

Turbo Code System Considerations: Version 1.0

Editor: Sam Dolinar

September 26, 1997

1

Contents

1 Introduction 4

2 Brief Description of Turbo Codes 4

3 Turbo Code Performance 5
3.1 Simulated Turbo Code Performance Curves. 5
3.2 Comparison to Traditional Concatenated Codes. 5
3.3 Ultimate Performance Limits. 6

3.3.1 Code-Rate-Dependent Performance Limits. 6
3.3.2 Block-Size-Dependent Performance Limits. 7

3.4 The Turbo Decoder Error Floor. 8

4 Turbo Encoder Implementation on a Spacecraft 9
4.1 Currently Recommended Turbo Encoder. 9
4.2 Encoder Block Diagram. 12
4.3 Encoder Hardware and Software Requirements. 14

5 Turbo Decoder Implementation on the Ground 15
5.1 Recommended Turbo Decoding Algorithm. 16
5.2 Decoder Block Diagram. 16
5.3 Decoder Hardware and Software Requirements. 16

6 Selection of Turbo Code Parameters 19
6.1 Code Rate. 20
6.2 Block Size . 20
6.3 Constituent Codes. 22

6.3.1 Number and Type of Constituent Codes. 22
6.3.2 Constraint Length. 22
6.3.3 Code Generator Polynomials. 23
6.3.4 Code Transparency. 23

6.4 Permutation . 23
6.5 Decoder Stopping Rules. 24
6.6 Parallel versus Serial Concatenation. 24

7 Overall System Issues 24
7.1 Synchronization for Turbo Codes. 25
7.2 Non-ideal Receiver Issues. 26

7.2.1 Lower symbol SNR. 26
7.2.2 Performance with Non-Ideal Tracking Loops. 26

7.3 Decoder Performance Issues. 27
7.3.1 Residual Error Detection and/or Correction. 27

2

7.3.2 Lowering the Turbo Code’s Error Floor. 27
7.3.3 Frame Error Rate (FER) or Word Error Rate (WER). 28
7.3.4 Incomplete Frames. 28
7.3.5 Unequal Error Protection. 28
7.3.6 Decoder Sensitivity to Encoder Errors. 28
7.3.7 Imperfect Computation of Receiver Metrics. 29

8 Summary 30

List of Figures

1 Example of turbo encoder/decoder.. 4
2 Performance curves for various turbo codes.. 6
3 Capacity limits on the BER performance for codes with rates 1/4, 1/3,

1/2 and 2/3 operating over a binary input AWGN channel).. 7
4 Shannon sphere-packing lower bounds on the BER performance for

codes with varying information block lengthk and rates 1/6, 1/4, 1/3,
1/2, operating over an unconstrained-input AWGN channel.. 8

5 Illustration of turbo code error floor. 10
6 Turbo Encoder Block Diagram. 13
7 Turbo Codeblocks for Different Code Rates.. 14
8 Structure of the turbo decoder.. 17
9 Basic Circuits to Implement the Log-MAP Algorithm. 17
10 Downlink Turbo Code Complexity (relative to the baseline convolu-

tional code) for Various Turbo Codes versus RequiredEb/N0 18
11 Comparison of turbo code performance with blocklength-constrained

lower bound.. 21
12 Eb/N0 required for convolutional and turbo codes defined on 1000-bit

blocks . 21
13 Turbo Codeblock with Attached Sync Marker. 25

3

1 Introduction

This report is a high-level summary of turbo codes from a systems perspective. It
first describes some basic concepts underlying turbo codes, and how to construct the
encoders and decoders for these codes. Then it discusses some of the inherent tradeoffs
involved in the selection of turbo code parameters. It concludes by discussing several
system issues that arise with turbo codes.

Because turbo codes are so new, the outstanding issues are in a constant state of flux,
so this report can only give our best current understanding of them. The report itself is
a work in progress, especially as it is being compiled remotely while the editor is out-
of-state with limited computer resources. In particular, the current version contains no
bibliography, and all external references are denoted “to be supplied” (TBS). Comments
on this draft of the report are solicited from readers for improving later editions. Stay
tuned for later developments as they occur.

This report includes material taken verbatim from other sources, especially the
draft recommendation on turbo codes prepared by JPL for CCSDS earlier this year.
Contributors to the material contained herein are Dariush Divsalar, Sam Dolinar, and
Fabrizio Pollara.

2 Brief Description of Turbo Codes

In 1993 a new class of concatenated codes called “turbo codes”, was introduced. These
codes can achieve near-Shannon-limit error correction performance with reasonable
decoding complexity. Turbo codes outperform even the most powerful codes known to
date, but more importantly they are much simpler to decode.

A turbo encoder is a combination of two simple recursive convolutional encoders,
each using a small number of states. For a block ofk information bits, each constituent
code generates a set of parity bits. The turbo code consists of the information bits and
both sets of parity, as shown in Fig. 1.

SIMPLE CODE 1
(Recursive Convol. code)

SIMPLE CODE 2
(Recursive Convol. code)

PARITY
1

PARITY
2

INFORMATION

C
H

A
N

N
E

L SIMPLE DECODER 1
(MAP ALGORITHM)

SIMPLE DECODER 2
(MAP ALGORITHM)

DECODED
INFORMATION

TURBO ENCODER TURBO DECODER

P

•
ITERATIONS

K bits

Figure 1: Example of turbo encoder/decoder.

The key innovation is an interleaverP, which permutes the originalk information
bits before encoding the second code. If the interleaver is well-chosen, information

4

blocks that correspond to error-prone codewords in one code will correspond to error-
resistant codewords in the other code. The resulting code achieves performance similar
to that of Shannon’s well-known “random” codes, but random codes approach optimum
performance only at the price of a prohibitively complex decoder.

Turbo decoding uses two simple decoders individually matched to the simple con-
stituent codes. Each decoder sends likelihood estimates of the decoded bits to the
other decoder, and uses the corresponding estimates from the other decoder asa priori
likelihoods. The constituent decoders use the “MAP” (maximuma posteriori) bit-
wise decoding algorithm, which requires the same number of states as the well-known
Viterbi algorithm. The turbo decoder iterates between the outputs of the two decoders
until reaching satisfactory convergence. The final output is a hard-quantized version of
the likelihood estimates of either of the decoders.

To achieve their phenomenal performance, turbo codes use large block lengths and
correspondingly large interleavers. The size of the interleaver affects buffer requirements
and decoding delay, but has little impact on decoding time or decoder complexity. In
our initial turbo code studies at JPL, we found good performance for various interleaver
sizes ranging from a few thousand bits up to 16384 bits or more. These interleaver
sizes are not much larger than those used by current concatenated codes that have a
Reed-Solomon outer code with 8-bit code symbols.

More recently, we have reexamined the theoretical performance bounds on codes
constrained to have short blocklengths, and have discovered that short-block turbo codes
also perform amazingly well with respect to these limits. Thus, turbo codes also offer
good performance for applications requiring small block sizes on the order of a few
hundreds of bits.

3 Turbo Code Performance

3.1 Simulated Turbo Code Performance Curves

Figure 2 shows the simulated performance of a family of turbo codes of rates 1/2, 1/3,
1/4 and 1/6, constructed for an information block length of 10200 bits. The codes used
for these simulations are the same as the ones described in Section 4. For these results,
the decoder was forced to make its final decoding decisions after 10 iterations.

