Assigning Costs to Health Service Use: Options and Consequences

Health Care Costing Workshop December 6-7, 2007

Paul A. Fishman, PhD

Group Health Center for Health Studies and University of Washington

Mark C. Hornbrook, PhD

Kaiser Permanente Center for Health Research and Oregon Health & Science University

Aims

- Define and contrast "production costs," "prices," and "relative costliness/service intensity"
- What algorithms are used to cost out health services?
- What consequences follow from alternative costing models and data structures?
- How does choice of costing model affect different economic research and evaluation questions?
- How does choice of costing model influence the design and conduct of studies?

Definitions

- Production costs
 - Opportunity cost of all inputs used to produce a welldefined output
- Prices
 - List prices
 - Transaction prices
- Relative costliness
 - Indices of relative costliness across a set of outputs that are expressed relative to a selected numeraire procedure, re: herniorrhaphy

Options for Assigning Dollars to Health Care Services

- Production Costs
 - Micro-costing
 - Step-Down Allocation Models
 - Macro-costing
- Prices
 - Fee Schedules
 - Allowable charges
 - Paid amounts
- Relative Costs
 - RVU/RBRVS-based models

Micro-costing

Description

 Measure quantities and costs of all labor and capital inputs used by a firm to produce a well-defined output

Strengths

- Focuses on actual production costs for a specific firm
- Weaknesses
 - Very labor intensive method
 - Non-standardized cost accounting systems
- Data requirements
 - Detailed payroll, supplies, overhead, and capital expenses data
 - Detailed specifications of types and quantities of outputs
 - Functional accounting system so that inputs can be tied to specific outputs

Why Micro-Costing?

- Micro-costing is the desired method when you want to study variations in production activities, input purchasing practices, and relative production efficiencies across multiple firms and/or across multiple departments/plants in a multi-product or multi-plant firm
- Example: Economies of scale in angioplasty procedures

Step-down Allocation Models

Description

Calculate average costs of departmental outputs using standard financial accounting reports

Strengths

 Don't have to conduct time-and-motion studies to determine how workers allocate their time across joint products

Weaknesses

Medicare cost reports are actually pricing schemes designed to optimize reimbursement

Data requirements

 Medicare Cost Reports or general ledgers of providers and integrated health systems

Why Step-Down?

- Gives the user a better idea of fixed versus overhead costs
- Gives the user a better idea of how production is organized into functional units in complex multi-product firms, such as hospitals and HMOs
- Uses existing financial data

Macro-costing

- Use linear regression to estimate incremental medical care costs attributable to some variable—specific disease, location, time period, demographic characteristic, system attribute
- Dependent variable: total medical care expense per case
- Independent variables: morbidity vector, sociodemographic vector, health care system vector, time vector, organizational vector, etc.

Why Macro-Costing?

- Regression models can account for interaction effects not captured by cost accounting or actuarial models
- Specific diseases may interact with comorbidities to increase utilization and costs
- Diseases may interact with age, gender, and residence location in determining costs

Fee Schedules

Description

 Medicare fee schedule, Blue Cross/Blue Shield Fee schedules, average fee schedules compiled by consulting firms

Strengths

- Easy availability of local and national fee schedules
- Weaknesses
 - List prices contain varying markups
 - Different fee schedules may not be aggregable
- Data requirements
 - Utilization data matched to fee schedule codes

Why Fee Schedules?

- Easy to obtain and easy to use
- The greatest challenge is converting all utilization data to standardized codes within and across health care providers
- Not bothered by distortions introduced by loss-leader prices and demand-based pricing

Allowable Charges

Description

 Captures sum of payer liabilities and patient out-ofpocket expenditures, removing outlier prices

Strengths

Counts resources expended, whether paid for or not

Weaknesses

- Does not capture who paid for what
- Distorted by monopsony power of 3rd party payers

Data requirements

Third-party claims data

Why Allowable Charges?

- User wants a relative resource intensity measure that is not affected by who is paying what portion of the health care bill
- User wants to eliminate some of the variation in prices reflective of profit margins set in response to demand inelasticity

Paid Amounts

Description

- Sum of monetary outlays from payers and patients
- Strengths
 - Actual cash flows from all sources
- Weaknesses
 - Patient copayments require extra data processing effort
 - Allows for price discrimination (by volume, bargaining strength, bad debt write-offs) and cost-shifting
 - Unpaid bills show up as zero cost
- Data requirements
 - Itemized bills and accounts receivable from provider electronic billing systems

Why Paid Amounts?

