the possibility of small academic groups 
using a departmental DAV server as their data store, or 
outsourcing the server completely.  Although 
commercial DAV services are aimed more at simple 
document and file sharing, we have already 
demonstrated running Ecce against a public DAV server 
hosted by Xythos.  That is, since Xythos’ Web File 
System (WFS) 3.0 product is DAV-compliant, we were 
able to have the Ecce client use it as a database by 
simply configuring the client with the URL of a public 
WFS server maintained by Xythos at their site.  For 
larger installations, the possibility for using multiple 
servers with standard Web load-balancing and fail-over 
services (a path not yet explored in detail) promises 
reliability and scalability.  The level of security can also 
be tailored to group needs; because DAV inherits the 
HTTP authentication, authorization, and encryption 
mechanisms, a variety of options exist.  The standard 
HTTP libraries required to support the various Web 
security protocols are not yet included in Ecce.  When 
this is done, selecting encryption of communications 
with the data store becomes a simple matter of Web 
server configuration.  This broad flexibility makes it 
possible to tailor Ecce to the performance, storage, and 
management needs of individual groups. 
 
 Ecce now provides an unprecedented level of access 
to its data store, leading to a variety of possibilities.  As 
DAV is an extension of HTTP, Ecce users can run 
standard Web browsers to “surf” the Ecce database and 
to view Ecce-generated images, subject to the same 
access controls applied when accessing the data through 
Ecce.  Existing applets and applications can retrieve and 
render molecular structures and other data given the 
HTTP URL for that item within the Ecce data store.  
Relatively simple cgi scripts or servlets can quickly be 
developed to provide thin-client access to many of the 

features currently provided by heavy UNIX/Motif 
clients.  DAV-enabled browsers would provide the 
additional benefit of allowing users to view all of the 
data members mapped as DAV metadata as they 
navigate through the data objects. 
 
 Developers maintaining and enhancing Ecce have also 
benefited from the new data architecture.  Web and DAV 
browsers become debugging tools.  In-house developers 
are no longer burdened with a combined 
application/schema compilation cycle.  Third-party 
developers choose whether to use the Ecce object 
schema or to develop a mapping of their own objects into 
DAV using generic XML parsing tools.  The latter 
option will allow electronic notebooks to directly 
reference and display Ecce data.  In addition, the 
notebooks will have the capability to add additional 
metadata, such as digital signatures and annotation 
relationships, to the data without affecting the operation 
of Ecce.  This open data architecture also makes possible 
feature analysis applications or agents that can 
independently discover objects in the data store (3D 
structures, for example), apply feature analysis 
algorithms, and attach their discoveries to the objects as 
new metadata.  For example, an agent could use the 
molecular geometry, vibrational frequencies, electron 
distribution and other properties calculated via Ecce to 
determine thermodynamic properties of the molecule 
which could then be appended as new DAV metadata of 
the molecule object.  Although Ecce currently cannot 
make use of this additional data, we envision a 
modification that would allow Ecce, or any PSE, to 
present such metadata to the user as part of a query 
interface.  This generic mechanism would make 
metadata created by new applications immediately 
available for use in categorizing and selecting data sets 
within an existing PSE. 
 
 These lightweight integration scenarios can provide 
real benefits to users without system-wide agreement on 
a common schema.  Moreover, the capability to move 
incrementally and partially towards a common schema in 
this open architecture is expected to actually promote 
more semantic integration.  Since DAV supports 
metadata that are calculated dynamically, it is possible to 
imagine generating metadata on-the-fly to support new 
applications.  Using XML stylesheet language 
translations (XSLT), a DAV server could be extended to 
translate metadata for applications built using different 
schema.  Thus, developers can encode the mapping 
between their object schemas external to their 
applications in a dynamically evolvable form.  Although 
this paper has assumed that such mappings will involve 
data members encoded in metadata, we are investigating 
similar mechanisms that would allow XML description 
of the mapping between the (potentially) binary DAV 



objects.  Ultimately, it may be possible to achieve any 
desired level of data interoperability between 
applications through the installation of XML mapping 
descriptions in a common DAV-based data store. 
 
5.  Conclusions 
 
 Full realization of this vision will require significant 
additional work.  As noted earlier, many of the advanced 
features of DAV, including DAV Searching and 
Locating (DASL) and DAV Advanced Collections, are 
still being standardized, while features such as 
transaction support are not yet addressed.  Development 
tools that simplify extracting metadata from binary data 
files are also needed, as are mechanisms to dynamically 
translate between metadata definitions.  However, the 
growing acceptance of XML and DAV should quickly 
lead to a range of choices in these areas.  Once 
developed, these tools will provide a rich, domain-
independent foundation for developing flexible, scalable, 
evolvable PSEs. 
 
 The release of a DAV-based version of Ecce 
represents a significant advance for current Ecce users 
and a step toward a more flexible PSE architecture.  The 
development of a new Ecce architecture to use open, 
metadata-driven repositories based on DAV has provided 
immediate benefits in terms of flexibility, reduced 
deployment and maintenance costs, additional security 
options, and improved data accessibility.  Such schema-
neutral repositories will be a critical component of next-
generation PSE architectures that will enable dynamic 
collaboration across scientific disciplines and enhance 
information discovery.  Using Ecce as a test bed, the plan 
is to continue to expand and explore the possibilities 
inherent in open data architectures for integrating feature 
detection, data mining, and other agents, along with 
notebooks and domain applications.  This approach is 
expected to significantly reduce the barriers to PSE 
development and evolution while enhancing capabilities 
and helping make the PSE a basic part of the scientific 
infrastructure. 
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