To achieve a bit error rate (BER) of 10−6, threshold bit-SNRs of approximately
−0.1 dB, +0.15 dB,+0.4 dB, and+1.0 dB, are required by the turbo codes of rates
1/6, 1/4, 1/3, and 1/2, respectively. These same threshold bit-SNRs achieve a codeword
error rate (WER) of approximately 10−4 for these four codes.

3.2 Comparison to Traditional Concatenated Codes

Turbo codes gain a significant performance improvement over the traditional Reed-
Solomon and convolutional concatenated codes currently used by JPL. For example, to

5

1.51.00.50.0-0.5
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

Eb/No, dB

B
E

R
 &

 W
E

R

WER
WER

WER

WER

BER

BER

BER

BER

rate 1/2rate 1/3rate 1/4rate 1/6

10200-bit blocks
K=5 constituent codes
optimized permutation
10 iterations

Figure 2: Performance curves for various turbo codes.

achieve an overall BER of 10−6 with a block length of 10200 bits (depth-5 interleaving),
the required bit-SNRs are approximately 0.8 dB, 1.0 dB, and 2.6 dB for the DSN’s
standard codes consisting of the (255,223) Reed-Solomon code concatenated with the
(15,1/6) convolutional code, the (15,1/4) convolutional code, and the (7,1/2) convolu-
tional code, respectively. The performance gains achieved by the corresponding-rate
turbo codes in Figure 2 range from 0.9 dB to 1.6 dB.

3.3 Ultimate Performance Limits

Turbo codes initially generated so much interest because their performance approaches
the theoretical Shannon capacity limit more closely than any known codes that are
practical to decode.

3.3.1 Code-Rate-Dependent Performance Limits

We initially found that good turbo codes can come within approximately 0.8 dB of the
theoretical limit at a bit error rate (BER) of 10−6. In applying this rule of thumb, it is
important to keep in mind that the limiting performance depends on the code rate.

Figure 3 shows the Shannon-limit performance curves for a binary-input additive
white Gaussian noise (AWGN) channel for rates 1/4, 1/3, 1/2, and 2/3. These curves

6

show the lowest possible bit-energy-to-noise ratioEb/N0 required to achieve a given
BER over the binary-input AWGN channel using codes of these rates.

1.51.00.50.0-0.5-1.0-1.5
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

2/3 bin input
r=1/3 bin input

r=1/4 bin input
r=1/2 bin input

Eb/No, dB

B
E

R

Figure 3: Capacity limits on the BER performance for codes with rates 1/4, 1/3, 1/2 and
2/3 operating over a binary input AWGN channel).

For low BER, each of these capacity-limited performance curves approaches a verti-
cal asymptote dependent on the code rate. The asymptotes are at 1.1 dB for rate 2/3, 0.2
dB for rate 1/2, -0.5 dB for rate 1/3, and -0.8 dB for rate 1/4. The vertical asymptote for
the ultimate Shannon limit on performance (i.e., rate→ 0) is -1.6 dB. A comparison of
these limits shows the improvement that is theoretically possible as a result of lowering
the code rate. For example, for a binary-input AWGN channel, rate-1/2 codes suffer an
inherent 0.7 dB disadvantage relative to rate-1/3 codes, a 1.0 dB disadvantage relative
to rate-1/4 codes, and a 1.8 dB disadvantage relative to the ultimate limit (rate→ 0).

3.3.2 Block-Size-Dependent Performance Limits

Just as a constraint on code rate raises the minimum threshold for reliable communication
above the ultimate unconstrained capacity limit, so does a constraint on codeblock
length. The theoretical limits shown in Figure 3 assume no constraint on block size.
Approaching these limits requires that block sizes grow arbitrarily large.

We evaluated some classic Shannon sphere packing lower bounds on the performance
of arbitrary codes of a given block size and code rate on the additive white Gaussian noise
channel with unconstrained input (i.e., not necessarily binary-input as in Figure 3). The

7

results are shown in Figure 4. The curves labeled “bound” are the block-size-dependent
bounds for each code rate. The horizontal asymptotes labeled “capacity” are the rate-
dependent capacity limits. These asymptotes are slightly different from the vertical
asymptotes in Figure 3 because they represent capacity limits for an unconstrained-
input channel instead of a binary-input channel.

-2

-1

0

1

2

3

4

5

10 100 1000 10000 100000

M
in

im
um

 E
b/

N
o

(d
B

)
fo

r
W

E
R

 =
 1

E
-4

Information Block Size k (bits)

Bound r=1/2

Bound r=1/3

Bound r=1/4

Bound r=1/6

Capacity r=1/2

Capacity r=1/3

Capacity r=1/4

Capacity r=1/6

Capacity r=0

Figure 4: Shannon sphere-packing lower bounds on the BER performance for codes
with varying information block lengthk and rates 1/6, 1/4, 1/3, 1/2, operating over an
unconstrained-input AWGN channel.

This figure shows that, for any given code rate, the minimum threshold for reliable
communication is significantly higher than the corresponding ultimate limit for that code
rate, if the codeblock length is constrained to a given finite size. For example, 1000-bit
blocks have an inherent advantage of about 1.3 dB compared to 100-bit blocks for each
of the four code rates plotted. An additional gain of just over 0.5 dB is potentially
obtained by going from 1000-bit blocks to 10000-bit blocks, and another 0.2 dB by
going to 100000-bit blocks. After that, there is less than another 0.1 dB of improvement
available before the ultimate capacity limit for unlimited block sizes is reached.

3.4 The Turbo Decoder Error Floor

Although turbo codes can be found to approach the Shannon-limiting performance at
very small required bit error rates, the turbo code’s performance curve does not stay
steep forever as does that of a convolutional/Reed-Solomon concatenated code. When
it reaches the so-called “error floor,” the curve flattens out considerably and looks from

8

that point onward like the performance curve for a weak convolutional code. In the error
floor region, the weakness of the constituent codes takes charge, and the performance
curve flattens out from that point onward. The error floor is not an absolute lower limit
on achievable error rate, but it is a region where the slope of the turbo code’s error rate
curve becomes dramatically lower.

We have developed transfer function bounds on turbo code performance [TBS] that
accurately predict the actual turbo decoder’s performance in the error floor region above
the so-called “computational cutoff rate” threshold, below which the bounds diverge
and are useless. However, we have found empirically that the error floor appears to
be extrapolatable backwards through the computational cutoff rate barrier to some (as
yet undetermined) lower value of signal-to-noise ratio where it finally stops being an
accurate predictor of turbo code performance. Furthermore, the extrapolated error floor
in this region appears to be computable as a “false convergence” plateau that we noted
in our initial attempts to evaluate the bound in the region where it diverges. Thus, we
have serendipitously obtained an accurate prediction of the error floor over its entire
range by considering both the full transfer function bound and the false convergence
plateau computed from some of the terms of this bound.