- User wants transaction prices and wants to preserve geographic, inter-firm, and temporal variations in resource intensity
- If patient copays are fixed percentage of health care bills, could use only the amounts paid by third-party payers, but this does not count private pay services

RVU/RBRVS Methods

Description

- Establishes relative resource intensity of physicians' services, incorporating physician time, skill, risk, and practice costs
- Four separate scales: E&M, surgery, pathology, radiology

Strengths

 Everyone is familiar with the RBRVS and virtually every health care organization providing physicians' services is using it

Weaknesses

RBRVS is really a pricing system designed to support Medicare reimbursement

Data requirements

Standardized coding systems on all medical care services

Why RBRVS?

- User wants a standardized, replicable relative intensity scheme that is not affected by inflation or regional differences in input costs
- User wants to select the RVU conversion coefficient

Choosing a costing model

- Research and study design issues that impact selection of costing model
 - Does data availability rule out options
 - Is a study single or multi-site
 - Characteristics of sites and impact on costing model
 - Integrated systems
 - Pure versus blended payment models
 - Billed charges versus allowed costs versus paid amounts

Examples

- Evaluation of the 'Medical Home' model of primary care delivery
- Cost Consequences of False Positive Mammography
- Incentives to Improve Physician Productivity
 - Describe each study
 - Review the challenges of cost assignment
 - Motivation for selected approach

Medical Home

- Vision for new approach to delivering primary care
- Create home within primary care setting with which patients have most if not all of their contacts
- Goal: all patient needs are met by a specific team
 - Improve continuity of care and reduce segmentation
 - Increase patient satisfaction and reduce turnover

Group Health Experiment

- Medical Home introduced in one of our 20 owned clinics
- New MD led team hired to support reduced panel sizes to scale that model requires
- Clinic chosen for experiment has no specialty providers, urgent care, pharmacy or after hours services

Designing Cost Analysis

Research Question:

- Evaluate clinic specific impact and project system wide implications
- Ideally estimate a production function and assess costs associated with alternative delivery models

Challenge:

- Clinic organization results in systematically different fixed and variable cost structures
- How to measure cost to isolate the intervention and develop projections

Considerations

- Goal was not to generalize to nation but provide plan specific analysis
- Production cost model deemed appropriate
 - Because <u>Step Down</u> approach includes clinic specific overhead it might preclude detection of marginal impact of intervention
 - Difficult to back overhead out of step down approach

Solution

- Micro-Costing
 - Allows recreation of overhead from bottom up
 - And supports analysis of either/or fixed and variable cost
 - Allows for direct comparison of similar fixed and variable inputs across clinics even if organized in different ways
 - Allows for projections to entire system because costs are available at resource level

Cost Consequences of False Positive Mammography

- Research question:
 - Estimate costs to payers of services and procedures related to diagnostic testing among women with false positive mammograms
 - Develop national estimates based on experience of single (GHC) health plan
 - Input into a cost-utility model of women's choices regarding screening

Designing Cost Analysis

- Retrospective analysis of women that had abnormal screening mammograms
 - Based on determination two years following abnormal reading
- Estimate marginal costs relative to True negatives, true positives and false negatives

Challenges

- GHC step down cost allocation approach introduces wide variability of dollar assignment to specific procedures
 - Would GHC specific costs support projections relevant for national experience given specific delivery model?

Considerations

- GHC specific production costs not relevant
 - Assumes clinical decisions are made independently of these costs
- Finite and potentially small set of relevant procedures and easily defined clinical pathways

Solution

- Prices allow for relevant procedures and services allow for greatest generalizability
 - Eliminates variability of production costs for services and procedures both within and over time
 - Interested in payer perspective so prices are appropriate margin
 - Relevant services are universally covered by third party payers so fee schedules that allow for replicability are available

Incentives to Improve Physician Productivity

- Variety of initiatives to improve physician productivity such as pay for performance
- GHC initiative
 - Bonus for meeting target number of encounters
 - Increased same-day appointments (reduce noshows)
 - Mitigating effects:
 - Elimination of gate keeper role
 - Implementation of EMR and other productivity reducing innovations

Designing Cost Analysis

- Time series design to measure within and across physician effect
- Components of initiative (bonuses and EMR implementation) rolled out in phases
- As with Medical Home face challenge of different clinic cost structures
- Additional burden of time series and changing cost relationships over time

Considerations

- Production cost approach most desirable but lack requisite input configuration to isolate relationship between inputs and physician specific
- Prices would not reflect relationship between inputs and outputs
 - Emphasis on quantity but might not effectively adjust for effort
 - Additional challenge of time series and impact of inflation adjustment
 - Do changing prices impact coding or practice patterns

Solution

- Relative Costs using work RVUs
 - Capture both quantity, and in theory, quality of effort
 - Relatively stable over time
 - Allows for conversion to both internal and external cost weights
 - In conjunction with measures of encounters allows for assessment of tradeoff between more rather than more intense services

Discussion

Contact Information

- Paul A. Fishman, PhD
 - fishman.p@ghc.org

- Mark C. Hornbrook, PhD
 - mark.c.hornbrook@kpchr.org