Fig. 5 provides an illustration of the transition of a turbo code performance curve
from a steep “waterfall” region into a much flatter “error floor” region for two of the
turbo codes we have analyzed at JPL. This figure shows the actual simulated turbo code
performance compared with the full transfer function bound (labeled “analytical upper
bound” or “all input weights”) and also the extrapolation of the theoretical bound along
the “false convergence plateau” (labeled “low input weights, error floor”). [Note that
the information block length in this figure is denoted byN rather thank, the notation
used elsewhere in this report.]

The original turbo codes developed by Berrouet al had error floors starting at a
BER of about 10−5. By using our theoretical predictors as guides, we have been able to
design good turbo codes that lower the error floor to possibly insignificant levels (e.g.,
as low as 10−9 bit error rate).

4 Turbo Encoder Implementation on a Spacecraft

A turbo encoder is a combination of two simple encoders. The input is a frame ofk
information bits. The two component encoders generate parity symbols from two simple
recursive convolutional codes, each with a small number of states. The information bits
are also sent uncoded. A key feature of turbo codes is an interleaver, which permutes
bit-wise the originalk information bits before input to the second encoder.

4.1 Currently Recommended Turbo Encoder

JPL presented a preliminary turbo code recommendation to the CCSDS standards com-
mittee. A draft of our recommendation for the turbo encoder is included here.

9

Eb/No, dB

ANALYTICAL
UPPER BOUND

N=BLOCK SIZE

LOW SNR REGION HIGH SNR REGION

CUTOFF
RATE

THRESHOLD

K=5, N=4096
RATE=1/4
CODE

43210-1
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

K=3, N=1000
RATE= 1/3
CODE

LOW INPUT WEIGHTS,
ERROR FLOOR

SIMULATION

ALL INPUT WEIGTHS

C
A

P
A

C
IT

Y

R
A

T
E

 1
/4

R
A

T
E

 1
/3

Figure 5: Illustration of turbo code error floor

10

Our recommendation to CCSDS was in the form of establishing a standard “com-
patible” family of turbo codes for which the code rate is an adjustable parameter that
can be user-selected without affecting the structure, the complexity, or the performance
(relative to respective theoretical limits) of the encoder or the decoder. The block size
in this recommendation was fixed at 10200 bits, at the initial insistence of CCSDS.
However, the compatible family of codes is easily generalized to include different block
lengths.

The recommended turbo code is a systematic code with the following specifications:

1. Code type: Systematic parallel concatenated turbo code

2. Number of component codes: 2 (plus an uncoded component to make the code
systematic)

3. Type of component codes: Recursive convolutional codes

4. Number of states of each convolutional component code: 16

5. Nominal1 Code Rates:r = 1/2, 1/3, 1/4, or 1/6 bit per symbol (selectable)

6. Information Block length:k = 10200 bits

7. Codeblock length:(k + 4)/r = 20408, 30612, 40816, or 61224 bits for rates 1/2,
1/3, 1/4, or 1/6, respectively

8. Turbo Code Permutation

The permuter or interleaver is a fundamental component of the turbo encoding
and decoding process. The interleaver for turbo codes is a fixed bit-by-bit permu-
tation of the the entire block of data. Unlike the symbol-by-symbol rectangular
interleaver used with Reed-Solomon codes, the turbo code permutation scram-
bles individual bits and resembles a randomly selected permutation in its lack of
apparent orderliness.

The recommended permutation for the block length of 10200 is specified by
a particular reordering of the integers 1, 2, . . . , 10200. The full permutation
sequence is available on the World Wide Web at URL:
http://www331.jpl.nasa.gov/public/CCSDSinterleaver.html

9. Backward and Forward Connection Vectors

(a) Backward connection vector for both component codes and all code rates:
G0 = 10011

1Because of “trellis termination” symbols (see next subsection), the true code rates (defined as the
ratios of the information block lengths in item 6 to the codeblock lengths in item 7) are slightly smaller
than the nominal code rates. In this recommendation, the symbolr and the terminology “code rate”
always refers to the nominal code rates,r = 1/2, 1/3, 1/4, or 1/6.

11

(b) Forward connection vector for both component codes and rates 1/2 and 1/3:
G1 = 11011. Puncturing of every other symbol from each component code
is necessary for rate 1/2. No puncturing is done for rate 1/3.

(c) Forward connection vectors for rate 1/4: G2 = 10101, G3 = 11111 (1st
component code); G1 = 11011 (2nd component code). No puncturing is
done for rate 1/4.

(d) Forward connection vectors for rate 1/6: G3 = 11111, G4 = 11101, G5 =
10111 (1st component code); G1 = 11011, G3 = 11111 (2nd component
code). No puncturing is done for rate 1/6.

4.2 Encoder Block Diagram

The recommended encoder block diagram is shown in Fig. 6. Each input frame of
k = 10200 information bits is held in a frame buffer, and the bits in the buffer are
read out in two different orders for the two component encoders. The first component
encoder (a) operates on the bits in unpermuted order (“in a”), while the second component
encoder (b) receives the same bits permuted by the interleaver (“in b”). The read-out
addressing for “in a” is a simple counter, while the addressing for “in b” is specified by
the turbo code permutation.

The component encoders are recursive convolutional encoders realized by feedback
shift registers as shown in Fig. 6. The circuits shown in this figure implement the
backward connection vector, G0, and the forward connection vectors, G1, G2, G3, G4,
G5, specified in item 9 above. A key difference between these convolutional component
encoders and a conventional standalone convolutional encoder is their recursiveness. In
the figure this is indicated by the signal (corresponding to the backward connection
vector G0) fed back into the leftmost adder of each component encoder.

Both component encoders in Figure 6 are initialized with 0s in all registers, and
both are run for a total ofk + 4 bit times, producing an output codeblock of(k + 4)/r
encoded symbols, wherer is the nominal code rate. For the firstk bit times, the input
switches are in the lower position (as indicated in the figure) to receive input data. For
the final 4 bit times, these switches move to the upper position to receive feedback from
the shift registers. This feedback cancels the same feedback sent (unswitched) to the
leftmost adder and causes all four registers to become filled with zeros after the final 4
bit times. Filling the registers with zeros is called terminating the trellis. During trellis
termination the encoder continues to output nonzero encoded symbols. In particular,
the “systematic uncoded” output (line “out 0a” in the figure) includes an extra 4 bits
from the feedback line in addition to thek information bits.

In Fig. 6, the encoded symbols are multiplexed from top-to-bottom along the output
line for the selected code rate to form the turbo codeblock. For the rate 1/3 code, the
output sequence is (out 0a, out 1a, out 1b); for rate 1/4, the sequence is (out 0a, out 2a,
out 3a, out 1b); for rate 1/6, the sequence is (out 0a, out 3a, out 4a, out 5a, out 1b,
out 3b). These sequences are repeated for(k + 4) bit times. For the rate 1/2 code, the

12

D D D D• • • ••

•
•
•

•
•
•

••
•

• • •

out 0a

out 1a

out 2a

out 3a

out 4a

out 5a

ENCODER a

D D D D• • • ••

•
•
•
•
•

•
•
•
•
•

••
•

• • •
• •

•

out 2b

out 3b

out 4b

out 5b

ENCODER b

R
A

T
E

 1
/3

•

•

•

•

•
•

•

•

•
•
•

•
•

R
A

T
E

 1
/4

R
A

T
E

 1
/6

out 1b

•

R
A

T
E

 1
/2

= Take every other symbol

• ••
• • •

•
•

• = Take every symbol

= Exclusive OR+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

x x+y
y

y

•••
•

••
•

+

+

FRAME
BUFFER

in a

in b

Input
Frame

ADDRESS FOR
in a

ADDRESS FOR
in b

G1

G2

G3

G4

G5

G0

G1

G2

G3

G4

G5

G0

Figure 6: Turbo Encoder Block Diagram

13

output sequence is (out 0a, out 1a, out 0a, out 1b), repeated(k + 4)/2 times. The turbo
codeblocks constructed from these output sequences are depicted in Figure 7 for the
four nominal code rates.

Rate 1/3 Turbo Codeblock (30612 symbols)

out 0a out 1a out 1b......

1st transmitted
symbol

last transmitted
symbol

Rate 1/4 Turbo Codeblock (40816 symbols)

out 0a out 1a out 1b out 0a out 1a out 1b

......

1st transmitted
symbol

last transmitted
symbol

Rate 1/6 Turbo Codeblock (61224 symbols)

......

1st transmitted
symbol

last transmitted
symbol

Rate 1/2 Turbo Codeblock (20408 symbols)

out 0a out 1a

1st transmitted
symbol

last transmitted
symbol

out
0a

out
2a

out
3a

out
1b

out
0a

out
2a

out
3a

out
1b

out
0a

out
2a

out
3a

out
1b

out
0a

out
3a

out
4a

out
5a

out
1b

out
3b

out
0a

out
3a

out
4a

out
5a

out
1b

out
3b

out
0a

out
3a

out
4a

out
5a

out
1b

out
3b

out 0a out 1b out 0a out 1bout 0a out 1a

out 0a out 1a out 1b

out
0a

out
2a

out
3a

out
1b

out
0a

out
3a

out
4a

out
5a

out
1b

out
3b

Figure 7: Turbo Codeblocks for Different Code Rates.

4.3 Encoder Hardware and Software Requirements

The turbo code introduces a couple of unique encoder complexity issues. The informa-
tion block needs to be buffered and read out in a permuted order as part of the encoding
process. This buffering has no analog in the plain convolutional encoder, but the size of
this buffer is comparable to that required for an interleaved Reed-Solomon code block
of the same size. The difference is that the traditional JPL concatenated coding architec-
ture completely separates the Reed-Solomon encoder (with its associated buffer) from

14

the convolutional encoder. Thus, the turbo encoder cannot be regarded as a plug-in re-
placement for the convolutional encoder hardware. The turbo encoder actually replaces
the Reed-Solomon/convolutional encoder combination.

Another spacecraft complexity consideration is how to implement the permutation.
The best permutations for turbo codes look very random, and this requires specifying a
random-looking readout order via a ROM. Alternatives exist, and we have found some
good permutations that can be generated by simple rules rather than from a lookup table.

Some specific hardware and software considerations are:

1. Encoder Memory Requirements

The two main encoder memory requirements are (a) storing an information data
block while it is being encoded, and (b) storing the permutation (unless it is
computed on-the-fly). Both of these requirements are driven primarily by the
information block sizek (in bits). The RAM required to hold the pre-encoded
data must be at leastk bits, and the size of the ROM that holds a pre-computed
permutation would be at leastk log2 k bits.

2. Encoder Processing Requirements

Encoder processing requirements are very modest, consisting of a small number
of modulo-2 additions to implement the constituent recursive convolutional en-
codings. However, if the permutation is computed on-the-fly to save ROM, there
will be additional processing requirements to compute the permutation.

3. Encoder Latency

An entire information block ofk bits must be read in before the encoding can
proceed, because some of the bits in the tail end of block will be permuted to the
front and need to be encoded first. Thus, there is a fundamental encoding latency
of at leastk bits in the encoding process.

5 Turbo Decoder Implementation on the Ground

The turbo decoder uses an iterative decoding algorithm based on simple decoders indi-
vidually matched to the two simple constituent codes. Each constituent decoder makes
likelihood estimates derived initially without using any received parity symbols not
encoded by its corresponding constituent encoder. The (noisy) received uncoded in-
formation symbols are available to both decoders for making these estimates. Each
decoder sends its likelihood estimates to the other decoder, and uses the correspond-
ing estimates from the other decoder to determine new likelihoods by extracting the
“extrinsic information” contained in the other decoder’s estimates based on the parity
symbols available only to it. Both decoders use the “maximuma posteriori” (MAP)
bitwise decoding algorithm, which requires the same number of states as the well-known
Viterbi algorithm. The turbo decoder iterates between the outputs of the two constituent

15

decoders until reaching satisfactory convergence. The final output is a hard-quantized
version of the likelihood estimates of either of the decoders.

5.1 Recommended Turbo Decoding Algorithm

The CCSDS standards committee did not discuss a recommendation for the turbo de-
coder. However, the code performance curves in Section 3 are based on a certain
decoding algorithm, so we recommend its usage. Variations from this algorithm will
result in performance tradeoffs.

The recommended turbo decoder (for the turbo code family currently recommended
to CCSDS) has the following characteristics:

1. Decoder type: Iterative “turbo” decoding using two 16-state component decoders
(see Reference [TBS])

2. Type of component decoders: Soft-input, soft-output MAP decoders (see Refer-
ence [TBS])

3. Quantization of channel symbols: At least 6 bits/symbol

4. Quantization of decoder metrics: At least 8 bits

5. Number of decoder iterations: Variable depending on signal-to-noise ratio.

5.2 Decoder Block Diagram

The overall turbo decoding procedure is as depicted in Figure 1 and described earlier.
The “simple decoders 1 and 2” each compute likelihood estimates using a version of the
MAP or log-MAP algorithm as described in [TBS]. A diagram showing the structure of
the turbo decoder in more detail is shown in Fig. 8.
Fig. 9 shows the basic circuits needed to implement the log-MAP algorithm.

5.3 Decoder Hardware and Software Requirements

The turbo code’s selling point is that it provides near-Shannon-limit performance at
low coding complexity. There is a dramatic reduction in complexity compared to the
long-constraint-length (K = 15) convolutional codes that have been designed for recent
missions in our prior attempts to squeeze performance toward the Shannon limit.

To first order, the complexity of a turbo decoder relative to a convolutional decoder
using thesamenumber of trellis states and branches can be estimated by multiplying
several factors: (a) a factor of 2 because the turbo code uses two component decoders; (b)
another factor of 2 because the individual decoders use forward and backward recursions
compared to the Viterbi decoder’s forward-only recursion; (c) another small factor
because the turbo decoder’s recursions require somewhat more complex calculations

16

METRICS2

MAP2

Decoder2

METRICS1

MAP1

Decoder1

extrinsic info.
(innovation)

fr
om

 c
ha

nn
el

a priori likelihoods

Delay

P

P
-1

+

+

BACKWARD

Extrinsic

FORWARD

FORWARD
BACKWARD

Γk

Ak
Ak-1

Bk-1

Bk

+

extrinsic info.
(innovation)

decoded
bits

Extrinsic

Figure 8: Structure of the turbo decoder.

Basic Structure for Forward and Backward
Computation in the Log-MAP Algorithm

Compare

Select
1- of- 2

Select
1-of- 2

x

Look up
Table

Ak-1(Si
-(1)) Ak-1(Si

-(0))

Ak(Si)

E E

-
+

log(1+e-x)

 Normalize
Ak(Si) - max{Ak(Sj)}
 j

+

+

Branch Metric
 Γk(x(0,Si))

Branch Metric

 Γk(x(1,Si))

Normalized Ak(Si)

Compare

Select
1- of- 2

Select
1-of- 2

x

{ Σk(Si,u)
}

log Pk(u|y)

E E

-
+

log(1+e-x)

+

+

Basic Structure for Bit Reliability Computation
in the Log-MAP Algorithm.

•

•

•

•
•

••
•

Initial
value

2

1

sw1

sw2

Look up
Table

State Metric State Metric

Total Metric

Figure 9: Basic Circuits to Implement the Log-MAP Algorithm

17

than the Viterbi decoder’s; and (d) a factor to account for the turbo decoder’s multiple
iterations compared to the Viterbi decoder’s single iteration. The relative decoding
complexity for twodifferent turbo codes or twodifferentconvolutional codes can be
estimated by multiplying two additional factors: (e) the number of trellis states; and (f)
the number of trellis branches per input bit into each state. We are trying to evaluate
how big factor (c) should be, and whether factors (b) and (d) might be reduced on the
average by using a smart turbo decoding algorithm. Such an algorithm might allow the
decoder to stop its iterations early if a given codeword can already be decoded reliably,
or to skip over portions of the forward and backward recursions for some iterations.

Factors (a) through (d) are 1 for Viterbi decoders of convolutional codes. For the
CCSDS standard constraint-length-7 convolutional decoder, factor (e) is 26 = 64, and
factor (f) is 2/1 = 2. For the Cassini constraint-length 15, rate 1/6 convolutional
decoder, factor (e) is 214 = 16384 and factor (f) is 6/1 = 6. For the turbo codes
specified in Section 4, factor (e) is 24 = 16 and and factor (f) ranges from 2/1 = 2 to
6/1 = 6.

Figure 10 shows estimated complexity versus performance tradeoffs for various rate-
2/3 turbo codes, relative to that of a baselineK = 7 convolutional code. Although the
specific data in this figure was derived for a high-code-rate, high-data-rate application
(e.g., very low number of iterations allowed), similar complexity versus performance
tradeoff curves can be drawn for the codes specified in Section 4.

3.53.02.52.0
0

1

2

3

4

Required Concatenated Code Eb/No, dB

R
el

at
iv

e
C

o
m

p
le

xi
ty

Turbo code
16-states

Turbo code
8-states

Turbo code
4-states

C
o

n
vo

lu
tio

n
al co

d
es

K=9

K=8

K=7

m=3

m=4

m=6

m=8

m=3

m=4

m=3

m=4

m = turbo code iterations

K = convol. code constraint length

Figure 10: Downlink Turbo Code Complexity (relative to the baseline convolutional
code) for Various Turbo Codes versus RequiredEb/N0

The estimates in Fig. 10 take into account complexity factors (a), (b), (d), and (e)
as appropriate for each individual turbo code considered. Factor (c) is assumed to be

18

1, because we at present do not have a good estimate of how closely the complexity
of a MAP-decoder recursion can be pushed toward that of a Viterbi decoder. This
assumption causes the results in Figure 10 to be slightly optimistic. On the other hand,
there is a significant potential for improvement in factors (d) and (b) if we can eventually
design a smart turbo decoder that can correctly decide to terminate its iterations early
for the vast majority of codewords that require fewer iterations than the maximum, or
to skip portions of the forward or backward recursions in sections of the trellis that have
already converged. In this case, the turbo code complexities depicted in Figure 10 might
actually turn out to be slightly pessimistic.

Some specific hardware and software considerations are:

1. Decoding Speed

The decoder processing requirements are proportional to complexity factors (a)
through (f). The overall complexity factor translates directly to decoder processing
time or to additional hardware to perform parallel decodings. Because the turbo
decoder operates on discrete blocks ofk bits, arbitrarily high decoder throughput
may be gained by processing whole blocks in parallel devices. The price for this is
additional hardware and additional latency. For more information on the detailed
processing requirements for each step of the log-MAP decoding algorithm, see
Reference [TBS].

2. Decoder Memory

The decoder memory requirements are proportional to complexity factors (a) and
(e). For more information on the detailed memory requirements of the log-MAP
decoding algorithm, see Reference [TBS].

3. Decoding Delay

Because the decoder processes whole blocks ofk bits at a time, there is a minimum
decoding delay ofk bits. This latency is further increased by the time required
for the decoder to process each block. If parallel decoders are used to increase
decoding throughput, the latency increases in proportion to the number of parallel
decoders.

6 Selection of Turbo Code Parameters

Because turbo codes can achieve great performance over a wide range of parameter
values, the selection of reasonable code parameters is a major systems issue. The system
design must assess all the parameter-space tradeoffs as they affect both the performance
of the code and systems-related considerations. Turbo codes give the system designer
vast flexibility to choose any desirable combination of parameters without sacrificing
performance more than intrinsically necessary.

19

6.1 Code Rate

The code rate of the currently recommended turbo encoder is selectable from 1/2, 1/3,
1/4, or 1/6. Lower code rates are also possible to achieve even better performance if the
receivers can work at the correspondingly lower channel-symbol SNR (Es/N0). The
rule of thumb is that the potential coding gain for using lower code rates pretty much
follows the corresponding gain for the ultimate code-rate-dependent theoretical limits
given in Section 3.3.

6.2 Block Size

Larger block sizes than the current CCSDS recommendation (10200 bits) can be desir-
able for obtaining the utmost performance. On the other hand, some applications (e.g.,
emergency links, short-lived probes) may require much shorter blocks.

We have already seen in Figure 4 how some fundamental theoretical lower bounds
on the performance of arbitrary codes on the additive white Gaussian noise channel
vary with code block length. Amazingly, this variation is mirrored by the empirically
determined dependence on block length of the performance of a large family of good
turbo codes.

Figure 11 shows simulation results compared to the lower bound for a family of rate-
1/3 turbo codes with different block lengths (using the generator polynomials specified
in Section 4). This comparison is approximate, because the simulations were performed
for a bit error rate (BER) of 10−6, while the bounds are computed for a codeword error rate
(WER) of 10−4. [These two requirements give equivalent threshold bit-SNRs (within a
few hundredths of a dB) for the 10200-bit turbo codes whose performance is plotted in
Figure 2. For smaller blocks, the BER requirement of 10−6 is overly stringent compared
to a WER requirement of 10−4 and thus it produces slightly pessimistic simulation results
compared to the bound.]

Although there is a 2 dBperformance differential between the simulation results for
256-bit blocks and 49152-bit blocks, we see that the difference between the simulations
and the lower bounds remains approximately the same. The simulation results are about
0.5 dB to 1.0 dB from the theoretical limits for all code rates ranging from 1/6 to 1/2
and at all codeblock sizes ranging from 256 to 49152 information bits. We have similar
but less extensive results for turbo codes in the same family with rates 1/2, 1/4, and 1/6.

The significance of this half-theoretical, half-empirical result is that we might ex-
pect to construct families of turbo codes that approach the ultimate theoretical limits
uniformly regardless of code rate or block size. Many people have been hearing the
wrong message about turbo codes. It is true that the worldwide excitement about turbo
codes began with the discovery that they approach the ultimate Shannon limit at very
large blocklengths. However, it is false to jump to the conclusion that turbo codes are
therefore only good for large blocks. In fact, what we now know is just the opposite:
turbo codes appear to be uniformly good for short blocks as well as long blocks.

20

-1

0

1

2

3

4

5

10 100 1000 10000 100000

T
hr

es
ho

ld
 E

b/
N

o
(d

B
)

Information Block Size (bits)

Turbo r=1/3

Bound r=1/3

Note: Bound is calculated for word error rate of 10-4, while turbo code simulations were for bit error rate of 10-6.

Figure 11: Comparison of turbo code performance with blocklength-constrained lower
bound.

The meaning of “uniformly good” is that both short-block and long-block turbo codes
can approach the ultimate theoretical performance limits for arbitrary codesconstrained
to the same block size. In contrast, fixed non-turbo codes such as the(15, r)convolutional
codes can only approach the ultimate theoretical limits at their particular “natural” block
size. For a non-block code like the(15, r) convolutional code, the natural block size
is not precisely defined, but is on the order of 100 to 200 bits, i.e., the length of the
decoding delay required for the Viterbi decoder to perform well.

For example, for blocks on the order of 1000 bits, a 1000-bit turbo code can exploit the
intrinsic theoretical performance advantage of 1000-bit blocks over 150-bit blocks (just
over 1 dB of advantage according to Figure 4). On the other hand, a(15, r) convolutional
code is stuck with essentially the same performance for a 1000-bit decoding delay that it
obtains for a 150-bit delay. At 1000 bits, therefore, a(15, r) convolutional code cannot
compete in performance with a 1000-bit rate-r turbo code.

The following table shows some rough estimates of the comparative performance
of K = 5 turbo codes versusK = 15 convolutional codes for 1000-bit blocks:

Convol (15,r)
 BER=10–6

Turbo (15,r)
 BER=10–6

Convol (15,r)
 BER=10–3

2.7 dB
2.45 dB
2.2 dB

1.1 dB
0.85 dB
0.6 dB

1.15 dB
0.9 dB

0.65 dB

r=1/3
r=1/4
r=1/6

Figure 12:Eb/N0 required for convolutional and turbo codes defined on 1000-bit blocks

As seen from columns 1 and 2 of the table, turbo codes beat the corresponding-rate

21

convolutional codes by about 1.6 dB inEb/N0 at BER=10−6. Alternatively, turbo codes
beat the corresponding convolutional codes by three orders of magnitude in BER when
both codes are constrained to operate at roughly the sameEb/N0 (columns 2 and 3 of
the table). Either way, it is a huge advantage in favor of turbo codes for 1000-bit blocks.

Interestingly enough, the same weakness also shows up in the other direction for
a fixed convolutional code. If one were to insist on using the(15, r) convolutional
code with a 50-bit block (and correspondingly reduce the decoding delay of the Viterbi
decoder), the decoder’s performance would fall apart dramatically. [Of course, in this
situation one would likely switch to a(7, r) convolutional code, for which the ”natural”
block length is on the order of 32 to 64 bits.] On the other hand, the performance of a
50-bit turbo code would degrade gracefully by the amount mandated theoretically for
any 50-bit code.

Extrapolating from Figure 11, it is likely that one single turbo code (i.e., using the
same two component encoders but different permutations for different block lengths)
would be uniformly good for 50-bit blocks, 150-bit blocks, 1000-bit blocks, 10000-
bit block, or 100000-bit blocks. This is much simpler and also provides a performance
advantage compared to the present coding alternatives: 1) choosing(7, r) convolutional
codes for 50-bit blocks; 2) choosing(15, r) convolutional codes for 150-bit blocks; 3)
choosing (255,223) Reed-Solomon +(K , r) convolutional codes for 10000-bit blocks;
and 4) forcing one of these three codes to be ill-matched to the required block size, when
the required block size is not 50-bits, 150-bits, or 10000-bits.

6.3 Constituent Codes

Effective turbo codes can be constructed from a wide variety of constituents. For
our preliminary recommendation to CCSDS, we settled on a particular choice for the
constituent codes. Here are some of the factors underlying this choice.

6.3.1 Number and Type of Constituent Codes

Turbo codes with more than two constituent codes are feasible in principle, but to this
point they have not been well studied — mainly because two-component turbo codes
already perform so well. The best performing and best understood constituent codes
discovered thus far are the class of recursive convolutional codes, as recommended in
Section 4 and in the original turbo code paper by Berrouet al.

6.3.2 Constraint Length

Our currently recommended turbo code is formed from two recursive convolutional
codes with constraint lengthK = 5. Higher constraint lengths are more complex to
decode, and thus far they seem to offer negligible performance improvement. In the
other direction, constituent codes with constraint lengths less than 5 may be desirable
to achieve higher decoding speeds.

22

We have some recent results indicating that turbo codes using a particular set ofK =
4 constituents may perform almost as well as the ones we are currently recommending
based onK = 5 constituents. This merits further study, because the corresponding
decoder is only half as complex or twice as fast. For very high data rate applications,
we are also studying super-low-complexity codes constructed from two-state (K = 2)
constituents.

6.3.3 Code Generator Polynomials

Considerable theory has been developed to guide the choice of constituent code generator
polynomials. This theory is based on the transfer function bounds that are used to
predict the turbo decoder error floor. The error floor can be lowered the most if the
divisor polynomial (G0 in Figure 6) is a primitive polynomial. Additional theoretical
considerations guide the choice of the remaining polynomials.

6.3.4 Code Transparency

Turbo codes are inherently non-transparent, meaning that a totally inverted codeblock
cannot be an exact codeword. However, a turbo code can be made “approximately
transparent” except near the edges of the codeblock. It is a system design issue to
decide whether an approximately transparent turbo code would be preferred, at some
sacrifice of performance, to one designed without any transparency constraints. The
codes recommended in Section 6 arenotconstructed to be approximately transparent.

6.4 Permutation

The permutation included in our preliminary recommendation to CCSDS looks very
random. However, it was manually optimized to yield the best performance for the
fixed block sizek = 10200, and it outperforms a purely random permutation by a small
amount. Such an optimized permutation needs to be stored onboard in ROM because it
is infeasible to recompute it on the fly for every codeword.

The best understood, and only slightly poorer performing, permutations for turbo
codes are completely random. However, we have discovered that pseudo-random se-
quences generated by some simple randomizing algorithms (such as simple feedback
shift register sequences) are not sufficiently random for generating good turbo code
permutations. But there are some slightly more complex algorithms for generating
pseudo-random permutations that perform better. We are currently examining an on-
the-fly permutation generation algorithm of moderate complexity that performs within
about 0.1 dB of the optimized permutation.

23

6.5 Decoder Stopping Rules

Presently our simulated turbo decoders stop iterating after a predetermined number of
iterations. For some codewords (or sections of codewords), the predetermined number of
iterations may be too many or too few. We need to study methods to stop the decoder’s
iterations when convergence is satisfactory, i.e., without wasting iterations when the
decoder has already converged, and without halting iterations prematurely when the
decoder needs a little more time.

An efficient decoder stopping rule will reduce the average number of iterations and
increase the average decoding throughput. This will come at the expense of a slightly
more complicated decoding algorithm and increased decoder buffering requirements to
accommodate variable decoding times.

6.6 Parallel versus Serial Concatenation

Unlike conventional concatenated codes, turbo codes are “self-concatenated” in that
they envelop their concatenation. For conventional concatenated codes (such as JPL’s
traditional Reed-Solomon and convolutional code concatenation) the concatenation is
external to the separate constituent codes, and the two codes are decoded separately.2

For turbo codes, the concatenation is internal to the definition of the code, and the
decoder is constructed to decode the whole code at the same time, not in two distinct
pieces.

The original turbo codes were based on “parallel” concatenations of constituent
codes, as specified here in Section 4. Later, similar codes were developed at JPL based
on serial concatenation. Serially concatenated codes offer the potential of somewhat
better performance than parallel concatenated codes, including lower error floors. To
date, there are fewer simulation results for serially concatenated codes, and this is the
main reason they were not presented as part of our preliminary recommendation to
CCSDS. Study is ongoing to determine the relative benefits of serial concatenation
versus parallel concatenation.

7 Overall System Issues

In addition to the basic tradeoff considerations in selecting the fundamental turbo code
parameters, there are a number of broader system issues that arise when turbo codes
are used. This section discusses synchronization issues and various types of non-ideal
performance issues.

2An exception to this general rule is the special Feedback Concatenated Decoder (FCD) developed for
the Galileo S-Band mission, in which some information is passed back and forth between the convolutional
decoder and the Reed-Solomon decoder in a 4-stage iterative process. In this sense, the 4-stage code
developed for Galileo can be regarded as a less powerful precursor of turbo codes. However, turbo
decoders pass soft information more efficiently between their constituent decoders, and the turbo code
uses simpler constituent codes while achieving better performance.

24

7.1 Synchronization for Turbo Codes

Codeblock synchronization is necessary for proper decoding of turbo codeblocks. Syn-
chronization of the turbo codeblock is achieved by using a stream of fixed-length code-
blocks with an attached sync marker between them. The code symbols comprising the
sync marker for the turbo code are attached directly to the encoder output without being
encoded.

Synchronization is acquired on the receiving end by recognizing the specific bit
pattern of the sync marker in the raw (undecoded) telemetry channel data stream. Syn-
chronization is then confirmed by making further checks. Frame synchronizers should
be set to expect a marker at a recurrence interval equal to the length of the sync marker
plus that of the turbo codeblock.

A diagram of a turbo codeblock with attached sync marker is shown in Fig. 13.
Note that the lengths of the turbo codeblock and the sync marker are both inversely
proportional to the nominal code rater . This yields roughly equivalent synchronization
performance independent of code rate.

(K + 4) / r bits

Turbo Codeblock

32/r
bits

Rate-Dependent
Attached Sync

Marker

r = 1/2, 1/3, 1/4, or 1/6 (nominal code rate)

K = 10200 (Telemetry Transfer Frame Length or Information Block Length)

Figure 13: Turbo Codeblock with Attached Sync Marker

At JPL frame sync has traditionally been acquired using a sync marker defined in
the information bit domain rather than the encoded symbol domain, and detected after
Viterbi decoding. This method relies on the fact that frame sync is not required for
successful operation of the Viterbi decoder but is necessary for decoding the Reed-
Solomon code. The Viterbi decoder is capable of finding its own “node sync” without
the aid of known sync markers in the data stream. In contrast, the Reed-Solomon decoder
has no effective method (other than trial and error) for determining frame sync on its
own. Thus, frame sync has traditionally been performed by looking for the presence of
a known sync marker in the Viterbi-decoded bit stream, without any assistance from the
Reed-Solomon decoder

A similar approach will not work efficiently for turbo codes, because each constituent
convolutional code is too weak by itself to detect a reasonable size marker reliably,
and because the powerful combined turbo decoding operation needs to know the code

25

block boundaries before it can iterate between permuted and unpermuted data domains.
Therefore, turbo code applications will need to use channel-symbol-domain frame sync
methods similar to those used by the Galileo S-band mission. In addition, the frame
sync algorithms for turbo codes will have to work at much higher data rates.

Turbo decoders see the same type of soft channel information as Viterbi decoders, and
should in principle be capable of processing it to determine sync, just as Viterbi decoders
can find their own node sync without looking for external sync markers. However, this
will not be easy. A turbo decoder needs to determine the correct “phase” of the incoming
symbol stream moduloN, whereN is the total number of channel symbols per turbo
codeblock, while the Viterbi decoder only needs to determine the correct “phase” modulo
n, where 1/n is the rate of the code. These numbersn andN typically differ by three
or four orders of magnitude. We are investigating whether there are circumstances for
which markerless synchronization methods might be feasible for turbo codes.

7.2 Non-ideal Receiver Issues

An ideal receiver hands to the turbo decoder perfectly synchronized, perfectly soft sym-
bols corrupted only by pure additive white Gaussian noise. The low-SNR operating con-
ditions achievable by turbo codes require the systems designer to avoid over-optimizing
the code performance at the expense of declining receiver performance.

Some specific issues arising from the interplay of the code selection and receiver
performance are the following.

7.2.1 Lower symbol SNR

To take advantage of the improved performance of turbo codes, the receiving system
must operate at a significantly lower symbol signal-to-noise ratio (SSNR) than that of a
less powerful code with the same code rate. This imposes more stringent demands on the
receiver’s ability to perform symbol synchronization. The performance advantages of
turbo coding may be negated if the receiver cannot lock onto the lower-SSNR symbols.

Since the threshold SSNR drops in direct proportion with the code rate, whereas the
threshold bit signal-to-noise ratio (BSNR) converges to a fixed limit as code rate→ 0
(see Section 3.3.1), lowering the code rate too far toward 0 produces diminishing returns
in overall code performance while continuing to tax the receiver heavily. It is a systems
issue to decide on the code rate that provides the best tradeoffs. For turbo codes, the
variation of code performance with code rate more or less mirrors that of the ultimate
limits on performance, as given in Section 3.3.1.

7.2.2 Performance with Non-Ideal Tracking Loops

We have not yet assessed how much the turbo decoder’s performance degrades when
there are small errors in tracking and detecting the received symbols. However, with
turbo codes, there is also a possibility to improve the receiver’s tracking performance by

26

feeding back soft information from the decoding process to assist the receiver’s tracking
loops. Preliminary assessments [TBS] of potential improvements are encouraging.

7.3 Decoder Performance Issues

Turbo codes and their associated decoders are designed to operate as standalone coding
systems providing good performance without any further assistance. However, several
systems issues related to code performance do arise.

7.3.1 Residual Error Detection and/or Correction

In applications requiring extremely low error rates, the error rate of a turbo code in the
error floor region may be unacceptable despite our best efforts to lower it. The solution
may be to add an outer code to work in conjunction with the turbo code as the inner
code. The outer code would ideally be a binary code such as a BCH code rather than a
nonbinary Reed-Solomon code. Because of the sparseness of errors on the error floor
(typically a handful of bit errors per block), the outer code could have a very high code-
rate and would shift the required SNR just a tiny amount. We are just starting to look
at issues pertaining to the selection of a good outer code and its resulting performance.
To correctly analyze the performance of the concatenated system, we will first need to
amass and study a large collection of simulated turbo decoder error statistics that are
much more detailed than the average error rates we have determined previously.

7.3.2 Lowering the Turbo Code’s Error Floor

Even without using an outer BCH code, we have been able to design good turbo codes
that lower the error floor to possibly insignificant levels (e.g., 10−9 bit error rate). Such
performance may be sufficiently good for JPL applications to obviate the need for an
outer error-correcting code. In that case, a simpler outer code (such as a CRC code)
may still be desirable for error detection only.

Our insights into lowering the error floor came from analyzing the theoretical predic-
tors of turbo code performance mentioned in Section 3.4. These theoretical predictors
are important because they give us insight not only into the overall error rate but also
into the detailed error statistics. Our theoretical model for the error floor predicts sparse,
nearly independent bit errors in the turbo decoded blocks that are decoded erroneously.
Under this error model, the performance of an outer code should be accurately com-
putable by summing a binomial probability distribution. The main question remaining
is the degree of validation necessary to confirm that the model indeed matches the actual
error floor behavior. Because of the rarity of errors in the error floor region, it is very
difficult to obtain sufficient simulation data to confirm all aspects of the predicted error
statistics.

Conversely, in the “waterfall” region of the turbo code performance curve where
simulated errors are plentiful enough to determine the detailed error statistics, the im-

27

plications are bad with respect to the efficacy of an outer code. In the waterfall region,
the turbo decoder occasionally encounters a code block for which its iterative decoding
algorithm fails to converge. The result is an avalanche of errors in a few bad blocks that
cannot be corrected by any reasonable outer code. The message is that an outer code
will provide very little benefit at signal-to-noise ratios below the error floor region.

7.3.3 Frame Error Rate (FER) or Word Error Rate (WER)

For many applications, especially when the data has been compressed, the frame error
rate (FER) is a more relevant measure of code performance than the bit error rate (BER).
When there is a one-to-one correspondence of data frames and code blocks, the frame
error rate is synonymous with the turbo code’s word error rate (WER).

Most of our turbo code simulations have measured the performance of the code by
its BER. Only recently have we begun assembling a comparable set of simulation data
on WER for turbo codes. Our preliminary results indicate that WERs on the order of
10−4 are feasible with careful selection of the generator polynomials of the constituent
codes. Further simulations of obtainable WERs are needed.

7.3.4 Incomplete Frames

If a long received turbo codeblock is incomplete, is there any way to decode part of
the data? We are looking into ways to modify the turbo algorithm to recover part of a
codeblock in case some critical data needs to be salvaged.

7.3.5 Unequal Error Protection

Headers of a packetized system (such as SCPS) might need stronger protection than the
body of the data. This might also allow an easing of the BER requirement on the non-
header data. Turbo codes lend themselves naturally (in principle) to providing unequal
error protection. In a standard turbo code such as the ones presented in Section 4, all
information is encoded twice, once permuted and once unpermuted. Improved error rates
on small portions of a codeblock might be obtained by encoding selected information
tidbits three or more times within the same codeblock. We have not yet analyzed the
performance of such a code.

7.3.6 Decoder Sensitivity to Encoder Errors

We briefly looked at a problem heretofore not considered in our turbo code design or
performance analysis. Evidently there is a small but non-vanishing probability that the
RAM holding the block of information bits might be struck by a cosmic particle causing
one of the information bits to flip. If this bit flip should occur after that bit has been
encoded by one of the turbo code’s component encoders but before it is encoded by the

28

second component, might this have a catastrophic effect on the turbo decoder, causing
corruption of the entire information block?

The answer to this question is apparently no — provided that the decoder allows for
the possibility that this type of error might occur. Our first attempts at decoding a block
corrupted in this manner did indeed manifest error propagation throughout the block.
However, we showed that we can eliminate this error propagation by introducing minor
modifications to the decoding algorithm that account for the possibility of a bit flip before
encoding. For one such modification, we assumed that the location of the corrupted
bit is known to the decoder (e.g., by using error detection onboard the spacecraft). In
this case, each component decoder should “erase” the corrupted bit by always reporting
to the other component decoder a log-likelihood ratio of zero for that bit, regardless of
the values of the received symbols or any extrinsic information obtained on previous
iterations. For the second modification, we assumed no knowledge about the location
of the corrupted bit but we allowed the decoder to consider that all the bits in the block
might be suspect with a certain probability. As a first-cut model, we simply saturated the
decoder’s log-likelihood ratio for every bit at a reliability value that would not exceed the
a priori confidence that each component encoder actually encoded the same bit value.
For example, with one bit flip per 10000 bits, it is appropriate to saturate the likelihood
ratio at approximately 10000:1, because, no matter how confidently one component
decoder determines the value of a given bit, there is a 1 in10000 chance that the bit will
have the opposite value in the eyes of the second decoder.

With either of these algorithmic modifications in place, we did not see any error
propagation beyond the corrupted bit itself. Thus, the turbo decoder seems to be robust
enough to adapt to different types of noise models, as long as its log-likelihood-ratio
computations account for all the types of noise actually present.

We need to further investigate these effects in several ways. First, we need a more
quantitative appraisal of the degree to which the decoder is able to overcome the bit-flip
problem. Is our crude solution of saturating the log-likelihood ratios good enough, or
should the decoder calculate the log-likelihood ratios more exactly, taking into account
the bit-flip probability and the Gaussian noise probabilities simultaneously? More
generally, we want to learn how susceptible turbo decoders are to unanticipated and
therefore unmodeled noise sources, and whether there might be “universal” safeguards
that could be built into the decoding algorithm to protect against a wide range of unknown
corruptions.

7.3.7 Imperfect Computation of Receiver Metrics

Due to hardware constraints and requirements on the speed of the decoder, a real-life
turbo decoder will not compute the MAP algorithm to the maximum possible precision,
and decoder performance will suffer as a result. It is another systems issue to decide
how to get the maximum possible performance at the least hardware cost for the required
decoder speed.

29

8 Summary

Turbo codes represent a major paradigm shift in JPL’s approach to coding systems. They
offer performance improvements of 1 dB or more compared to the codes currently used
by the DSN, and they are more than an order-of-magnitude easier to decode than the
most complex of the current DSN codes. Furthermore, they sustain their near-optimum
performance over a wide range of fundamental code parameters (such as code rate and
block size) that are important to system designers.

Future JPL coding systems will likely be based on families of turbo codes3 with
adjustable parameters appropriate for different applications. Such integrated coding
families will be an improvement over the present-day hodge-podge of different codes.
They will provide better performance, reduce the complexity of decoding, and simplify
system integration. To reach this goal, we must continue to study the basic principles
governing turbo codes, and to assess the implications of turbo codes on system design.
The current version of this report is just a small step toward the latter goal.

3or similar codes such as serial concatenated convolutional codes with soft-input, soft-output iterative
decoding

30

